SECTION 4.1
The derivativ

Objectives
At the end of this section you should be able to:

% Find the slope of a straight line given any two points on the line.

e Detect whether a line is uphill, downhill or horizontal using the sign of the slope.
& Recognise the notation f(x) and dy/dx for the derivative of a function.

& Estimate the derivative of a function by measuring the slope of a tangent.

# Differentiate power functions.

This introductory section is designed to get you started with differential calculus in a fairly pain-
less way. There are really only three things that we are going to do. We discuss the basic idea of
something called a derived function, give you two equivalent pieces of notation to describe it,
and finally show you how to write down a formula for the derived function in simple cases.

In Chapter | the slope of a straight line was defined to be the change in the value of y brought
about by a | unit increase in x. In fact, it is not necessary to restrict the change in x to a 1 unit
increase. More generally, the slope, or gradient, of a line is taken to be the change in'y divided
by the corresponding change in x as you move between any two points on the line. It is custom-
ary to denote the change in y by Ay, where A is the Greek letter ‘delta’. Likewise, the change in
x is written Ax. In this notation we have

slo e—-A1
siop T Ax
Example

Find the slope of the straight line passing through
(@) A(1,2)and B (3, 4) (bYA(1,2)and C (4, 1) (©)A(1,2)and D (5,2)

(a) Points A and B are sketched in Figure 4.1. As we move from A to B, the y coordinate
changes from 2 to 4, which is an increase of 2 units, and the x coordinate changes from 1
to 3, which is also an increase of 2 units. Hence
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Figure 4.1

(b) Points A and C are sketched in Figure 4.2. As we move from A to C, the y coordinate
changes from 2 to 1, which is a decrease of 1 unit, and the x coordinate changes from
1 to 4, which is an increase of 3 units. Hence

> F

Figure 4.2

(c) Points A and D are sketched in Figure 4.3. As we move from A to D, the y coordinate
remains fixed at 2, and the x coordinate changes from 1 to 5, which is an increase of 4
units. Hence
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Figure 4.3

Practice Problem

1. Find the slope of the straight line passing through

{aE(-1,3)and F(3,11)  (b)E (<1, 3) and G (4,-2) (c)E(~1,3)and H (49,3) |

From these examples we see that the gradient is positive if the line is uphill, negative if the
line is downhill and zero if the line 1s horizontal.

Unfortunately, not all functions in economics are linear, so it is necessary to extend the
definition of slope to include more general curves. To do this we need the idea of a tangent,
which is illustrated in Figure 4.4.

A straight line which passes through a point on a curve and which just touches the curve at
this point is called a tangent. The slope, or gradient, of a curve at v =« is then defined to be that
of the tangent at x = a. Since we have already seen how to find the slope of a straight line, this
gives us a precise way of measuring the slope of a curve. A simple curve together with a selection
of tangents at various points is shown in Figure 4.5. Notice how each tangent passes through
exactly one point on the curve and strikes a glancing blow. In this case, the slopes of the tangents
increase as we move from left to right along the curve. This reflects the fact that the curve is flat
at x = 0 but becomes progressively steeper further away.

y = f{x)

4 T
( tangent at

RN

3

Figure 4.4
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This highlights an important difference between the slope of a straight line and the slope of
a curve. In the case of a straight line, the gradient is fixed throughout its length and it is imma-
terial which two points on a line are used to find it. For example, in Figure 4.6 all of the ratios
AylAx have the value 2. However, as we have just seen, the slope of a curve varies as we move
along it. In mathematics we use the symbol

TN

) C/ read 'f das

R P

to represent the slope of the graph of a function fat x = 4. This notation conveys the maximum
amount of information with the minimum of fuss. As usual, we need the label f to denote which
function we are considering. We certainly need the a to tell us at which point on the curve the
gradient is being measured. Finally, the ‘prime’ symbol " is used to distinguish the gradient from
the function value. The notation f(a) gives the height of the curve above the x axis at x = 4,
whereas f'(a) gives the gradient of the curve at this point.

w,«\/.w“v"u.\
< constant slope

£

Figure 4.6
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The slope of the graph of a function is called the derivative of the function. It is interesting
to notice that corresponding to each value of x there is a uniquely defined derivative f’(x). In
other words, the rule ‘find the slope of the graph of fat x” defines a function. This slope function is
usually referred to as the derived function. An alternative notation for the derived function is

P

.9}_!

reaﬁ dea 4 by dee
dx .
Historically, this symbol arase from the corresponding notation Ay/Ax for the gradient of a
straight line; the letter ‘d’ is the English equivalent of the Greek letter A. However, it is import-
ant to realise that

dy

dx

does not mean “dy divided by dx’. It should be thought of as a single symbol representing the
derivative of y with respect to x. It is immaterial which notation is used, although the context
may well suggest which is more appropriate. For example, if we use

y=x
to identify the square function then it is natural to use

dy

dx
for the derived function. On the other hand, if we use

fy=x

then f*(x) seems more appropriate.

