SECTION 4.4
Further rules of differentiation

'At the end of this section you should be able to;

Use the chain rule to differentiate a function of a function.
Use the pmduct rule to differentiate the product of two functions,
Use the quotlent rule ta differentiate the guotient of two functions.

@

& Differentiate compllcated functions using a combination of rules.

Section 4.2 introduced you to the basic rulés of differentiation. Unfortunately, not all functions
can be differentiated using these rules alone. For. ekamp}e, we are unable to differentiate the
functions -

f(2x-3) and

v

using just the constant, sum or difference rules. The aim of the present section is to describe
three further rules which allow you to find the derivative of more comp licated expressions,
Indeed, the totality of all six rules will enable you to differentiate any mathematical function,
Although vou may find that the rules described in this section take you slightly longer to g] asp
than before, they are vital to any understanding of economic theory.

The first rule that we investigate is called the chain rule and it can be used to differentiate
functions such as

y={2r+3)" and ¥v= J+ 1Y)

The distinguishing feature of these expressions is that they represent a ‘function of a function’,
To understand what we mean by this, consider how you might evaluate

= Qe+ H°
on a calculator. You would first work out an intermedijate number 4, say, given by
n=72x+3
and then raise it to the power of 10 to get

)
"' = [{H

This process is illustrated using the flow chart in Figure 4.16 (overleaf). Note how the incoming
number x is first processed by the inner function, ‘double and add 3. The output u from this is
then passed on to the outer function, ‘raise to the power of 10', to produce the final outgoing
number .

The function
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Figure 4.16

tan'be viewed in the same way. To calculate y you perform the inner function, ‘square and add
1, followed by the outer function, “take square roots’.
The chainrule for differentiating a function of a function may now be stated.

i

Rule 4 The chain rule

I y is a function of 4, which is itself a funiction of x, then

dv. dy du

=
dv de dx

 differentiate the outer zﬁriatuqnféh@,mukltipsy,'
by the derivative of the inner function 1
To illustrate this rule, let us return to the function
yo= (20 + 30
in which
y=u" and u=2x+3

Now

B0 = 10020+ 3
faFE

=7
e

dr
The chain rule then gives

dy  dy  du
e o =t e = (2 4 3)(2) = 20020 + 3
dy  de dx i )

With practice it is possible to perform the differentiation without explicitly introducing the
variable u. To differentiate

y=2x+ 3"
we first differentiate the outer power function to get

HO(2x +3)°

and then multiply by the derivative of the inner function, 2v + 3, which is 2, so

d 7 .
L on2r+ 3y
dx




SECTION 4.4 FURTHER RULES OF DIFFERENTIATION 277

Example
Differentiate

(@) y = (3~ 5x + 2)'

b) y =
O =5

(©) y= 4+

{a) The chaiintule’shows that to differentiate (3x7 — 5x + 2)* we first differentiate the outer
power function ta/get

40357 = Sc+ 2

and then multiply by the derivative of the inner function, 3¢ — 5x + 2, which is &x - 5.
Hence if )

Sx+ 2 (6x — 5)

recall that reciprocals are denoted by negative powers, so that "
y=(3x+ 7y

The outer power function differentiates to get
-(3x+ )7

and the inner function, 3x + 7, differentiates to get 3. By the chain rule we just multiply
these together to deduce that

1 dy , -3
if y= = then —% =—(3x+7)}(3) = e .
T 3x+7 dx (Ax+ 7y

(c) To use the chain rule to differentiate
=)
recall that roots are denoted by fractional powers, so that
y=(1+a%"2

The outer power function differentiates to get

| \
— ]_,‘__'\,.' -1f2
5 )

and the inner function, 1 +x?, differentiates to get 2x. By the chain rule we just multiply
these together to deduce that

) S dvy i e Y
ify= \11(1 +x7)  then Zil\ :*;(l + X2 = —’W’\‘T

Ja+ Y
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Practice Problem

1. Differentiate

(@ y=idx=3)

(@) y=(3x -4y (b) v=(x? + 35+ 5) (c) y=

2x—

¢ Theaext rule is used to differentiate the product of two functions, f{xig(x). In order to give
a-clear statement of this rule, we write

w=ft) and v=g()

d\f
Ify=w then -~ =y +y—
dv drdel v
This rule tells vou how to differentiate the'product of two functions:

- multiply each function by the de?iv&?:iﬁe of the other and add

Example

Differentiate

(@ y=x2x+ 1) (b) \‘J(()Nx 1) (c) v= e
l+x

(@) The function x*(2x + 1)* involves the product of two simpler functions, namely x* and
{2x + 1), which we denote by u and v respectively. (It does not matter which function we
label & and which we label v. The same answer is obtained if u is (2 + 1)’ and v is x°. You
might like to check this for yourself later.) Now if

