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Chapter 1

Van der Waerden’s Theorem

1.1 Introduction

Traditionally, Baudet is credited with the following conjecture:

For any partition of the natural numbers into two sets, one of the sets will
have arbitrarily long arithmetic progressions.

Van der Waerden’s paper [6] is titled Beweis einer Baudetschen Vermutung,
which translates as Proof of a Conjecture of Baudet; hence, van der Waerden
thought he was solving a conjecture of Baudet. However, Soifer [5] gives
compelling evidence that Baudet and Schur deserve joint credit for this con-
jecture.

As for who proved the conjecture there is no controversy: van der Waerden
proved it [6]. The proof we give is essentially his. He has written an account
of how he came up with the proof [7] which is reprinted in Soifer’s book.

VDW is more general than Baudet’s conjecture. VDW guarantees long
APs within finite rather than infinite sets of natural numbers, and allows
for the natural numbers to be divided up into any finite number of sets (by
color) instead of just two.

In this chapter, we will prove VDW the same way van der Waerden did.
We will express the proof in the color-focusing language of Walters [8].

Van der Waerden’s Theorem: For all k, c ∈ N there exists W such that,
for all c-colorings χ:[W ] → [c], there exists a, d ∈ N such that

χ(a) = χ(a+ d) = χ(a+ 2d) = · · · = χ(a+ (k − 1)d).
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4 CHAPTER 1. VAN DER WAERDEN’S THEOREM

Def 1.1.1 Let k, c ∈ N. The van der Waerden number W (k, c) is the least
number W that satisfies van der Waerden’s Theorem with parameters k, c.

Before proving the theorem, let’s look at a few simple base cases.

• c = 1: W (k, 1) = k, because the sequence 1, 2, . . . , k forms a k-AP.

• k = 1: W (1, c) = 1, because a 1-AP is any single term.

• k = 2: W (2, c) = c+ 1, because any two numbers form a 2-AP.

Not bad— we have proven the theorem for an infinite number of cases.
How many more could there be?

Notation 1.1.2 We use VDW(k, c) to mean the statement of VDW with
the parameters k and c. Note that the two statements VDW(k, c) holds and
W (k, c) exists are equivalent.

The proof has three key ideas. We prove subcases that illustrate these
ideas before proving the full theorem itself.

1.2 Proof of van der Waerden’s Theorem

1.2.1 VDW(3, 2) and the first key idea

We show that there exists a W such that any 2-coloring of [W ] has a
monochromatic 3-AP. By enumeration one can show W (3, 2) = 9; how-
ever, we prefer to use a technique that generalizes to other values of k and
c. The proof will show W (3, 2) ≤ 325.

For this section let W ∈ N and let χ:[W ] → {R,B} (where W will be
determined later). Imagine breaking up the numbers {1, 2, 3, . . . ,W} into
blocks of five. We can assume W is divisible by 5.

{1, 2, 3, 4, 5}, {6, 7, 8, 9, 10}, . . . , {W − 4,W − 3,W − 2,W − 1,W}

Let Bi be the ith block. Consider what happens within a block. Clearly
for any block of five there must be three equally spaced elements for which
the first two are the same color. We state this formally so we can refer to it.
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Fact 1.2.1 Let B be a block of five elements. If χ is restricted to B. then
there exists a, d, d ̸= 0, such that

a, a+ d, a+ 2d ∈ B

and

χ(a) = χ(a+ d).

We need to view χ : [W ] → {R,B} differently. The mapping χ can be
viewed as assigning to each block one of the 25 possible colorings of five
numbers: RRRRR, RRRRB, . . ., BBBBB. This is. . .

The First Key Idea: We view χ as a 32-coloring of the blocks. The
following viewpoint will be used over and over again in this book: View a
c-coloring of [W ] as a cB coloring of (W/B) blocks of size B.

The following is clear from the pigeonhole principle.

Lemma 1.2.2 Assume W ≥ 5 · 33 = 165. There exists two blocks Bi and
Bj (1 ≤ i < j ≤ 33) with the same coloring.

Theorem 1.2.3 Let W ≥ 325. Let χ : [W ] → [2] be a 2-coloring of [W ].
Then there exists a, d ∈ N such that

χ(a) = χ(a+ d) = χ(a+ 2d).

Proof: Let the colors be RED and BLUE. Assume, by way of contra-
diction, that there is no monochromatic 3-AP. View [W ] as being 65 blocks
of five. By Lemma 1.2.2 there exists two blocks Bi, Bj (1 ≤ i < j ≤ 33)
with the same coloring. By Fact 1.2.1, within Bi, there exists a, d such that
χ(a) = χ(a + d). Since Bi and Bj are the same color and are D apart we
have that there exists a, d,D such that, up to recoloring, the following holds.

