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ABSTRACT 

We present Pyro, a micro thumb-tip gesture recognition 

technique based on thermal infrared signals radiating from 

the fingers. Pyro uses a compact, low-power passive sensor, 

making it suitable for wearable and mobile applications. To 

demonstrate the feasibility of Pyro, we developed a self-

contained prototype consisting of the infrared pyroelectric 

sensor, a custom sensing circuit, and software for signal 

processing and machine learning. A ten-participant user 

study yielded a 93.9% cross-validation accuracy and 84.9% 

leave-one-session-out accuracy on six thumb-tip gestures. 

Subsequent lab studies demonstrated Pyro’s robustness to 

varying light conditions, hand temperatures, and background 

motion. We conclude by discussing the insights we gained 

from this work and future research questions. 
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INTRODUCTION 
Micro finger gestures [1, 34, 62] offer new opportunities for 

natural, subtle, fast, and unobtrusive interactions in 

wearable, mobile, and ubiquitous computing applications. 

For example, gesturing the thumb tip against the tip of the 

index finger [1] is a natural method of performing input, 

requiring little effort from users because the index finger 

serves as a supporting surface to naturally provide haptic 

feedback. This motion introduces less fatigue over time 

compared with traditional gestural input methods, which 

often require moving the finger, hand, or even the entire arm 

in mid-air [16, 33].  

Despite the known benefits of this new input modality, 

tracking fine-grained thumb-tip gestures remains very 

challenging due to the small magnitude of finger motions and 

frequent occurrences of self-occlusion. Existing studies have 

exploited magnetic sensing [1, 19], which achieves a 

relatively high tracking precision but requires fingers to be 

instrumented with magnets and sensors. The Soli project [34, 

62] explored the use of millimeter-wave radar to sense subtle 

finger movement without instrumenting the user. The active 

sensor’s energy consumption, however, is a concern, 

especially for small wearable devices (e.g., smart watches).  

In this paper, we propose an alternative approach that senses 

thermal infrared signals radiating from fingers to recognize 

micro thumb-tip gestures (Figure 1). We sense these signals 

using a passive infrared (PIR) sensor made of pyroelectric 

materials. A PIR sensor is highly sensitive to subtle motion 

and thus enables recognition of fine gestures. This passive 

sensing approach provides two unique benefits. First, by 

eliminating the need to generate active signals, the sensing 

technique itself is energy-efficient. It is preferable for small 

wearable devices. Second, the PIR sensor generates very 

little heat and thus requires no cooling [26]. It is an important 

benefit for wearable devices since cooling is a known 

challenge in engineering small consumer devices [48]. 

 

Figure 1. Sensing micro thumb-tip gesture using a PIR sensor. 

We demonstrate the technical feasibility through Pyro, a 

proof-of-concept prototype developed using a low-cost, off-

the-shelf PIR sensor (Figure 1). We augment the PIR with 

customized sensor electronics and optimize Pyro for 

detecting micro thumb-tip gestures performed close to the 

sensor. We test the system using six thumb-tip gestures: a 

triangle, rectangle, circle, question mark, check mark, and 

finger rub (Figure 3). Results from ten participants show 

93.9% cross-validation accuracy and 84.9% leave-one-

session-out accuracy. Additionally, our study provides 

insights into the robustness of this approach under 

environmental noises such as ambient light interference, 

hand temperature variations, and background hand 

movement. Our work provides the first evidence to support 

pyroelectric infrared sensing as a promising alternative for 

detecting micro finger gestures.  
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Our primary contributions include: 1) an approach to detect 

micro thumb-tip gestures using pyroelectric infrared sensing; 

2) development of a prototype using an off-the-shelf sensor 

and customized hardware and software; and 3) initial 

validation of this approach through a series of experiments.  

RELATED WORK 

In this section, we briefly summarize previous research 

based on various sensing techniques. 

Camera-based Sensing 

Camera-based approaches have shown good accuracy in 

tracking small finger motions. For example, 2D images of a 

hand in different angles can be used to query a database of 

existing hand models to find a best match [31, 57]. Recent 

work by Song et al. [46] shows a technique for 3D hand 

gesture recognition using a single 2D camera. Wrist-worn 

[33], finger-worn [18] and head-mounted [21] cameras have 

also been used to track small finger motions. In recent work, 

depth cameras have been widely used for improved 

accuracy. Much of the existing work uses machine learning 

classifiers to recognize hand postures [4, 36, 37, 45]. 