2

u=x> and v=(2x+ 1)

then
du dy
=2y and — =602x+ 1Y
dx dy

where we have nsed the chain rule to find dv/dx. By the product rule,

= 6025 + N+ (2 + DH2x)
The first term is obtained by leaving u alone and multiplying it by the derivative of v.
Similarly, the second term is obtained by leaving v alone and multiplying it by the
derivative of w.
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If desired, the final answer may be simplified by taking out a common factor of
2x(2¢ + 13 This factor goes into the first term 3x times and into the second 2 + 1 times.
Hence

dy ) 3 \ . 1
~{~ = 2x(2x+ I B3x + (2x + D] = 2xCx + 1Y Sy + 1)
dx

i=rx and v=v6x+1=(6x+1)"

for 'Which
d } " —i/2
Sy and S = B+ D7 6 = 3ox+ 1)
dx v 2

dy dv du

o e N
= x[3(6x + 1774 G+ D)

= e+ J (6 + 1)
\f((ll‘ +1)

If desired, this can be simplified by putting the second term aver a common denominator
Ji6e+D
To do this we multiply the top and bottom of the second term by \46;1%4-“] to get

£ ey w
e TP R }
Ji6x+1) L, e o

Hence

—(h N Jr+(bx+ 1) _ Qx+1

dy \;’ {6y + 1) a \]’ (6x+1)

{c) At first sight it is hard to see how we can use the product rule to differentiate

kY

Ttx

since it appears to be the quotient and not the product of two functions, However, if we
recall that reciprocals are equivalent to negative powers, we may rewrite it as

o+ x5y
Tt follows that we can put
u=x and v=(1+xy"

which gives
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where we have used the chain rule to find dv/dx. By the product rule

dy dv du
i JER
dy dy dx
T
R (R R N R )
dy

I
:;4 + —
A+ 1+x

If desired, this can be simplified by putting the second term over a common denominator
{ 14 0

To do this we multiPiy the top and bottom of the second term by 1 + & to get

LSS
(1+ 1)
Hence
dy o ldx—xd(ay ]

= + = T "
dy I+ (1+x)° {1+ x3* (0!

Practice Problem

2. Differentiate

(@) y=x(3x - 1)° (0 y=xJ(2x+3) () v=

Advice

You may have found the product rule the hardest of the rules so far. This may have been due
o the algebraic manipulation that is required to simplify the final expression, if this is the case,
do not warry about it at this stage. The important thing is that you can use the product rule
to obtain some sort of an answer even if you cannot tidy it up at the end. This is not to say that
the simplification of an expression is pointless. If the result of differentiation is to be used in a
subsequent piece of theary, it may well save time in the long run if it is simplified first,

One of the most difficult parts of Practice Problem 2 is part (¢}, since this involves algebraic
fractions. For this function, it is necessary to manipulate negative indices and to put two indi-
vidual fractions over a common denominator. You may feel that you are unable to do either of
these processes with confidence. For this reason we conclude this section with a rule that is
specifically designed to differentiate this type of function. The rule itself is quite complicated.
However, as will become apparent, it does the algebra for you, so you may prefer to use it rather
than the product rule when differentiating algebraic fractions.
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If y;ﬂ then _31 _ vdiefdv —yyudv/dx

v v ¥

This rule tells you how to differentiate the quotient of two functions:

~bottom tlmes derwatwe of top£ minus ‘mp times derwahve of bottom
; al over bottom squared ' :

Example
Differentiate

]'1'\

= By y =
(@) y e (b y T

‘\o

(a) In the quolient rule, i is used as the label for the numerator and v is used for the denomi-
nator, so to differentiate

X

T+ x

we must take

p=x and v=14+x

for which
de dv
— =1 and — =
dv dy

By the quotient rule
dy _ vdu/dy —udufdy

a2
_ A+ 0= x(0)
B {1+ x? )
wl+.x‘—.x

Ty
i

1+

Notice how the quotient rule automatically puts the final expression over a comumon
denominator. Compare this with the algebra required to obtain the same answer using
the product rule in part {c} of the previous example.