Example

Complete the following table of function values and hence sketch an accurate graph of f(x) = x*.
X -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0
f)

Draw the tangents to the graph at x =-1.5,-0.5, 0, 0.5 and 1.5. Hence estimate the values of
F(=1.5), £(=0.5), £/(0), £(0.5) and £(1.5).

Sol

(iﬁ?

Using a calculator we obtain
x -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0
f(x) 4 2.25 i 0.25 0 0.25 i 2.25 4
The corresponding graph of the square function is sketched in Figure 4.7. From the graph we
see that the slopes of the tangents are

Fets=22 2

0.5
.5
0.5) = 5 = —]
703 0.5
=0
0.5 03
105 ="7=
L5
a. i)——g_3
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Figure 4.7
The value of f/(0) is zero because the tangent is horizontal at x = (). Notice that
F-1.5=—f(15 and (0.5 ==f0.5)

This is to be expected because the graph is symmetric about the y axis. The slopes of the
tangents to the left of the y axis have the same size as those of the corresponding tangents to
the right. However, they have opposite signs since the curve slopes downhill on one side and
uphill on the other.

Practice Problem

2. Complete the following table of function values and hence sketch an accurate graph of

fy=x"

x ~1.50 -125  -100 =075  -0.50  —0.25 0.00
f(x) ~1.95 —0.13

x 0.25 0.50 0.75 1.00 1.25 1.50

fx) 0.13 1.95

Draw the tangents to the graph at x =—1, 0 and 1. Hence estimate the values of /’(=1), f(0)
and f7(1).
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Practice Problem 2 should convince you how hard it is in practice to calculate f'(a) exactly
using graphs. It is impossible to sketch a perfectly smooth curve using graph paper and pencil,
and it is equally difficult to judge, by eye, precisely where the tangent should be. There is also
the problem of measuring the vertical and horizontal distances required for the slope of the
tangent. These inherent errors may compound to produce quite inaccurate values for f'(a).
Fortunately, there is a really simple formula that can be used to find f(a) when fis a power
function. It can be proved that

it £ (x) = a7 then (&) = ™! ,

or, equivalently,

" dy ,
if y = x" then— = mx™
dx

I

The process of finding the derived function symbolically (rather than using graphs) is known
as differentiation. In order to differentiate x* all that needs to be done is to bring the power
down to the front and then to subtract 1 from the power:

subtract 1 from
the power

X" differentiates to nx"™

bring down
the power

To differentiate the square function we set # = 2 in this formula to deduce that

J(x) = ¥ differentiates to f7(x) = 24

f‘,\/M
the 2 comes down

that is,
=2 =2x

Using his result we see that
F(=1.5) =2% (1.5 =-3
[(=0.5)=2 x (—0.5) = -1
FO)=2%(0)=0
105 =2%x(05) =1
F15)=2x(1.5=3

which are in agreement with the results obtained graphically in the preceding example.

Printec

Practice Problem

3. i f(x) = ¥ write down a formula for f'(x). Calculate f/(~1), '(0) and f'(1). Confirm that
these are in agreement with your rough estimates obtained in Practice Problem 2.

oz ed
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Example

Differentiate

@y=x' My=x" (y=x (Dy=1 @y=1 (Hy=x

(a) To differentiate y = x* we bring down the power (that is, 4) to the front and then subtract
1 from the power (that is, 4 — 1 = 3) to deduce that

9,‘ = 4"
dx
(b) Similarly,

. dy
if v=x"" then 2 o100
dy

(¢) To use the general formula to differentiate x we first need to express y = x in the form
y = x" for some number #. In this case # = 1 because x' = x, so

——=1x"=1 since x"=1

v
ik
e
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Figure 4.8

{d) Again, to differentiate 1 we need to express y = 1 in the form y = x". In this case n = 0
because x = 1, so
dy

—=0"=0
dx

This result is also obvious from the graph of y = 1 sketched in Figure 4.9.
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(e) Noting that 1/x* =" it follows that
) 5 4

. | d
if y=— then & 4y =
X dx X

The power has decreased to —5 because —4 — 1 = —5.

(f) Noting that v x = "2 it follows that if

dy 1
y=+x then —= =—y'?
) x 2
1 ,f’“\/‘\/v’“v’\/“\f'\rw’/ TN
e Lﬁpgaiive powers dencte reciprocals \i
2412 PP
i /—'\/”\\,m\/\w.f*"v”v'”v'\/“ \/—\/"‘\\\
) T ' fractional powers denate rools

ol P P e ST

The power has decreased to —+ because 4 —1=—1.