• χ(a) = χ(a+ d) = χ(a+D) = χ(a+D + d) = RED.

• χ(a+ 2d) = χ(a+D + 2d) = BLUE.

• a+ 2D + 2d ∈ [W ].
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Figure 1.1 represents the situation.
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Figure 1.1: Three 5-Blocks

If χ(a+ 2D + 2d) = BLUE then

χ(a+ 2d) = χ(a+D + 2d) = χ(a+ 2D + 2d) = BLUE.

If χ(a+ 2D + 2d) = RED then

χ(a) = χ(a+ (D + d)) = χ(a+ 2(D + d)) = RED.

In either case we get a monochromatic 3-AP, a contradiction.

Exercise 1

1. How many 2-colorings of a 5-block are there that do not have a monochro-
matic 3-AP? Use the answer to obtain a smaller upper bound on
W (3, 2) in the proof of Theorem 1.2.3.

2. Use 3-blocks instead of 5-blocks in a proof similar to that of Theo-
rem 1.2.3 to obtain a smaller upper bound on W (3, 2) in the proof of
Theorem 1.2.3.

3. Show thatW (3, 2) = 9. (Hint: Do not use anything like Theorem 1.2.3.)

4. Find all 3-colorings of [8] that do not have a monochromatic 3-AP.

5. For n = 10, 11, . . . try to find a 3-coloring of [n] that has no monochro-
matic 3-AP’s by doing the following which is called the Greedy method.
(By VDW there will be an n such that this is impossible.)

• Color the numbers in order.
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• If you can color a number RED without forming a monochromatic
3-AP, do so.

• If not, then if you can color that number BLUE without forming
a monochromatic 3-AP, do so.

• If not, then if you can color that number GREEN without forming
a monochromatic 3-AP, do so.

• If every color would form a monochromatic 3-AP, then stop.

6. (Open-ended) For n = 10, 11, . . . , try to find a 3-coloring of [n] that
has no monochromatic 3-AP’s. (By VDW there will be an n such that
this is impossible.) Do this by whatever means necessary. Get as large
an n as you can. Be all you can be!

1.2.2 VDW(3, 3) and the second key idea

We show that there exists a W such that any 3-coloring of [W ] has a
monochromatic 3-AP. It is known, using a computer program, thatW (3, 3) =
27 [2] We use a technique that generalizes to other values of k and c, but
does not attain the exact bound.

For this section let W ∈ N and let χ:[W ] → {R,B,G} (where W is to
be determined later). Imagine breaking up the numbers {1, 2, 3, . . . ,W} into
blocks of seven. We can assume W is divisible by 7.

{1, 2, 3, 4, 5, 6, 7}, {8, 9, 10, 11, 12, 13, 14}, · · · , {W−6,W−5,W−4,W−3,W−2,W−1,W}

By techniques similar to those used in Section 1.2.1 we obtain that there
is some number U such that, for all 3-colorings of [U ], up to recoloring, there
exists a, d,D such that

• χ(a) = χ(a+ d) = χ(a+D) = χ(a+D + d) = RED.

• χ(a+ 2d) = χ(a+D + 2d) = BLUE.

• a+ 2D + 2d ∈ [W ].

Figure 1.2 represents the situation.
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Figure 1.2: Three 7-Blocks

If χ(a+ 2D + 2d) = BLUE then

χ(a+ 2d) = χ(a+D + 2d) = χ(a+ 2D + 2d) = BLUE.

If χ(a+ 2D + 2d) = RED then

χ(a) = χ(a+ (D + d)) = χ(a+ 2(D + d)) = RED.

Unfortunately all we can conclude is that χ(a+ 2D + 2d) = GREEN.
We have sketched a proof of the following:

Lemma 1.2.4 There exists U such that, up to recoloring, for all 3-colorings
of [U ] one of the following must occur.

1. There exists a monochromatic 3-AP.

2. There exists two 3-AP’s such that

• One is colored RED− RED−GREEN.

• One is colored BLUE− BLUE−GREEN.

• They have the same third point.

Let U be as in Lemma 1.2.4. Imagine breaking up the numbers {1, 2, 3, . . . ,W}
into blocks of U (we can assume W is divisible by U).