(b) The numerator of the algebraic fraction
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is 1+ " and the denominator is 2 — x°, so we take

u=1+x* and v=2-%

for which
d i .
e 2x and i ~Ax°
dy dy

By the quotient rule

des oyt
2= N2~ (1 + 27 W=307)
- (2447 }3
_dx =2t 4+ 3p0 e 3t
- (2-xy &

Xt A3+ 4

-+

Practice Problem

3. Differentiate
X~

b y=—
x—=2 x+1

{a) y=

[You might like to check that your answer to part (a) is the same as that obtained’ in:
Practice Problem 2{c}.] ‘

Advice
The preduct and quotient rules give alternative methods for the differentiation of algebraic
fractions. It does not matter which rule you go for; use whichever rule Is easiest for you.
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Exercise 4.4

1. Use the chain rule to differentiate
@y=(5c+ 1) (b v = (20— 7Y
() vy={ax = 7Y

{hy ¥

Use the product rule to differentiate
@aGvrdy (B
@G- DE+6r @2+ Dt 5y

Use the quotient rule to differentiate

Differentiate
Y+

(a) by using the chailm rule

(b) by first multiplying out the brackets and then differentiating term by term.

Differentiate

(&) by using the product rule

(B) by first multiplying out the brackets and then differentiating term by term.

Find expressions for marginal revenue in the case when the demand equation is given by

L 1000
@) P =000 - QF 1000

1f the consumption funiction i

3004277
gy

calculate MPC and MPS when ¥ =36 and give an interpretation of these resulfs:

(@ y=(t+dy -3

{c)v=(x+9y
B v=Jx+1

e e

(2:

(©) xfx+2)
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Exercise 4.4%
1o Use the chain rale to differentiate
(ayv =+ Y (D) y=(x"+3c=5"

Ay = g () v'=/(8r=1)

R

2. Usc the product rule to differentiate
(@) v=ait s (h)y = (4 +5)°
Use the qu(jticht mfc to differentiate

Zaend
ayi
@ A

Differentiate

(a)y

et : e :
(e} v il (B v=(ac+ hMee+ dYf Aghy=alos Dy los 3y
v :

Find an expression, simplified as far as possible, for-the second-order derivative of the

2 . P E e e

function, ¥ = i

v+l

Find expressions for marginal revente inihe case when the dénand equation ts given by

@ F = [A0=20) ()P =

240
Determing the marginal propensity to consume for the consumption function
L 650427
Q¥

when Y = 21, correct 103 decimal places.
Deduce the corresponding value of the marginal propensity to save and comment on
the implications of these resulls.




ctives
At the end of this section you should be able to:

= Use the first-order dérivative to find the stationary points of a function.

@

: Use the second-order der‘i‘vatii\/e to classify the stationary points of a function,

E

Find the maximum and minimum 'points of an economic function.
Use stationary points to sketch graphs of economic functions.

&

In Section 2.1 a simple three-step strategy was described for sketching graphs of quadratic func-
tions of the form K

fiy=ax® +bx+c
The basic idea is to solve the corresponding equation
axr’+bhx+c¢=0

to find where the graph crosses the x axis. Provided that the quadratic equation has af least one
solution, it is then possible to deduce the coordinates of the maximum or minimum pointof
the parabola. For example, if there are two solutions, then by symmetry the graph turns round
at the point exactly halfway between these solutions. Unfortunately, if the guadratic equation
has no solution then only a limited sketch can be obtained using this approach.

In this section we show how the techniques of calculus can be used to find the coordinates
of the turning point of a parabola. The beauty of this approach is that it can be used to locate
the maximum and minimum points of any economic function, not just those represented by
quadratics, Look at the graph in Figure 4.2]. Points B, C, D, E, F and G are referred to as the
stationary points (sometimes called critical points, turning points or extrema) of the func-
tion. At a stationary point the tangent to the graph is horizontal and so has zero slope.

Consequently, at a stationary point of a function f{x),

Fi=0

The reason for using the word ‘stationary’ is historical. Calculus was originally used by astron-
omers to predict planetary motion. If a graph of the distance travelled by an object is sketched
against time then the speed of the object is given by the slope, since this represents the rate of
change of distance with respect to time. It follows that if the graph is horizontal at some point
then the speed is zero and the object is instantaneously at rest: that is, stationary.

Stationary points are classified into one of three types: local maxima, local minima and
stationary points of inflection.

At a local maximum (sometimes called a relative maximum) the graph falls away on both
sides. Points B and E are the local maxima for the function sketched in Figure 4.21. The word
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Figure 4.21

“local’ is used to highlight the fact that, although these are the maximum points relative to their
tocality or neighbourhood, they may not be the overall or global maximum. In Figure 4.21 the
highest point on the graph actually occurs ap the right-hand end, H, which is not a stationary .
point, since the slope is not zero at H. '

At a focal minimurn (sometimes called a relative minimum) the graph rises on both sides.
Points C and G are the Jocal minima in Pigure 4.21 Again, it.is not necessary for the global
minimum to be one of the local minima. In Figure 4.21 the lowest point on the graph occurs at
the left-hand end, A, which is not a stationary point. :

At a stationary peint of inflection the graph rises on one side*and falls on the other, The
stationary points of inflection in Figure 4.21 are labelled D and F. These pomts are of little value
in economics, although they do sometimes assist in sketching graphs of econgmié functions.
Maxima and minima, on the other hand, are important. The calculation of the ‘miaximum
points of the revenue and profit functions is clearly worthwhile. Likewise, it is useful tohe abk
to find the minimum points of average cost functions.