Practice Problem

4. Differentiate
(@yy=x (b) y=x° (c) y=x™ (d)y=1/x (e y=1/x

[Hint: in parts (d) and (e) note that 1/x =x™" and 1/x'=x7]

ight kevin_wainw
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Key Terms

Derivative The gradient of the tangent to a curve at a point. The derivative at x = a is
written f'(a).

Derived function  The rule, f, which gives the gradient of a function, f, at a general point.

Differentiation The process or operation of determining the first derivative of a function.

Gradient The gradient of a line measures steepness and is the vertical change divided by
the horizontal change between any two points on the line, The gradient of a curve at a point
is that of the tangent at that point.

Slepe  An alternative word for gradient.
Tangent A line that just touches a curve at a point.

Exercise 4.1

1.

Find the slope of the straight line passing through
(@) (2,5) and (4, 9) (b) (3,-1) and (7, -5) () (7,19} and (4, 19)
Verify that the points (0, 2) and (3, 0} lie on the line
2x+3v=6
Hence find the slope of this line. Is the line uphill, downhill or horizontal?
Sketch the graph of the function
J=5
Explain why it follows from this that
fo=0
Differentiate the function
fo =y
Hence calculate the slope of the graph of
y=x
at the pointx =2,
Differentiate
@y=2"  (By=x"  @©y=x" (dy="

Differentiate the following functions, giving your answer in a similar form, without
negative or fractional indices:

@ fl)= _\L M fo=vx  (© fl= afq— (@ y=ux'x
Complete the following table of function values for the function, f(x) = x'— 2x:
X -1 —0.5 0 0.5 1 1.5 2 2.5

Sketch the graph of this function and, by measuring the slope of the tangents, estimate

@ f(-0.5) (b) £7(1) © Q.5




SECTION 4.2
Rules of

Objectives

At the end of this section you should be able to:

# Use the constant rule to differentiate a function of the form cf(x).
& Use the sum rule to differentiate a function of the form f(x) + g(x).
@ Use the difference rule to differentiate a function of the form f(x) — g(x).

e Evaluate and interpret second-order derivatives.

Advice

In this section we consider three elementary rules of differentiation. Subsequent sections of
this chapter describe various applications to economics. However, before you can tackle these
successfully, you must have a thorough grasp of the basic techniques involved. The problems
in this section are repetitive in nature. This is deliberate. Although the rules themselves are
straightforward, it is necessary for you to practise them over and over again before you can
hecome proficient in using them. In fact, you will not be able to get much further with the rest
of this book until you have mastered the rules of this section.

Rule 1 The constant rule

If h(x) = ¢f(x) then H(x)=¢f"(x)
for any constant c.
This rule tells you how to find the derivative of a constant multiple of a function:

differentiaté the function and mulitiply by the constant

Example

Differentiate
(@) y=2u' (b) y=10x

458304

(a) To differentiate 2x" we first differentiate x* to get 4x° and then multiply by 2. Hence
g piy by

if y=2x" then % = 2(4x) = 8x*
X

(b) To differentiate 10x we first differentiate x to get 1 and then multiply by 10. Hence

if y=10x then %:I()(l)zl()

a7

Printed by Kevien Wainwrig 2018, Use beyond the authorzed
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Practice Problem

1. Differentiate

(a) y =4x° (b} y=2/x

The constant rule can be used to show that
constants differentiate to zero

To see this, note that the equation
y=¢

is the same as
y=oxd

because x" = 1. By the constant rule we first differentiate * to get Ox' and then multiply by c.
Hence

dy
if y=¢ then @ (Ox 1) =0
dx
This result is also apparent from the graph of y = ¢, sketched in Figure 4.10, which is a horizon-

tal line ¢ units away from the x axis_ It is an important result and explains why lone constants
lurking in mathematical expressions disappear when differentiated.

Rule 2 The sum rule

Ifh(x) =f(x) + g(x) then (@) =f(x)+ g}

This rule tells you how to find the derivative of the sum of two functions:

differentiate each function separately and add

NN N e, ,
graphis a ? v 4
horizontal fine so /“’\‘

has zems/&ip/eJ) Ly=¢t
Nt c

>

Figure 4.10
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Example

Differentiate

(@) y =21+ ™ O)y=x*+3

(a) To differentiate x* + x™ we need to differentiate x* and +" separately and add. Now
p y
£ differentiates to  2x
and

®  differentiates to  50x™

so
; LR dy )
if y=x>+x then ; = 2x+50x
X

{b) To differentiate ¥’ + 3 we need to differentiate x* and 3 separately and add. Now
x* differentiates to 3x°

and

ﬁ».\,r/'"‘\/_‘*"“\f’“"v'“\/—\,\\\
. . \_ constants differentiate )
3 differentiates to 0 . o rero

e S
50

- d 3 2 2
if y=x'+3 then & 3y 40=3y
ax

Practice Problem

2. Differentiate

(@y=x+x (bYyy=x+5

Rule 3 The difference rule

If h) = f(x) — g(x)  then  #'(x) =f"(x) — g'(x)

This rule tells you how to find the derivative of the difference of two functions:

differentiate each function separately and subtract

Y]

d to use undl 3/1
ston.