The Second Key Idea: We now take [U ] to be our block. We view [W ]
as a sequence of blocks, each of length U . This viewpoint will be used over
and over again in this book. First divide [W ] into blocks, then later take a
block of blocks, and then a block of blocks of blocks, etc.

We resume our discussion. View the 3-coloring of [W ] as a 3U coloring of
the blocks. Take W large enough so that there are two blocks Bi, Bj that are
the same color and a third block Bk such that Bi, Bj, Bk form an arithmetic
progression of blocks.
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Figure 1.3 represents the situation.
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Figure 1.3: Three U-Blocks

We leave the formal proof of Lemma 1.2.4 and the proof of VDW(3, 3) to
the reader.

Exercise 2

1. Use the ideas in this section to produce a rigorous proof of VDW(3, 3).
Obtain an actual number that bounds W (3, 3).

2. Use the ideas in this section to produce a rigorous proof of VDW(3, 4).

3. Use the ideas in this section to produce a rigorous proof that, for all c,
vdw(3, c) holds.

1.2.3 VDW (4,2): and the third key idea

We show that there exists a W such that any 2-coloring of [W ] has a
monochromatic 4-AP. It is known, using a computer program, thatW (4, 2) =
35 [2] We use a technique that generalizes to other values of k and c, but
does not attain the exact bound.

For this section let W ∈ N and let χ:[W ] → {R,B} (W to be determined
later). Imagine breaking up the numbers {1, 2, 3, . . . ,W} into blocks of length
2W (3, 2) (we can assume W is divisible by 2W (3, 2)).

{1, 2, 3, 4, 5, . . . , 2W (3, 2)}, {2W (3, 2)+1, . . . , 4W (3, 2)}, {4W (3, 2)+1, . . . , 6W (3, 2)}, · · ·

We will use VDW(3, c) for rather large values of c to prove VDW(4, 2).
This is. . .
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The Third Key Idea: To prove VDW(k, 2) we will use VDW(k − 1, c) for
an enormous value of c. Formally, this is an ω2 induction. We will discuss
and use inductions on complicated orderings later in this book.

We leave the following easy lemma to the reader.

Lemma 1.2.5 Let c ∈ N. Let χ:[2W (3, c)] → [c]. There exists a, d ∈ N such
that

• χ(a) = χ(a+ d) = χ(a+ 2d), and

• a+ 3d ∈ [2W (3, c)] so χ(a+ 3d) is defined, though we make no claims
of its value.

Theorem 1.2.6 Let W ≥ 4W (3, 2) ×W (3, 22W (3,2)). Let χ:[W ] → [2] be a
2-coloring of [W ]. Then there exists a, d ∈ N such that

χ(a) = χ(a+ d) = χ(a+ 2d) = χ(a+ 3d).

Proof: Let the colors be RED and BLUE. Assume, by way of contradic-
tion, that there is no monochromatic 4-AP. View [W ] as being 2W (3, 22W (3,2))
blocks of size 2W (3, 2). We view the 2-coloring of [W ] as a 22W (3,2)-coloring of
the blocks. We will use VDW(3, 22W (3,2)) on the block-coloring and VDW(3, 2)
on the coloring of each block. By Lemma 1.2.5 applied to both the coloring
of the blocks and the coloring within a block, and symmetry, we have the
following: There exists a, d,D ∈ N such that

• χ(a) = χ(a+ d) = χ(a+ 2d) = RED,
χ(a+D) = χ(a+D + d) = χ(a+D + 2d) = RED,
χ(a+ 2D) = χ(a+ 2D + d) = χ(a+ 2D + 2d) = RED.

• χ(a+ 3d) = χ(a+D + 3d) = χ(a+ 2D + 3d) = BLUE.

• a+ 3D + 3d ∈ [W ].

Figure 1.4 represents the situation.
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Figure 1.4: Four 2W (3, 2)-Blocks

If χ(a+ 3D + 3d) = BLUE then

χ(a+ 3d) = χ(a+ 3d+D) = χ(a+ 2D + 3d) = χ(a+ 3D + 3d) = BLUE.

If χ(a+ 3D + 3d) = RED then

χ(a) = χ(a+ (D + d)) = χ(a+ 2(D + d)) = χ(a+ 3(D + d)) = RED.

In either case we get a monochromatic 4-AP, a contradiction.

Exercise 3

1. Use the proof of Theorem 1.2.6 to obtain an actual bound on W (4, 2).

2. Fix k. Assume that, for all c, VDW(k−1, c) is true. Prove VDW(k, 2).

3. Fix k. Assume that, for all c, VDW(k−1, c) is true. Prove VDW(k, 3).

4. Prove the full VDW.

1.2.4 The full proof

Now that you know the Key Ideas you have all of the intuitions for the proof.
We formalize them here. The method we use here, color focusing, will occur
again and again in this book.