For most examples in economics, the local maxinmum and minimum points coincide with the
global maximum and mininyum. For this reasen we shall drop the word ocal’ when describing
stationary points. However, it should always be borne in mind that the global maximum and
minimum could actually be attained at an end point and this possibility may need to be
checked. This can be done by comparing the function values at the end points with those of the
stationary points and then deciding which of them gives rise to the largest or smallest values.

Two obvious questions remain. How do we find the stationary points of any given function
and how do we classify them? The first question is easily answered. As we mentioned earlier,
stationary points satisfy the equation

Flo)=0

so all we need do is to differentiate the function, to equate to zero and to solve the resulting
algebraic equation. The classification is equally straightforward. It can be shown that if a func-
tion has a stationary point at.x = ¢ then

e if f“(w) >0 then f(x} has a minimum atx =«

e i f7(a) < 0 then f(x) has a maximum at x = a.

Therefore, all we need do is to differentiate the function a second time and to evaluate this
second-order derivative at each point. A point is & minimum if this value is positive and a
maximum if this value js negative. These facts are consistent with our interpretation of the
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second-arder derivative in Section 4.2. 1f f“(z) > 0 the graph bends upwards at x = g (points C
and G in Figure 4.21). If f”(a) < O the graph bends downwards at x = ¢ (points B and E in
Figure 4.21}. There is, of course, a third possibility, namely /(&) = 0. Sadly, when this happens
it provides no information whatsoever about the stationary point. The point x = ¢ could be a
maximum, minimum or inflection. This situation is illustrated in Question 2 in Exercise 4.6* at

the end of this section.

Advice

il yoi;x ‘are-.untucky encugh to encounter this case, you can always classify the point by tabulat-
" ing the function values in the vicinity and use these to produce a local sketch,

To summarise, the-wiethod for finding and classifying stationary points of a function, f(x, is
as follows: : s

Step . ;
Solve the equation f'(x) = 0 to find thé stationary points, x = a.

Step 2
1If

& [7(a) > 0 then the function has a minimum atx =« *
e f"(a) < 0 then the function has a maximum atx =«

& f"(a) =0 then the point cannot be classified using the available informiation.

Example
Find and classify the stationary points of the following functions. Hence sketch their gfa}fhs; F

(@ fiy=x’-4x+5 (D) F(x) = 2¢7 + 3x* = 12x + 4

(a) In order to use steps 1 and 2 we need to find the first- and second-order derivatives of the
function

Fy=xt—dx+5
Differentiating once gives

Fy=2x—4

and differentiating a second time gives

Fiy=2
Step i .
The stationary points are the solutions of the equation
Foy==0

30 we need to solve

25-4=0
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This is a linear equation so has just one solution. Adding 4 to both sides gives
2x=4
and dividing through by 2 shows that the stationary point occurs at

x=72

Siep 2

To classify this point we need to evaluate
el
Iﬁ ﬂ’xis' case.
=2
for all values ‘of X, 56 i1 particular
ye=2 F
This number is positive, so the 'fun’(::kl‘icn has a minimum at x = 2,

We have shown that the minimlim*point occurs at v = 2. The corresponding value of
¥ is easily found by substituting this numberinto the function to get

y=(2Y -4y +5=1

$o the minimum point has coordinates (2, 1. A gféph of f(x) is shown in Figure 4.22.

[ e e

k i == 28 o dx &5 ;.
b /

5%

Figure 4.22

{b) In order to use steps 1 and 2 we need to find the first- and second-order derivatives of the
function

=20+ 3 - 120+ 4
Differentiating once gives
F =6 +6x—-12

and differentiating a second time gives

=12+ 6
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Step 1
The stationary points are the solutions of the equation
. =0

so we need to solve
Gyt 4+ 6~ 12=0

_This is a quadratic equation and so can be solved using ‘the formula’. However, before
doing so, it is a good idea to divide both sides by 6 to avoid large numbers. The resulting
" equation

FHx=2=0
has solution

1Ay -

B 9 i3
e 21 20 . 2 "7

In general, whenever f{x} is a cubic function the stationary points are the solutions of a
quadratic equation, f'(x) =0, Moreover, we know, from Section 2.1 that such an equation
can have two, one or no solutions. It follows that'a'cubic equation can have two, one or
no stationary points. In this particular example we have seen that there are two stationary
points, at v =~2 and & = |. e

Step 2 . e
To classify these points we need to evaluate f7(=2) and f*(1). Now

D =120+ 6=—18

This is negative, so there is 2 maximum at x = -2. When x = -2,
v A=20 + 3(=2Y - 12(-2) + 4 =24

50 the maximum point has coordinates (=2, 24). Now
=12 +6=18

This is positive, 0 there is a minimum at x = 1. When v = 1,
y= 2000+ 30— 1201 + 4 =3

50 the minimum point has coordinates (1, =3).