RetroDepth [9] took a different approach by sensing 3D hand 

postures using the silhouettes of the hands. Although 

tracking is precise, camera-based approaches have been 

criticized for being bulky and power consuming, making 

them hard to integrate into small wearable devices. 

RF Sensing 

RF signals (e.g., Wi-Fi, GSM, radar signal) have also been 

shown to be effective for detecting finger gestures. Coarse-

grained hand gestures (e.g., flick, slide, hover) can be sensed 

using Wi-Fi [8, 50] and GSM [17]. Mudra [64] is a fine-

grained finger gesture recognition system which senses 

finger motion using Wi-Fi signals. Soli [34] provides a 

promising alternative approach. The technology tracks very 

small finger movements using 60-GHz radar signals. Soli is 

capable of detecting 11 hand gestures [62], although only 

four of them are micro (pinch index, pinch pinky, finger 

slide, and finger rub). A common concern of 60-GHz radar, 

however, is power consumption, especially in the context of 

wearables. Compared to Soli, our pyroelectric infrared 

sensing is passive, which significantly reduces the power 

consumption.  

Pyroelectric Infrared Sensing 

Pyroelectric infrared sensors are sensitive to thermal 

radiation emitted by the human body (8 - 14 μm) [13]. Tiny 

deviations from the thermal equilibrium of the surrounding 

environment can be detected [13, 63]. Pyroelectric infrared 

sensing is commonly used in commercial applications to 

detect the presence of humans or trigger alarms. PIR sensors 

have also been explored for much more complex applications 

such as human localization [14, 27, 30, 32, 41, 47, 52, 53, 54, 

56], motion direction detection [10, 23, 25, 42], thermal 

imaging [11], radiometry [38], thermometers [15], and 

biometry [10, 26, 49, 55, 56]. Most prior work in this space 

has focused on detecting large and coarse-grained body 

movement happening at a relatively long distance from the 

PIR sensor (>~2m). For shorter-distance sensing, a 4×4 PIR 

sensor array has been used to identify hand motion in four 

directions at a distance of tens of centimeters [61]. In our 

work, we explore PIR sensing for detecting nearby micro and 

fine-grained thumb-tip gestures for wearable applications.  

Other Sensing Techniques 

Thumb-tip movements can also be sensed using magnetic 

sensors [1, 19]. The limitation of this approach, however, is 

the need to instrument the fingertips with magnets and 

sensors. Acoustic sensing [39, 58] also shows potential, but 

no existing system has demonstrated feasibility in 

recognizing thumb-tip gestures with micro finger movement. 

A variety of sensing techniques have been developed to 

detect the commonly-used pinch gestures (e.g., thumb 

touching the other fingers) [2, 12, 22, 29, 35, 44, 65]. 

GestureWrist [43] is one of the earliest examples, which uses 

an array of capacitive sensors to detect the changes in the 

shape of the forearm to identify different finger pinches. 

Recent research has shown that the forearm shape can also 

be detected using infrared photo reflectors [24, 40]. Sensing 

resolution can be further improved using pressure sensors 

[22] or electrical impedance tomography sensors [65]. 

SENSING PRINCIPLE 

PIR sensors are made of pyroelectric crystals, a material that 

generates a surface electric charge when exposed to heat in 

the form of infrared radiation. Commercial PIR sensors are 

typically tuned for human detection by adding a bandpass 

filter window which only passes the infrared wavelengths 

emitted by the human body (e.g., 8 - 14 μm) (Figure 2). In 

the presence of a thermal object (e.g., a finger), PIR sensors 

convert the thermal radiation into an electrical current 

proportional to the difference in temperature between the 

finger and the environment [13]. 

 

Figure 2. Pyroelectric infrared sensing principle. 