Frinted by Kevin W
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Example

Differentiate

@y=x"~x (b) v=x ~—1;
x?

Soh

(@) To differentiate x° ~ x* we need to differentiate x* and x° separately and subtract. Now
x7 differentiates to 5x*

and

x? differentiates to 2x

SO

. B dy
if y=x ~x' then — =5x" —2x
dx

. . 1 . . 1
(b} To differentiate x —— we need to differentiate x and —; separately and subtract. Now
Xx° X°

x differentiates to 1

and
B e
j\f’E differentiates to —% N g "i;irz‘t:am P,
TN
$0

3

X X

y 2 2
if _v=x~—1" then & = ]—[——]=1+—;
d X

Practice Problem

3. Differentiate

s 3 1
(@) y=x"-x (b) y=50-—
X

It is possible to combine these three rules and so to find the derivative of more involved func-
tions, as the following example demonstrates.
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Example

Differentiate

(@) y =30+ 20 (b)y=x*+7u = 2x+ 10 (€) v= 2\;/} +§-
X

(a) The sum rule shows that to differentiate 3x° + 2x* we need to differentiate 3x° and 2x°
separately and add. By the constant rule

3x°  differentiates to  3(5x%) = 15"

and

2x%  differentiates to . 2(3x%) = 617

if y=3x"+2x" then -a}- =15x" + 6x7
x

With practice you will soon find that you can just write the derivative down in a single
line of working by differentiating term by term. For the function

y=3+ 2%
we could just write

il.\l =3(5x") +2(3x7) = 151 + 627
dx

(b) So far we have only considered expressions comprising at most two terms. However, the
sum and difference rules still apply to lengthier expressions, so we can differentiate term
by term as before. For the function

v+ T2+ 10

we get

d , X
1—-" =302+ 7(20) - A1) +0 = 3x? + 14x -2
ax

(c) To differentiate
. 3
y= 2\/ X A
X
we first rewrite it using the notation of indices as

y=2x" 43
Differentiating term by term then gives
dy | ) ) )
= 2(*;).("" + 3= = 7 347

which can be written in the more familiar form

rght violation,
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Practice Problem
4. Differentiate

5 .3
(a) y=9x" + 27 (b) y=5x -2
X

(©)y=x+6x+3 (d) v=2x"+ 1207 — 427 + Tx - 400

Whenever a function is differentiated, the thing that you end up with is itself a function. This
suggests the possibility of differentiating a second time to get the ‘slope of the slope function’.
This is written as

TN e e e N T
Jakey! reac 'f double dasted of ¥
NI N
or
&y SN YN T
kS { read ‘doetwo y by doo x squares’
dx 2 P V,/\,MAWN“,M,-\_/’;

For example, if
=5 —Tc+12

then differentiating once gives
o =10x-7

and if we now differentiate f"(x) we get
£ =10

The function f"(x) is called the first-order derivative and f(x) is called the second-order derivative.

Example

Evaluate f”(1) where

flo)=x7 +-l‘
x

To find f”(1) we need to differentiate

Ff)=x"+x"

twice and put v = 1 into the end result. Differentiating once gives
F =78+ (= =T =17

and differentiating a second time gives
17(x) = T(65%) — (~2)07 = 4247 + 247

Finally, substituting x= 1 into
s 2
oy =427 +—
e

gives

S(y=42+2=44

8. Use bayond the sulioized
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Practice Problem

5. Evaluate f”(6) where
flx) = 4x° - 55°

It is possible to give a graphical interpretation of the sign of the second-order derivative.
Remember that the first-order derivative, f’(x), measures the gradient of a curve. If the deriva-
tive of f’(x) is positive (that is, if f(x) > 0) then f’(x) is increasing so the graph gets steeper as
you move from left to right. The curve bends upwards and the function is said to be convex,
On the other hand, if f*(x) < 0, the gradient, f'{x) must be decreasing, so the curve bends down-
wards. The function is said to be concave. It is perfectly possible for a curve to be convex for a
certain range of values of x and concave for others. This is illustrated in Figure 4.11. For this
function, f”{x) < 0 to the left of x = a, and f”(x) > 0 to the right of x = a. At x = a itself, the curve
changes from bending downwards to bending upwards and at this point, f”(a) = 0.