This information enables a partial sketch to be drawn as shown in Figure 4.23. Before
we can be confident about the complete picture it is useful to plot a few more points such
as those below:

x 10 0 10
y ~1816 4 2184

This table indicates that when x is positive the graph falls steeply downwards from a great
height. Similarly, when x is negative the graph quickly disappears off the bottom of the
page. The curve cannot wiggle and turn round except at the two stationary points already
plotted {otherwise it would have more stationary points, which we know is not the case).
We now have enough information to join up the pieces and so sketch a complete picture
as shown in Figure 4.24.
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Pt =y
L
{ /

N f"’/“\*""l

i

% =3}

Figure 4.23

{5 -8

Figure 4.24

In an ideal world it would be nice to calculate the three points at which the graph
crosses the x axis. These are the solutions of

2+ - 12x+4=0

There is a formula for solving cubic equations, just as there is for quadratic equations, but
it is extremely complicated and is beyond the scope of this book.
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Practice Problem

1. Find and classify the stationary points of the following fimctions. Hence sketch their
graphs.

(@ v=3"+12x-35 {b) vy =22+ 1557 - 365 + 27

/The task of finding the maximum and minimum values of a function is referred to as
optimisatien. This is an important topic in mathematical economics. It provides a rich source
of examiination questions and we devote the remaining part of this section and the whole of the
next to applications of it. In this section we demonstrate the use of stationary points by working
through four ‘examination-type’ problems in detail. These problems involve the optimisation
of specific revenue, ¢ost, profit and production functions. They are not intended to exhaust all
possibilities, although they are fairly typical. The next section describes how the mathematics of
optimisation can be used to derive gcneml theoretical results.

Example

A firm’s short-run production function is given by *
0=6L"-02L"
where L denates the nuimber of workers.

(a) Find the size of the workforce that maximises output and hence «.ketch @ z{mph of this
production function,

(b) Find the size of the workforce that maximises the average product of labour. e alcu]ate
MP, and AP, at this value of L. What do you observe? '

{a) In the first part of this example we want to find the value of L which maximises
O =6L"—0.2L"
Step1

At a stationary point

99 062 =0

dl.

This is a quadratic equation and so we could use ‘the formula’ to find L. However, this is
not really necessary in this case because both terms have a common factor of L and the
equation mmay be written as

LOZ2-06L)y=10
It follows that either
L=0or12-06L=0

that is, the equation has solutions

L=0and L=12/0.6=20
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Step 2

It is obvious on economic grounds that L = 1) is 2 minimum and presumably L = 20 is the
maxinmum. We can, of course, check this by differentiating a second time to get
[,,.

whicl confirms that L = 0 is a minimum, The corresponding output is given by
0 = 60y — 0.2(07 =0
as expected. \‘VhénL =20,

d'Q

S =120
dfrs -
which confirms that L = 20 is a maximum,

The firm should therefore employ 20 workers to achieve a maximum output
0 = 6(20)° — 0.2(20) = 800

We have shown that the minimum point on the gfap}i hasscoordinates (0, 0) and the

maximum point has coordinates {20, 800). There are nofurther furning points, so the
graph of the production function has the shape sketched in Figre 4.25.

It is possible to find the precise values of L at which the graph cfoss&s the horizontal
axis. The production function is given by
0 =612 =020

so we need to solve

617 -020°=0

{20, 800

N

,

A
TN A
(oept-uat

<R
TEE N
(0:0)

¥
11
¥
¥
1
Figure 4,25
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We can take out a factor of L’ to get
L6 - 0.20)=0
Hence, either
L*=00r6-02L=0

The first of these merely confirms the fact that the curve passes through the origin,
whereas the second shows that the curve intersects the L axis at L = 6/0.2 = 30.

(b) In the second part of this example we want to find the value of I which maximises the
average product of labour. This is a concept that we have not met before in this book,
although 1t3s not difficult to guess how it might be defined.