A PIR sensor commonly arranges two sensing elements side 

by side, connected to a differential amplifier to cancel 

common-mode noise caused by environmental temperature 

change, vibration, and sunlight, since these simultaneously 

affect both elements. When a finger passes by, though, it is 

observed by one element first and then the other, which 

causes a positive differential change between the two crystals 

(e.g., generating a sinusoidal swing). When the object 

crosses from the opposite direction, it intercepts the elements 

in a reverse order, thus generating a negative differential 

change (e.g., a flip of the sinusoidal swing). When the change 
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in thermal infrared has stabilized between the two crystals, 

the signal returns to its baseline voltage. Thus, if the finger 

remains still, no output signal will be generated. PIR sensors 

are less responsive to motion towards or away from the 

sensor since the motion in z-axis causes a smaller difference 

in temperature between the two crystals (Figure 2).  

To make the sensor responsive to tiny movements, a Fresnel 

lens can be added to concentrate incoming radiation on the 

sensing elements (Figure 2). To further improve sensitivity, 

the Fresnel lens can be split into multiple zones, each with 

its own sub-lens focused on all sensing elements. The 

downside of using a multi-zone Fresnel lens, however, is that 

the finger’s movement direction cannot be reliably detected 

due to the mixture of multiple signals coming from different 

zones. Thus, we used a single-zone Fresnel lens for the Pyro 

prototype. 

GESTURE SET 

Thumb-tip gestures are performed by moving the thumb tip 

against the tip of the index finger, which is natural, subtle, 

fast, and unobtrusive [1]. While the design space of thumb-

tip gestures is large, we focus our exploration on free-form 

shape gestures carried out on the distal segment of the index 

finger as it is the most common and intuitive way to perform 

the gestures. Since drawing the thumb on the index finger 

resembles gesturing on a touchscreen, we choose five 

gestures from known unistroke gestures shown to be useful 

on touchscreen devices [59, 60] (Figure 3).  

 

Figure 3. Gesture set: (a) triangle; (b) check mark; (c) 

rectangle; (d) circle; (e) question mark; (f) finger rub. 

To ensure diversity, we picked unistroke gestures with 

straight lines and corners of different degrees (counter 

clockwise triangle, check mark, and counter clockwise 

rectangle), one with a curved path (counter clockwise circle) 

and one mixing a curve, straight line, and corner (question 

mark). We also added the finger rub gesture from [62]. 

Although this set of gestures is not exhaustive, it is so far the 

largest micro-gesture set that has been used to validate a 

sensing technique.  

PYRO IMPLEMENTATION 

We created a self-contained prototype using our customized 

hardware and software. This section describes our 

implementation details. 

PIR Sensor and Fresnel Lens 

We optimized our hardware for finger motion close to the 

sensor. To achieve this, we chose a single-zone Fresnel lens 

(IML-0637 from Murata Manufacturing Co.)  and a PIR 

sensor (IRA-E710 from Murata Manufacturing Co.) without 

the built-in amplifier and bandpass filter. As mentioned 

previously, the single-zone Fresnel lens is chosen over the 

multiple-zone lens to preclude interference from multiple 

monitoring zones. Our system’s horizontal and vertical field 

of view are both 90 degrees. Figure 4 shows a smartwatch 

prototype augmented with Pyro. A pilot study with 3 

participants suggested that the orientation of the crystal 

elements does not affect gesture recognition accuracy, so we 

aligned the elements parallel to the table.  

 

Figure 4. A smartwatch prototype augmented with Pyro. 

Sensing Board 

We built our customized sensing board (Figure 5) around a 

Cortex M4 micro-controller (MK20DX256VLH7 [3])  

running at 96MHz, powered by the Teensy 3.2 firmware [5]. 

The board has an LM324 [6] based ADC preamp, a power 

management circuit, and a Bluetooth module. To reduce the 

dominant noise (50 kHz - 300 kHz) caused by powerline and 

fluorescent light ballasts, we implemented a bandpass filter 

with cut-off frequencies of 1.59 Hz and 486.75 Hz. The 

relatively wide bandwidth gives us the flexibility to explore 

sampling rates. After the noise is removed, the input signal 

is amplified with a gain of 33 and biased by AREF/2 (1.5 V) 

to preserve the fidelity of the analog signal. The gain value 

is carefully tuned to have an optimal sensing range of 

approximately 0.5 cm to 30 cm away from the PIR sensor. 

This design mitigates the background thermal infrared 

signals from the human body minimizing the impact on the 

foreground finger gesture signal. 