P { (xy = O
4 ( bends downwards

”/\w/'\_/\w,/‘“-

Figure 4.1

y Kevi

Example
Use the second-order derivative to show that the quadratic
y=ax +bx+c

is always convex when « > 0 and concave when a < 0.

T

3 dy d’y
If y=ax’ +by+c then ~~ = 2ax+b and — = 2a
X x?
.

If @ >0 then ‘%“‘7 = 2a > () so the parabola bends upwards.
dx?

i’y
If a < O then :(im}; = 2a < {) so the parabola bends downwards.
x*

Of course, if « = (), the equation reduces to y = hx + ¢, which is the equation of a straight line,
so the graph bends neither upwards nor downwards.
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Throughout this section the functions have all been of the form y = f(x), where the letters x
and y denote the variables involved. In economic functions, different symbols are used. It
should be obvious, however, that we can still differentiate such functions by applying the rules
of this section. For example, if a supply function is given by

Q=P+3P+1

and we need to find the derivative of Q with respect to P then we can apply the sum and difference
rules to obtain

9© _op+s
dP
Key Terms

Concave Graph bends downwards:when f7(x) <O

Convex Graph bends upwards when f7(x) > O

First-order derivative The rate of change of a-function with respect to its independent
variable. It is the same as the 'derivative’ of a function, y = f(x), and is written as f(x) or
dy/dx.

Second-order derivative The derivative of the first-order derivative. The expression
obtained when the original function, y = f(x), is differentiated twice in succession and is
written as f7(x) or d?y/dx%.

Exercise 4.2

1. Differentiate

ki 3
(@) v=5x (b) y=-— C©y=2v+3
x
> > 7
Dy=x"+x+1 @ y=x"-3x+2 ) yv=3xr~—
X
(@) y= 2" — 60 + 49x ~ 54 (hyy=ax+b (y=ar+hbx+c

. 37
() y=dy— 4+ —
X X

2. FEvaluate f”(x) for each of the following functions at the given point:
@ fo=3"atxr=1
(b) F)y=x"-2xatx=3
(© fl=2v'—4’+ 2 -Batx=0

(d) F(x) = 5¢* - -\4; p—

(@ f(x)=+x - =4
X
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v o s 5 o R 5
3. By writing x’ (\ +2x - -_,-) = !+ 2x% - 5 differentiate \(\ +2x— J

r
X AT

Use a similar approach to differentiate
(@) '3y —4)

(D) x(3° - 237 + 6x = 7)

(©) (x + 1)}{x—6)

3
X3

(d)

X
x~4x7
) ———
X
=3y +5

)

4. Find expressions for d*y/dx’ in the case when

@y=7xv-x
1

(b) V=
X7

Cy=ax+bh
5. Evaluate f”(2) for the function
Jo=x" -4 + -7

6. If f(x) = — 6x + 8, evaluate /7(3). What information does this provide about the graph of
y=f)yatx=3? :

7. By writing J4x = V4 xJx = 2/x, differentiate Jax.

Use a similar approach to differentiate
N 25
@) v25x (b) ¥27x (© V16x’ (d) -
8. Find expressions for

\4) A 7
(a) Ed—% for the supply function 0 =P*+ P + 1

(TR . . 2
(b) dfiQ ) for the total revenue function TR = 500 - 30
d(AC) 30

(c)

for the average cost function AC = —Q— +10
[¢

dc | . .
(d) T for the consumption function C =3Y +7
d

d
{e) “l% for the production function ¢ = 10\/2
d

dr
{j] o for the profit function 1t =-20% + 150* ~ 240 - 3




260 CHAPTER 4 DIFFERENTIATION

1

&

Exercise 4.2%

Find the value of the first-order derivative of the function
~ 81
y= 3\[\' —-—+13
X
when v=9.
Find expressions for
dg . . 5
@ > for the supply function @ = 2P?+ P + |
d

IR ) S
(b) % for the total revenue function TR = 400 ~ SQ\/Q

d(AC . 20
(©) a0 for the average cost function AC = —+70 +25
dQ Q

1C . . .
(d) %7 for the consumption function C =Y(2Y + 3) + 10
d

~

1C - .
(e dc for the production function 0 = 200L — 4L
dL p

(f) :ji_(]; for the profit function &= -0 +200° - 70 — 1

Find the value of the second-order derivative of the following function at the point x = 4:
JO=-2+4"+x-3

What information does this provide about the shape of the graph of f{x) at this point?

Consider the graph of the function
Floy =20 =30t + 207 — 1 7o + 31

alx=-1.

Giving reasons for your answers,

(a) state whether the tangent slopes uphill, downhill or is horizontal

(b) state whether the graph is concave or convex at this point.

Use the second-order derivative to show that the graph of the cubic,
fW=at +h +ex+d (a>0)

is convex when x > —b/3a and concave when x = -b/3a.