The average product of fabour, AP, is taken to be total output divided by labour, so
that in symbols®

Q

AP, =

L ‘
This is sometimes called fabour preductivity, since it measures the average output per
worker. L
In this example,
617 - 0.20] ,
AP, = e = G — (1242
L

Step 1

At a stationary point
dAR)

WL
dl

50
6-04L =0

which has solution L = 6/0.4 = 15,

Step 2
To classify this stationary point we differentiate a second time to get
AR o
dL

which shows that it is a maximum.
The labour productivity is therefore greatest when the firm employs 15 workers. In
fact, the corresponding labour productivity, AP, is

6(15) = (.2(15)° = 45

In ather words, the largest number of goods produced per warker is 45,
Finally, we are invited to calculate the value of MP, at this point. To find an expression
for MP, we need to differentiate  with respect to [ to get

MP, = 121 - {0.61°
When L = 15,
MP, = 12(15) - 0.6(15) =45

We observe that at L = 15 the values of MP; and AP are equal.
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In this particular example we discovered that at the point of maximum average product of
labour

average product of labour

; - - ,
| marginal product of labour| =

There is nothing special about this example and in the next section we show that this result
holds for any production function,

_Practice Problem
2. A firm’s short-run production function is given by
0 =300° — 1

where L denotes the number of workers. Find the size of the workforce that maximises
the average prodiuct of labour and verify that at this value of £

MP, = AP,

Example

The demand equation of a good is
P+Q:H]‘
and the total cost function is
TC="5L0% +6Q +7
(a) Find the level of output that maximises total revenue.

(b) Find the level of output that maximises profit. Calculate MR and MC af this value of Q.
What do you observe? T4

(a) In the frst part of this example we want to find the value of @ which maximises total
revenue. To do this we use the given demand equation to find an expression for TR and
then apply the theory of stationary points in the usual way.

The total revenue is defined by

TR =PQ

We seek the value of (Q which maximises TR, so we express TR in terms of the variable
only. The demand equation

P+O=30

can be rearranged to get

P=30-0
Hence
TR =(30-)0

=300 - 0
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Step 1
At a stationary point
d(TR)
dgd

=0

S0

30-20=0

_which has solution 0 = 30/2 = 15.
Step2 -
To classify this.point we differentiate a second time to get
d*(TR) _
ag®

This is negative, so TR has a m‘ajyaim,um at g =15
{b) In the second part of this examplef\}&e want to find the value of Q which maximises profit.
To do this we begin by determining an expression for profit in terms of Q. Once this has
been done, it is then a simple matter to w()rk cmththe first- and second-order derivatives
and so to find and classify the stationary points of the profit function.
The profit function is defined by '
r=TR-TC
From part {a)
TR =300 - &
We are given the total cost function
TC="H0*+60 +7
Hence
= (300 - Q) - (LG +60 +7)
=300 - Q' - '"hQ'-60 -7
= ShO" + 240 — 7

Step1

At a stationary point
9 _y
do

50
30 +24=0

which has solution @ = 24/3 =&,

Step 2

To classify this point we differentiate a second time to get
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This is negative, so 7t has a maximum at O = 8. In fact, the corresponding maximum profit
is

m=="0(8) +24(8) - 7 =89

Finally, we are invited to calculate the marginal revenue and marginal cost at this par-
ticular value of Q. To find expressions for MR and MC we need only differentiate TR and
TC, respectively. If

. TR=300-0°
(Heti-
MR = TR
a0 o .
=30-20

sowhen g =8
MR =30-24(8)=14

If
TC ="10"+ 60 +7
then
MC = _d(TL)
4o
=0+6
sowhen ¢ =8

MC=8+6=14

We observe that at O = 8, the values of MR and MC are equal.

In this particular example we discovered that at the point of maximum profit,

i marginal revente| = gmarginal cost

il

There is nothing special about this example and in the next section we show thal this result
holds for any profit function.

Practice Problem

3. The demand equation of a good is given by
P+20=20
and the total cost function is
07— 80P +200 +2

(a) Find the level of output that maximises total revenue.

(b) Find the maximum profit and the value of  at which it is achieved. Verify that, at this
value of Q, MR = MC.
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Example

The cost of building an office block, x floors high, is made up of three components:

(1} $10 million for the land
(2) $'/4 million per floor
(3} specialised costs of $10 000x per floor.

T'{ms};many floors should the block contain if the average cost per floor is to be minimised?

The $10 million for théland is a Axed cost because it is independent of the number of floors.
Each floor costs $'/amillion, so if the building has x floors altogether then the cost will be
250 000x. T

In addition there are specialised costs of 10 000x per floor, so if there are x floors this will be

(10 000x)x = 10 000x"

Notice the square term here, which means that-the specialised costs rise dramatically with
increasing x. This is to be expected, since a tall-building requires a more complicated design,
Tt may also be necessary to use more expensive materials.