 

Figure 5. Pyro sensing board. 
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Although existing literature suggests that the PIR signals 

should be better sampled at 10 Hz for detecting human 

body movement [51], we found 20 Hz works better for 

micro finger gestures. This is because the frequency of PIR 

signals generated by nearby-finger movement is between 

2 Hz and 10 Hz. Finally, PIR signals are sent to a laptop 

through Bluetooth for further computation. In total, our 

prototype costs $24. It can be made smaller and cheaper in 

high volume commercial applications.   
Machine Learning  

We use machine learning to classify thumb-tip gestures. 

While there are many options for classification algorithms 

(e.g., Hidden Markov Models and Convolutional Neural 

Networks), many of them are computationally expensive, 

and therefore potentially unsuitable for real-time 

applications on low-power platforms such as smartwatches 

[34]. We aim to strike a balance between recognition 

accuracy and computation efficiency. As such, we narrowed 

the candidate gesture recognition methods to Random Forest, 

Support Vector Machine, and Logistic Regression. After 

comparing their recognition accuracy (e.g., results shown in 

Figure 9), we decided to use Random Forest in our 

implementation. Random Forest has previously been found 

to be accurate, robust, scalable, and cost-efficient in 

computation when tracking micro gestures using radar [34] 

or computer vision [18] techniques.  

Feature Extraction 

Like any machine learning application, extracting relevant 

features is critical to the success of Pyro. The challenge, 

however, lies in the fact that selecting the right feature set is 

not obvious. Although features like FFT, peak amplitude or 

first-order derivative are commonly used in various 

applications, we found that using them directly to train a 

Random Forest model led to a rather low accuracy and none 

of the existing research provided insights into suitable 

features for characterizing micro thumb-tip gestures using 

pyroelectric infrared signals. We decided to use tsfresh [7], a 

feature extraction toolbox, to extract hundreds of features 

from time and frequency domains. We sampled PIR signals, 

made them equal length with zero padding, and normalized 

them. We then extracted features and used these features to 

train and test the models. Results are reported in the later 

sections. Table 1 shows the top-50 most effective and 

relevant features ranked by Random Forest. Interestingly, 

half of them are from the time domain and the remaining half 

are from the frequency domain. This confirms that data from 

both domains are treated equally important by Random 

Forest. Figure 6 presents the normalized values of the top-50 

features (same order as in Table 1) and raw signals for the 

six thumb-tip gestures.  

Time 

Domain  

(26 features) 

• Statistical Functions (21): Sum, Mean, Median, 

Standard Deviation, Skewness, Quantiles (4), Kurtosis,  

Longest strike above/below mean, Count above/below 
mean, mean autocorrelation, mean absolute change 

quantiles (3), autocorrelation of lag, ratio of unique 

values, Variance 

• Peak (1): Number of values between max and min 

• Entropy (3): Binned Entropy, Sample Entropy, 

Approximate Entropy 

• Energy (1): Absolute energy 

Frequency 

Domain  

(24 features) 

• Continuous Wavelet Transform (21) 

• Fast Fourier Transform (1) 

• Autoregressive (1) 

• Welch (1) 

Table 1. Top-50 features ranked by Random Forest. 

USER EVALUATION 

The goal of this study is to validate Pyro’s gesture 

recognition accuracy, as well as its robustness against 

individual variance and among different users. 

Participants 

Ten right-handed participants (average age: 26.4, two 

female) were recruited to participate in this study. 

Figure 6. Top 50 features of six thumb-tip gestures. 
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Participants’ finger temperatures measured between 24.1 °C 

and 34.4 °C (SD = 4.6). The room temperature was 24 °C.  

Data Collection 

Each participant was instructed to sit in front of the PIR 

sensor placed on a desk. Before a session started, participants 

were given several minutes to learn the six unistroke gestures 

(triangle, rectangle, circle, question mark, check mark, and 

finger rub). After the short training session, each participant 

performed the gestures roughly 0.5 cm to 7 cm in front of the 

PIR sensor using their right hand. Participants were not given 

any instruction on how to perform the gestures (e.g. 

magnitude or duration), except the direction in which the 

gestures should be drawn. The start and end of each gesture 

was indicated by clicking a computer mouse using their left 

hand. Each gesture was repeated 20 times in each session 

[19, 31, 50, 51], which took about 15 minutes to complete. A 

five-minute break was given between sessions, where 

participants were asked to leave the desk and walk around 

the lab. Data collection finished after three sessions. The 

study took about an hour to complete for each participant. In 

total, we collected 3600 samples (10 participants × 6 gestures 

× 20 repetitions × 3 sessions) for analysis.  