Find the equation of the tangent to the curve
y=47 - 5¢ +x =3

at the point where it crosses the y axis.
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At th“e end.of this section you should be able to:

Calculate marginal revenue and marginal cost.

Eo

» Derive the relationship between marginal and average revenue for both a monopoly
and perfect campetition.

Calculate marginal product of labour.
State the law of dimini‘shing_ma‘rginal praductivity using the notation of calculus,
Calculate marginal propensity fo consume and marginal propensity to save.

£

&

At this stage you may be wondering what on earth differentiation has got to do with economics.
In fact, we cannot get very far with economic theory-withiout making use of calculus. In this
section we concentrate on three main areas that illustrate its applizability:

e revenue and cost

e production

& consumption and savings.

We consider each of these in turn.

3

1.2.1 Revenue and cost

g:

In Chapter 2 we investigated the basic properties of the revenue function, TR. It is defined to be
P, where P denotes the price of a good and ( denotes the quantity demanded. In practice,
we usually know the demand equation, which provides a relationship between P and Q. This
enables a formula for TR to be written down solely in terms of Q, For example, if

P=100-20

then
TR = PO = (100 - 20HQ = 1000 ~ 207

The formula can be used to calculate the value of TR comesponding to any value of Q. Not
content with this, we are also interested in the effect on TR of a change in the value of Q from
some existing level. To do this we infroduce the concept of marginal revenue. The marginat
revenue, MR, of a good is defined by

dTR)
dg

MR =

_marginal revenue is the derivative of tgjta[ revenuéwith‘réspect to demand
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For example, the marginal revenue function corresponding to

TR = 1000 — 20°
is given by

d(TR)

= = 100 - 40

dg ¢
If the current demand is 15, say, then
MR = 100 - 4(15) = 40

You may be familiar with an alternative definition often quoted in elementary economics text-
books. Mérginal revenue is sometimes taken to be the change in TR brought about by a [ unit
increase in (Ji It is.easy to check that this gives an acceptable approximation to MR, although it
is not quite the same as the exact value obtained by differentiation. For example, substituting
© =15 into the total revenue function considered previously gives

TR = 100(15) = 2(157 = 1050
An increase of 1 unit in the valué'of Qproduces a total revenue

TR = 100{16) — 2(16)" = 1038 :
This is an increase of 38, which, according to the nan-calculus definition, is the value of MR
when @ is 15. This compares with the exact value of 40 obtained by differentiation.

[t is instructive {o give a graphical interpretation of these two approaches. In Figure 4.12 the

point A lies on the TR curve corresponding to a quantity (. The exact-value of MR at this point
is equal to the derivative

d(TR)
d@

and so is given by the slope of the tangent at A. The point B also lics an the curve but corre-
sponds to a { unit increase in Q. The vertical distance from A to B therefore equals the change
in TR when Q increases by 1 unit. The slope of the line joining A and B (known as a chorid).ds

A(TR)  A(TR)

= ———= = A(TR)
AQ I
TR ey 5
) tafigent Y . atane. O
M *":ﬁ/ w%%%
- mf.f"' N\'v i
Loarride
= N el i o
/ (fr;(;‘;\‘ ‘{ THgurve 3
A ‘
fé' ‘\«A\/ . it i S
1 il =
&, =1 Q

Figure 4.12
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In other words, the slope of the chord is equal to the value of MR obtained from the non-
calculus definition, Inspection of the diagram reveals that the slope of the tangent is approximately
the same as that of the chord joining A and B. In this case the slope of the tangent is slightly the
larger of the two, but there is not much in it. We therefore see that the 1 unit increase approach
produces a reasonable approximation to the exact value of MR given by

d(TR)
dQ

~Example
If the“dem‘;md function is
P=120-30. -

find an expression for TR in terms of Q.
Find the value of MR at ) =10 using
(a) differentiation C

(b) the | unit increase approach

TR = PQ = (120 - 30)0 = 1200 — 30?

{a) The general expression for MR is given by

d(TR)
meremmmmete | Y = B
dg <

soat @ =10,
MR =120~ 6 x 10 =00

(b} From the non-calculus definition we need to find the change in TR as Q increases from
i0to 1l

Putting @ = 10 gives TR = 120 % 10 ~ 3 x 10" = 900
Putting 0 = 11 gives TR = 120 x 11 - 3 X 117 =957
and so MR = 57

Practice Problem

1. If the demand function is
FP=60-0

find an expression for TR in terms of Q.

(1) Differentiate TR with respect to Q to find a general expression for MR in terms of (.
Hence write down the exact value of MR at @ = 50.