The total cost, TC, is the sum of the three components: that is,

TC = 10 000 000 + 250 000x + 10 000x?

The average cost per floor, AC, is found by dividing the total cost by the number of floors:
that is, -—

TC 10000 000+ 250 000x +10 000x°

AC =
X X
1O 000 00
= 10000099, 250,000 + 10 000
X
= 10000 000" + 250 600 + 10 000x
Step 1
At a stationary point
1 AC)
f“.L__(L) =
dx
In this case
] - ~ 1000 00(
ﬂ%i(——) = =10 000 0005~ + 11000 = —~*]~L~°;~(—(‘~)I + 10000
X :
50 we need to solve
10 000 000 . 5 . .
10000 = ”p—* - ) orequivalently 10 000x= = 10000 G0
X

Hence

10000000 _
1 00
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This has solution

= £1000 = £31.6
We can obviously ignore the negative value because it does not make sense to build an office

block with a negative number of floors, so we can deduce that x = 31.6.

Siep 2

* To confirm that this is a minimum we need to differentiate a second time. Now

CAAD) 10000 000 +10 600
@x
80
d(AC e 20 000 000
~—%—~L—) — (210000 000)x " = ~~~—~_3-L
dx* ; -

When x = 31.6 we see that

HACY 200 }
d*(AC)Y mo()omzﬁﬂ8

dr'  (3L6)

It follows that x = 31.6 is indeed a minimum Betauslé the second-order derivative is a positive
number. N

At this stage it is temnpting to state that the answer is:31.6. This is mathematically correct
but is a physical impuossibility since x must be a whole number. To decide whether to take x
to be 31 or 32 we simply evaluate AC for these two values of x and-chgosethe one that produces
the lower average cost, &

When x =31,

13000 000 i
C= —‘3-—%4—? + 250000 + 10 000(31) = $882 581

When x = 32,

- 10000 009

AC = 3 + 250000 +10 ()(:3(1(32) = $882 500

Therefore an office block 32 floors high produces the lowest average cost per floor.

Practice Problem
4. The total cost function of a good is given by
TC = Q* +3Q + 36

Calculate the level of output that minimises average cost. Find AC and MC at this value
of Q). What do you observe?

Y Walnuyight thavin_ wain
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Example

The supply and demand equations of a good are given by

P=0s+8
and

P ==30, + 80
‘reé}v‘iétdvely.

- THe government decides to impose a tax, £, per unit, Find the value of ¢ which maximises
the government’s total tax revenue on the assumption that equilibrium conditions prevail in
the market.

The idea of taxation was firstintroduced in Chapter 1. In Section 1.5 the equilibrium price
and guantity were calculated from a given value of r. In this example  is unknown but the
analysis is exactly the same. All we need 6 do is to carry the letter ¢ through the usual calcu-
lations and then to choose ¢ at the end so as'to maximise the total tax revenue.

To take account of the tax we replace P by P—7 inthe supply equation. This is because the
price that the supplier actually receives is the price, P, that the consumer pays less the tax, 1,
deducted by the government. The new supply equation'is then

P-t=0:+8
50 that
P=Q+8+1

In equilibrium

gs=0y

If this common value is dencted by Q) then the supply and demand equations become

P=0+8+1¢
P =30+ 80
Hence

O+8+1=-30+380
since both sides are equal to P. This can be rearranged to give
0=-30+72—+ (subtract § + 1 from both sides)
4 =72 —1 (add 30 to both sides)
O=18-"fu {divide both sides by 4)

Now, if the number of goods sold is Q and the government raises ¢ per good then the total
tax revenue, T, is given by

T=10
=18~ "h0
= 18t — ar®

This then is the expression that we wish to maximise.
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Step 1
At a stationary point
7
L 0
dr
50
18~ '*]“f =0
2

“which has solution

r=36
Step 2 N
To classify this point we differentiate a second time to get
aT "
T
dr” 2

which confirms that it is a maximam.:
Hence the governmient should impose 4 {ax 0£.$36 on each good.

Practice Problem

5. The supply and demand equations of a good are given by

P="h0s+125
and

P =-20, + 50
respectively.

The government decides to impose a tax, f, per unit. Find the value of £ whicl maximises
the government’s total tax revenue on the assumption that equilibrium conditions prevail
in the market,

In theory a spreadsheet such as Excel could be used 1o solve optimisation problems, although
it cannot handle the associated mathematics. The preferred method is to use a symbolic
compultation system such as Maple, Matlab, Mathcad or Derive which can not only sketch the
graphs of functions but also differentiate and solve equations. Consequently it is possible to
obtain the exact solution using one of these packages.