Result 

We present experiment results to demonstrate the accuracy 

and reliability of our system.  

Within-User Accuracy 

Within-user accuracy measures the prediction accuracy 

where the training and testing data are from the same user. 

For each participant, we conducted a twofold cross 

validation, where half of the data was used for training and 

the remaining half used for testing. The overall within-user 

accuracy was calculated by averaging the results from all the 

participants. The result yielded an accuracy of 93.9% (SD = 

0.9%). Figure 7 left shows the confusion matrix.  

 

Figure 7. Confusion matrices. Left: cross validation accuracies; 

Right: leave-one-session-out accuracies. 

Reproducibility 

Reproducibility measures how stable and scalable the system 

is against the data collected from a different session. To 

measure the system reproducibility, we calculated the leave-

one-session-out accuracy for each participant by training the 

model using the data from two sessions and testing it using 

the remaining session. The average accuracy for each 

participant was calculated by averaging all possible 

combinations of training and test data. The overall accuracy 

was then calculated by averaging the accuracy from all 

participants. The result yields 84.9% accuracy (SD = 3.5%). 

Compared with cross-validation accuracy, this result reflects 

a more realistic situation. Figure 7 right shows the confusion 

matrix. Rectangle received the highest accuracy (i.e., 92%) 

among all six gestures. A potential reason is that the 

rectangular trajectory has many sharp turns that make the 

signal more distinguishable than others. The mix of curves 

and a sharp turn in the question mark may also contribute to 

the higher accuracy. Most gestures (except rectangle) are 

more likely to be confused with circle, and vice versa (Figure 

7 left). This can be attributed to many factors (e.g. gesture 

geometry, how gestures were drawn, and recognition 

algorithm) and requires further investigation. The trend is 

similar between within-user accuracy and leave-one-session-

out accuracy, where rectangle and question mark received 

higher scores than others, while circle remained the most 

confusing gesture. These results suggest that gestures with 

higher accuracy were also drawn more consistently across 

sessions.  

Universality 

Universality measures whether an existing model works 

across different users. To calculate the accuracy, we used the 

data from nine participants for training and the remaining 

one for testing. The overall accuracy was then calculated by 

averaging the results from all ten combinations of training 

and test data. The overall accuracy is 69% (SD = 11.2%). 

which indicates that different users performed gestures 

differently even though the internal consistency is quite high 

for each individual participant. Figure 8 left shows the 

confusion matrix of all six gestures, from which we found 

that check mark (48.2%) and circle (58.5%) contributed the 

most to the error. We then removed them and calculated the 

accuracies using the remaining data. The result yielded a 

higher accuracy of 76.3% (SD = 6.8%) without check mark 

and 87.6% (SD = 6.7%) without both (Figure 8 right).  

 

Figure 8. Left: confusion matrix of cross-user accuracies; 

Right: cross-user accuracy with gesture sets of different sizes.  

Prediction Methods 

With the number of different options available for prediction 

methods, we were also interested in measuring how well they 

perform on our data. We ran our data with four additional 

methods, including Poly Kernel Support Vector Machine 

(SVM), RBF Kernel Support Vector Machine, Logistic 

Regression, and Dynamic Time Warping (DTW), each with 

different strengths and weaknesses. Similar to [34], we did 
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not try Hidden Markov Models and Convolutional Neural 

Networks as they require significant computational power, 

making them less suitable for small computing devices. We 

report the prediction accuracy obtained from each method by 

showing the cross-validation accuracy, leave-one-session-

out accuracy, and leave-one-subject-out accuracy (Figure 9). 

The result shows that Random Forest outperformed all other 

tested methods on all three metrics, followed by SVM with a 

Poly Kernel.  

 

Figure 9. Recognition accuracy under various prediction 

methods. 

SUPPLEMENTARY STUDY: ENVIRONMENTAL NOISE 

Micro finger gestures will be performed in noisy and 

inconsistent environments. Thus, we conducted initial 

experiments in a controlled lab environment to evaluate how 

robust our system is against common environmental noises, 

such as ambient light and nearby hand movements. 