(2) Calculate the value of TR when
{a) 0 =50 (b)Y O =51

and hence confirm that the 1 unit increase approach gives a reasonable approximation
to the exact value of MR obtained in part (1).
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The approximation indicated by Figure 4.12 holds for any value of AQ. The slope of the
tangent at A is the marginal revenue, MR. The slope of the chord joining A and B is A(TR)/AQ.
It follows that

This equation can be transposed to give

. !'/ .”V’%f“%tw»\”.‘\‘

S _ /omuttiply both £

LATR) = MR X AQ N aesbyao
S [

¢
{

p,

P

that is,

N : . . ¥
change in total mvenue:} i—t}murguml rc:venue! X‘c}mnge in demand|

Moreaver, Figure 4.12 shows that the smaller the value of AQ, the better the approximation
becomes. T -

Example
1f the total revenue function of a good is given by
1000 - 0*

write down an expression for the marginal revenue function. If the current demiand is*60),
estimate the change in the value of TR due to a 2 unit increase in Q.

1
TR = 1000 — ©*
then
MR = (‘j.(:_r?l
dg
=100-20

When Q =60
MR = 100 - 2(60) = -20

1f @ increases by 2 units, AQ = 2 and the formula
A(TR) = MR x AQ

shows that the change in total revenue is approximately

(=20 % 2 = —40

A 2 unit increase in Q therefore leads to a decrease in TR of about 40.
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Practice Problem
2. If the total revenue function of a gnod 1s given by
10000 — 40>

write down an expression for the marginal revenue function. If the current demand is 30,
find the approximate change in the value of TR due to a

(8} 3 unit increase in

# (b) 2 unit decrease in Q.

The simple model of demand, originally introduced in Section 1.5, assumed that price, P, and
quantity, Q, are linearly related according to an equation

P=aQ+#h
where the slope, a, is negative and the intercept, b, is positive. A downward-sloping demand
curve such as this corresponds to the case of a monopelist. A single firm, or possibly a group of
firms forming a cartel, is assumed to be'the only supplier of a particular product and so has
controf aver the market price. As the firm raises the:price, so demand falls. The associated total
revenue function is given by S

TR = PO
wQ + h)Q
a(Q* + b

An expression for marginal revenue is obtained by differentiating TR With:respecj to O to get

i

MR =200 + b

It is interesting to notice that, on the assumption of a linear demand equation, the marginal

reveniue is also linear with the same intercept, b, but with slope 2a. The marginal revenue clirve

slopes downhill exactly twice as fast as the demand curve. This is illustrated in Figure 4.13(a).
The average revenue, AR, is defined by

AR =%
o

(a7

(b}

/%

-hiza ~fa

Figure 4.13

it A 7e018, |
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and, since TR = PQ, we have

P
arR-t2_p

0
For this reason the demand curve is labelled average revenue in Figure 4.13(a). The above deri-
vation of the result AR = P is independent of the particular demand function. Consequently, the
terms ‘average revenue curve’ and ‘demand curve’ are synonymous.

Figure 4.13(a) shows that the marginal revenue takes both positive and negative values. This
is to be expecied. The total revenue function is a quadratic and its graph has the familiar para-
bolig'shape indicated in Figure 4.13(b). To the left of —b/2a the graph is uphill, corresponding
to' positive value of marginal revenue, whereas to the right of this point it is downhill, giving
a negativé valtie of marginal revenue. More significantly, at the maximum point of the TR curve,
the tangent is-horizontal with zero slope and so MR is zero.

At the other extreme from a monopolist is the case of perfect competition. For this model
we assume that there are a Jarge number of firms all selling an identical product and that there
are no barriers to entry into the indistry. Since any individual firm produces a tiny proportion
of the total output, it has no control over-price. The firm can sell only at the prevailing market
price and, because the firm is relatively small, it can sell any number of goods at this price. If the
fixed price is denoted by b then the demand function is

P=b
and the associated total revenue function is
TR = PO = hO

An expression for marginal revenue is obtained by d]ffexemmtmg TR w1th respect to (} and,
since fr is just a constant, we see that

MR=14

In the case of perfect competition, the average and marginal revenue curves are the same. They
are horizontal straight lines, b units above the ( axis as shown in Figure 4.14. .

So far we have concentrated on the total revenue function. Exactly the same plmupk can bex
used for other economic functions, For instance, we define the marginat cost, MC, by

HTC)
dg

MC =-

‘marginal cost is;“thé‘f:‘lervivative of totél‘cast wi’fh respect to output

Figure 4.14
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Again, using a simple geomelrical argument, it is easy to see that if Q changes by a small amount
AQ then the corresponding change in TC is given by

A(TC) = MC x AQ

{ . . 1 .
tchange in total cost , = émargnml cost] Xfchangc in output|

In particular, putting AQ = 1 gives
A(TC) = MC

~ 5o that MC gives the approximate change in TC when ( increases by | unit.