The Online Resources describe how to get started with Maple and an example is given
which shows how 1o find the exact coordinates of the maximum and minimum points of a cubic
function.
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Key Terms ;
Average product ol labour takour productiviive  Output'per woikert AP = QL.
Maxirmum ool paint A point onia clrve which has the highest function value in com-

‘parison with other valuestin its nelghbourhood: at' such-a point the first-order derivative {5
zero and the second-order derivative s either zero ornegative.

Minimum {ocall peint A point o a.curve which has the lowest function value in.compari-
son with other values in its neighbourhond; at such-a point the first-order derivative is zero
andthe second-order derivative iseither zero.or positive,

: @;}?}ﬁm%@a@:im The determination.of the optimal (usually stationary) points of a funiction:
Stationary point of inflection A stationary point that s neither a maximum nor a:mini
mu;-at suich a point both the first- and second-order derivatives are zero.

Statipnary g;z«ééma i{éﬁﬁm& soints, turning pelnts, extrema) Poinfs onagraph at-which
the:tangent is horizontalk at astationary pointthe first-order derivative.ls zero.

Exercise 4.6
1 Find and classify the stationary points of‘—ihf_"fnil‘wing functions. Herice give a-rough
sketch ol iheir graphs,

(@) v=—t ad {(yy=yt—drrd (cyy e 205+ 105 () yk:: S 43

If the demand equation ofa good is

P=40-20
find the level of vutput hat maximises (otal revenue.
A firny's shortrun production funclion is given by ’
0 =300~ 051
Find the value of L which maximises AP, and verify that MP; = AP, at tlus point.

If the fixed costs are 13 and the variable costs are O + 2 per unit, show that the average
costunchion is

13
AC= 4042
0
{a) Calculate the values of AC when © = 1.2, 3,000, 6. Plot these points on graph paper
and hence produce an accurate graph of ACagainst (.
(b):Use your graph to ¢stimate the minimunt average cost:
(c) Use differentiation to confirm your estimate obiained in part (b).

The demand and total cost fanctions of a good are’

AP 4O~ 16=10
and
TC= 4+I2Q~J—Q—+Q;
1020

tespectively.
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{a) Find expressions for TR, 11, MR and MCin {ermsof Q.

(b} Solve the equation

dr L
dg

and hence determine the value of (Q which maximises proft:

(£} Verify that, at the point of maximum profit, MR = MC.

6. The supply and demand cquations of 4 good are given by

AP —0c=3

and ’
Wagy=14

respectively.

The government decides to impose a tax, 1, per unit. Find the value of 1 (in doliars)
which maximiscs the government’s total tax revenue o the assumption that equilibrium
conditions prevail in the market.

A manﬁfuclurer has fixed casls of $200 each week, and the variable costs per unit can be
expressed by the function, VC =20 <36

(a) Find an expression for the total tost function and deduce that the average cost
funetion is given by :

20
Ac=Wop s
0

(b} Find (he stationary point of this furiction and show that this isa minimum,

(c) Verify that,at this stationary point, average cost is the same as marginal cost.
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Exercise 4.6%

1.

A frovs demand function is
P =60 050
If fixed costs are 10 and variable costs are @+ 3 per unit; find the maximum profit.

Show thatall ofithe following functions have a statioriary point at v =0 Verify in eachicase
that #7(0) = 0, Classify these points by producing a rough sketch of each function.

@m=r (B =r

If fixed costs are 15 and the variable costs are 20 per unit, write down expressions for TC;
AC and MO Find the value of () which miinimises AC and verify that AC = MC at this
pomnt: i ‘

An electronic components firm launches a new product on 1 January, During the foltow-
ing year a rough estimate of the nutmber of arders, S, received ¢ davs after the lannch i
given by ' L

== 00028
{a) What is the maximum number of ardérs received on any.one day of the vear?

(by After how many days does the firm experience the greatest increase in orders?

If the demand eguation of a good is

Pz ”’jm

find the vahie of (2 which maximises total reveriue;

Afirm's.tofal cost and demand functions are given by
TC=0+500 + 10and # : 200 =40 ‘
respectively.
¢a) Lind the level of output needed to maximise the irnd’s profit
(b} The governmentimposes a faxol 5t per good. If the firm adds this tax Lo its costs and

continues to maximise profit, show that the price of the good increases by two-fifths
of the tax, irrespective of the value of &

Given thal the cubicfunction, f(x) = v s ax =+ hy has a stationary p,()im‘ at{2,5),and
thatit passes through t1, 3), find the values ot'a, b and ¢ :