Additionally, we also measured the impact of rapid changes 

in hand temperature. This study was carried out with a single 

participant (male, right-handed, 25 years old).  

Data Collection 

The data collection procedure was similar to the user 

evaluation, except that we collected only two sessions of 

data. Both sessions were used for training. Since no ambient 

noise was presented, the prediction model was created under 

a clean and controlled environment, which we believe is the 

easiest way to model in real practice. Our goal was to test the 

performance of this model under varying noise conditions. 

In total, we collected 240 (6 gestures × 20 repetitions × 2 

sessions) gestures to train our prediction model. Test data 

was collected in separate sessions under different noise 

conditions. For both training and testing, the participant 

performed the gestures roughly 0.5cm to 7cm in front of the 

PIR sensor using his right hand. Room and finger 

temperatures measured around 23°C and 35°C respectively 

prior to the experiment. 

Ambient Light  

A PIR sensor senses thermal infrared with wavelengths 

ranging from 8 μm to 14 μm, which is not emitted by most 

indoor light sources (e.g., LED, fluorescent lights) and yet is 

contained in sunlight. Thus, we focused on understanding 

how much sunlight affects the sensing performance. We 

collected test data (6 gestures × 20 repetitions × 2 sessions) 

under two lighting conditions: dark (0 lx – 20 lx, a dark room 

without any sunlight) and bright (200 lx – 300 lx, under 

sunlight leaked through a window). Data for both conditions 

were collected indoors to ensure the consistency of the 

environmental temperature.  

The result shows that the clean model achieves 82.5% and 

84.2% accuracy in dark and bright condition respectively. 

This is similar to the leave-one-session-out accuracy in Study 

2, indicating that interferences from ambient thermal infrared 

have little effect on the sensing performance in our set-up. 

This is expected because the differential amplifier of our PIR 

sensor cancels out any ambient interference that equally 

affects both sensing elements. More evaluation, however, 

should be done outdoors to fully understand the effect of 

ambient light (e.g. whether the sensor will be saturated when 

sun light is too strong).   

Nearby Hand Movement 

We also tested the robustness of our system against 

background hand movements. Another person waved their 

hand in random trajectories behind the participant’s fingers 

in a distance no further than 30 cm away from the sensor to 

create background noise. In total, 120 gesture instances (6 

gestures × 20 repetitions × 1 session) were collected for 

testing. The result was 86.7% accuracy, which is again 

similar to those found in the other conditions, indicating that 

background hand movement does not have a negative impact 

on sensing micro thumb-tip movement in our settings. We 

believe it is because 1) the foreground hand blocks 

background objects from the sensor’s viewing angle and 2) 

the amplifier gain was adjusted to limit sensing long-range 

motion.  

Hand Temperature 

Hand temperature may change drastically after the hand 

holds a hot or cold object (e.g., a cup of a hot or cold drink). 

To understand whether the rapid, significant change in finger 

temperature affects sensing performance, we varied the 

temperature of the participants’ fingers by asking the 

participant to hold a cup of hot water or soak fingers in ice 

water before performing gestures. In the hot condition, the 

fingertips measured around 41°C after holding a cup of hot 

water for several minutes whereas in the cold condition, the 

fingertips measured around 24°C after soaking fingers in ice 

water for several minutes. The participant started gesturing 

immediately after the temperature was set. The finger 

temperature returned to around 36°C at the end of the hot 

finger session and 34°C at the end of the cold finger session. 

We observed that hot fingers did not introduce a visible 

impact on the analog signal. The resulting 85.8% accuracy 

further confirmed that a rapid increase in finger temperature 

does not negatively affect recognition accuracy. In contrast, 

when the hand was cold, the analog signal became visually 

weaker. However, the signal quickly returned to the normal 

scale after the hand temperature reached to 27°C (within 

roughly 3 seconds in a room temperature of 23°C). Although 

we found that the overall prediction accuracy was not 

affected (i.e., 83.3%), the hand temperature increased too 

quickly to allow us to draw a conclusion. To extend our 

understanding on the effect of cold fingers, we collected 
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another set of gestural data, where we controlled the finger 

temperature within a range between 24°C and 26°C. The 

result yields 53% accuracy, which suggests that recognition 

accuracy was affected by the significant drop of hand 

temperature. It is because a smaller temperature difference 

between the finger and environment causes weaker signals 

when hand temperature drops significantly. Thus, the system 

performance will likely be affected if our model is used in 

cold temperature conditions, but the issue may go away 

quickly once the hand returns to a normal temperature.  