Exampia; ;

If the average cost furction of a good is
13
AC=20+6+—
e

find an expression for MC. If the'current output is 15, estimate the effect on TC of a 3 unit
decrease in Q. g

We first need to find an expression for TC using the given formula for AC. Now we know
that the average cost is just the total cost divided by Q: that is,/.

[
ac=TC
¢

Hence
AO)D
1

TC =1,
{7Q+(+ EJO
=1 L 3 e 1D
14

and, after multiplying out the brackets, we get
TC=20%+ 60 + 13

In this formula the last term, 13, is independent of Q sa must denote the fixed costs. The
remaining part, 207+ 60, depends on Q so represents the total variable costs. Differentiating
gives

e = 41O
a0
=40 +6

Notice that because the fixed costs are constant they differentiate to zerc and so have no
effect on the marginal cost. When 0 = 15,

MC=4(15)+6=66
Also, if Q decreases by 3 units then AQ = -3, Hence the change in TC is given by

AMTCy = MC x AQ = 66 x (-3) =~198

so TC decreases by 198 units approximately.
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Practice Problem

3. Find the marginal cost given the average cost function

100
AL e 42
0
. Deduce thata 1 unit increase in (3 will always result in a 2 unit increase in TC, irrespective
' of the current level of output.

Production functions were intraduced in Section 2.3. In the simplest case output, Q, is assumed
to be a function of labour, I, and capital, K. Moreover, in the short run the input K can be
assumed to be fixed, so Q is then only a function of one input L. (This is not a valid assumption
in the long run and in general  must be regarded as a function of at least two inputs. Methods
for handling this situation are considered in the tiext chapter.) The variable £ is usually measured
in terms of the number of workers or possibly in termas of the number of worker hours.
Motivated by our previous work, we define the marginat-product of labour, MP;, by

wip, = 92

aL

marginal product of iabour is the derivative of output with respect to labour

As before, this gives the approximate change in (@ that results from using 1 more unit of L.

Example

If the production function is
0 =300WL 4L

where Q denotes output and L denotes the size of the workforee, calculate the value of MP,

when
(@lL=1
(b)L=9

(c) L. =100
(d) L = 2500

and discuss the implications of these results.

If

0 = 3008 L — 4L = 30007 - 4L
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then

v, = 42
AL

G
= 300(F, L — 4
=150L% — 4

150

=g
JL

“(a) When L= 1
e 150 )
MP/ :“"’F“'—"%': ]4(7
NCI
(byWhen L =9
50
MPL :'k’*v,*{“ —~4: 4()
V1
(c) When L = 100
150

T

(d) When L = 2500
150

= e —

2500

Notice that the values of MP, decline with increasing L. Part (a} shows that if the workforce
consists of only one person then to employ two people would increase output by approxi-
mately 146. In part (b} we see that to increase the number of workers from 9 1o 10 would
result in about 46 additional units of output. In part (c) we see that a 1 unit increase in labour
from a level of 100 increases output by only 11. In part (d) the situation is even worse, This
indicates that to increase staff actually reduces output! The latter is a rather surprising result,
but it is borne out by what occurs in real production processes. This may be due to problems
of overcrowding on the shopfloor or to the need to create an elaborate administration to
organise the larger workforce.

This example illustrates the faw of diminishing marginal productivity (sometimes called the
law of diminishing returns). It states that the increase in output due to a | unit increase in
labour will eventually decline. In other words, once the size of the workforce has reached a
certain threshold level, the marginal product of labour will get smaller. Int the previous example,
the value of MP, continually goes down with rising L. This is not always so. It is possible for the
marginal product of labour to remain constant or to go up to begin with for small values of L.
However, if it is to satisfy the law of diminishing marginal productivity then there must be some
value of L above which MP, decreases.

A typical product curve is sketched in Figure 4.15, which has slope

dg

et M!.’Jl
di ’
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Figure 4.15 -

Between 0 and L, the curve bends upwards, becoming progressively steeper, and so the slope
function, MP,, increases. Mathematically; this means that the slope of MP; is positive: that is,

Now MP, is itself the derivative of Q with respect to [ s¢ we gan use the notation for the second
order derivative and write this as &g :

Similarly, if L exceeds the threshold value of Ly, then Figure 4.15 shows that the pmduct curve
bends downwards and the slope decreases. In this region, the slope of the slopu ﬁmctmn is
negative, so that

The law of diminishing returns states that this must happen eventually: that is,

o
Y

2

for sufficiently large L.

Practice Problem

4. A Cobb-Douglas production function is given by
0 = 5LKP

Assuming that capital, K, is fixed at 100, write down a formula for Q in terms of L only.
Calculate the marginal product of fabour when

(@ l=1 L=9 (cy L =10000

Verify that the law of diminishing marginal productivity holds in this case.

-