Overall, the results of this study are encouraging. They 

provide insights into the pyroelectric infrared sensing in 

varying usage conditions, and the robustness of our system 

against tested noises.  

DEMO APPLICATIONS 

We implemented two demo applications to showcase Pyro’s 

potential on wearable devices. Our first application is a video 

player on a smartwatch. We created a smartwatch prototype 

using a 2” TFT display, a 3D printed case, and the Pyro 

system. First, the user can draw a circle on their index finger 

as a shortcut to launch the video player app. This way the 

user does not need to browse the app list to find the app. 

Unlike the existing video players on smartwatches, where the 

control panel can occlude the screen content, our application 

allows the user to draw thumb-tip gestures to control the 

video. For example, the user can rub their finger to play or 

pause the video (Figure 10 left). Drawing a question mark 

shows the information of the video, such as title and year.  

   

Figure 10. Left: A user rubs the fingers to play/pause a video; 

Right: Drawing a check mark with touch takes a photo and 

shares it on Facebook. 

Our second application allows the user to interact with a 

head-worn display using the thumb-tip gestures. We 

augmented a Google Glass using Pyro. The sensor is placed 

beside the touchpad near the ear. This provides a new input 

channel on Google Glass. Additionally, it also allows the 

touchpad and thumb-tip input to be used jointly. With this 

new style of joint input, many novel interactions can be 

performed. For example, thumb-tip gestures performed with 

and without the index finger touching the touchpad can lead 

to different actions. Touching the touchpad in different 

locations may also lead to different actions. In our 

application, a check mark gesture is a shortcut for taking a 

photo while a check mark gesture with the index finger 

touching the touchpad will take the photo and share it on 

Facebook (Figure 10 right). Alternatively, performing a 

thumb-tip gesture before or after gesturing on the touchpad 

can trigger different actions. This style of input is similar to 

Air+Touch [20], but without the need of an expensive 

camera-based sensing technique. In our application, rubbing 

the thumb and index finger before swiping the touchpad 

zooms the map in or out whereas swiping without rubbing 

pans the map.  

DISCUSSION AND LIMITATIONS 

In this section, we discuss the insights gained from this work, 

propose future research, and acknowledge the limitations. 

Gesture delimiter. The focus of this work is the sensing 

technique. The gesture delimiter, however is an important 

topic to study in the future. A number of options exist. For 

example, distinguishable signals from the hand entering or 

leaving the sensor’s active region can be used as an explicit 

delimiter. To quickly validate this method, we conducted an 

informal study, where we recruited 3 male participants 

(average age: 26.7) and trained a two-class classifier (6 micro 

gestures vs hand-in/out) using 120 samples for each class. 

Overall, we collected 720 samples (2 class × 120 samples × 

3 participants) for analysis. A two-fold cross validation 

yields a 98.6% (SD = 0.4%) mean accuracy. The result is 

very promising. Future implementations include developing 

a hierarchical classifier, where the first classification layer 

determines the start or end of a gesture, and the second layer 

predicts micro gestures that the user performs.  

False positives. Coarse-grained movements, such as a person 

passing by the sensor, may generate signals similar to hand 

motions, and so future research should focus on reducing 

false positives. Our initial tests indicate that body movement 

more than 40 cm away from the sensor generates much 

weaker signals that can be distinguished from hand-in/out. 

We believe this can filter out many ambient motion noise in 

public settings. According to Edward Hall’s theory of 

interpersonal spatial relationships, 40 cm is still within the 

distance between people in a social environment [28], so 

body movements from a nearby colleague or friend may 

accidently trigger the delimiter. A potential solution is to 

reduce the focal distance of the Fresnel lens to around 10 cm, 

which filters out motion noises in many social activities.  

Additionally, smartwatches have a built-in mechanism to 

turn on the screen by detecting the user’s intention to use the 

smartwatch. Pyro can leverage this mechanism and only 

activate the sensor when the smartwatch screen turns on. 

Whirling the wrist of the hand wearing the smartwatch might 

introduce false positives. Activating the sensor only when 

the touchscreen is on can reduce the error. Interacting with 

the touchscreen might also cause false positives but the PIR 

sensor can be deactivated if the smartwatch detects a touch 

event. Future research will carefully validate the 

effectiveness and usability of different options and 

techniques to avoid false positives.  

Evaluation. Although our supplemental studies show some 

promising system robustness against different lighting 

conditions, hand temperatures, and background motion 

noises, further evaluation should be done in more diverse and 
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realistic settings (e.g., outdoors). Since the amplitude of the 

analog output of a PIR sensor is proportional to the 

temperature difference between the finger and the 

surrounding environment, it is interesting to test our system 

in various environmental temperatures, such as in extremely 

hot or cold days. It is also interesting to validate whether a 

model trained in one temperature condition (e.g., hand and 

environment) works in a very different temperature 

condition. Additionally, Pyro’s tracking accuracy can also be 

evaluated when the user is on-the-move (e.g., walking or 

running). A potential research direction is to reduce the 

impact of physical activities on sensor data. Future research 

can focus on studying how much the signal can be affected 

by a shaking wrist when walking or running. The result can 

help us design and validate solutions to filter out the motion 

noise from gesture signals.  

Cross-user model. Our study shows that people may perform 

the same gesture in different ways. This means that a model 

needs to be trained for each user in order to make use of all 

six tested gestures. In our future work, we will seek to 

enhance our machine learning model to better deal with user 

diversity. We will also explore additional thumb-tip gestures 

and examine gesture parameters that vary across users. 

Future research could focus on exploring alternative micro 

gestures and understand the parameters, in which gestures 

from different users may vary. Signal variance may also 

appear between users with and without long fingernails. 

Future research will help us identify and extract ad-hoc 

features to improve the cross-user accuracy.  

Customizing PIR sensor. In this work, we used an off-the-

shelf PIR sensor with a pre-configured Fresnel lens. An 

interesting research direction is to customize the inner 

configurations of a PIR sensor for detecting micro thumb-tip 

gestures. Future work will include building a PIR sensor 

from scratch, so that we can test different crystal alignments 

and electronic designs. We also plan to test Fresnel lenses 

with different focal lengths to optimze sensing performance. 

Conversely, it will be also interesting to test more off-the-

shelf infrared sensors (e.g., thermopile and quantum-type 

infrared sensors).  

Power. We examined the power consumption of our current 

prototype. Overall, our sensing board consumes 148.1 mW, 

excluding the Bluetooth radio (99 mW) used to transfer PIR 

data to an external laptop for feature extraction and gesture 

classification. The sensing component (PIR sensor and its 

analog frontend) alone consumes 2.6 mW.  

The current power number is dominated by the Teensy 

framework. In particular, the micro-controller [3] in the 

framework is the most power-consuming, as it contains two 

ADC components each operating at a 20-KHz sampling rate 

at a minimum. Given that Pyro requires only 20-Hz 

sampling, the system can consume significantly less power 

by using low-power ADC (for example, the ADS7042 from 

Texas Instruments supports 1 kHz sampling rate with less 

than 1 microwatt). Furthermore, our feature extraction and 

gesture classification algorithm are lightweight. Thus, it 

holds the potential to be run on lower-power micro-

controllers. Future research will explore porting these 

components to micro-controllers to make the system stand-

alone and measure the system’s total power consumption.  

CONCLUSION 

In this paper, we demonstrated the feasibility of recognizing 

micro thumb-tip gestures through sensing changes in thermal 

infrared signals emitted from our fingers. We developed a 

self-contained, proof-of-concept prototype in a wearable 

form factor using off-the-shelf PIR sensor and electronics. 

We used a Random Forest classifier to recognize six thumb-

tip gestures, including triangle, rectangle, circle, question 

mark, check mark, and finger rub. We evaluated system 

performance with ten participants, yielding a 93.9% cross-

validation accuracy and 84.9% leave-one-session-out 

accuracy on the six thumb-tip gestures. Additionally, we 

initially demonstrated our system’s robustness against 

different lighting conditions, hand temperatures, and 

background motion noises. Our work presents a passive 

sensing methodology for detecting micro thumb-tip gestures. 

We believe it holds the potential to be applied in a wide range 

of wearable and mobile devices. 
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