We will prove a lemma from which van der Waerden’s Theorem will follow
easily. Informally, the lemma states the following: if you c-color a large
enough [U ], then either there will be a monochromatic k-AP or there will be
an arbitrarily large number of monochromatic (k − 1)-AP’s, all of different
colors. Once there are c + 1 such (k − 1)-AP’s the latter cannot happen, so
the former must.
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Lemma 1.2.7 Fix k, c ∈ N with k ≥ 3. Assume (∀c′)[VDW(k−1, c′)]holds].
Then, for all r, there exists U = U(r)1 such that for all c-colorings χ:[U ] →
[c], one of the following statements holds.

Statement I: There are a, d ∈ N such that

χ(a) = χ(a+ d) = χ(a+ 2d) = · · · = χ(a+ (k − 1)d).

Statement II: There exists an anchor a ∈ N and numbers d1, d2, . . . , dr ∈ N,
such that

χ(a+ d1) = χ(a+ 2d1) = · · · = χ(a+ (k − 1)d1)

χ(a+ d2) = χ(a+ 2d2) = · · · = χ(a+ (k − 1)d2)

...

χ(a+ dr) = χ(a+ 2dr) = · · · = χ(a+ (k − 1)dr)

and, for all i ̸= j, χ(a+ di) ̸= χ(a+ dj).

Proof:

We define U(r) to be the least number such that this lemma holds. We
will prove U(r) exists by giving an upper bound on it.

Base Case: r = 1. We show that U(1) ≤ 2W (k − 1, c). Let χ:[2W (k −
1, c)] → [c]. Apply VDW(k−1, c) to the last half of [U(1)] to obtain a′, d ∈ N
such that

χ(a′) = χ(a′ + d) = · · · = χ(a′ + (k − 2)d)

and

a′ − d ∈ [U(1)].

Figure 1.5 represents the situation.

1Formally U depends on k, c, r; however, we suppress the dependence on k and c for
ease of notation.
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Figure 1.5: Base Case

Let a = a′ − d. If χ(a) = χ(a′) then a′ − d, a′, a′ + d, . . . , a′ + (k − 2)d is
a monochromatic k-AP that satisfies Statement I. If χ(a) ̸= χ(a′) then a, d
satisfy Statement II.

Induction Step: By induction, assume U(r) exists. We will show that
U(r + 1) ≤ 2U(r)W (k − 1, cU(r)). Let

U = 2U(r)W (k − 1, cU(r)).

Let χ:[U ] → [c] be an arbitrary c-coloring of [U ].
We view [U ] as being U(r)W (k − 1, cU(r)) numbers followed by

W (k − 1, cU(r)) blocks of size U(r). We denote these blocks by

B1, B2, . . . , BW (k−1,cU(r)).

Just one of these block looks like Figure 1.6. Figure 1.7 represents the
situation we have with W (k − 1, cU(r)) blocks.

c1 c1
c1

d1 d1 d1 d1

cr cr cr

dr dr dr dr

c
0

Figure 1.6: One Block of Size U(r)
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Figure 1.7: Many Blocks of U(r)
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We view a c-coloring of the second half of [U ] as a cU(r)-coloring of
these blocks.

Let χ∗ be this coloring. By the definition of W (k − 1, cU(r)), we get a
monochromatic (k − 1)-AP of blocks. Hence we have A,D′ such that

χ∗(BA) = χ∗(BA+D′) = · · · = χ∗(BA+(k−2)D′)

Figure 1.7 represents the situation.

Now, consider block BA. It is colored by χ. It has length U(r), which
tells us that either Statement I or II from the lemma holds. If Statement I
holds — we have a monochromatic k-AP — then we are done. If not, then
we have the following: a′, d1, d2, . . . , dr with a′ ∈ BA, and

{a′ + d1, a
′ + 2d1, . . . , a

′ + (k − 1)d1} ⊆ BA

{a′ + d2, a
′ + 2d2, . . . , a

′ + (k − 1)d2} ⊆ BA

...

{a′ + dr, a
′ + 2dr, . . . , a

′ + (k − 1)dr} ⊆ BA

χ(a′ + d1) = χ(a′ + 2d1) = · · · = χ(a′ + (k − 1)d1)

χ(a′ + d2) = χ(a′ + 2d2) = · · · = χ(a′ + (k − 1)d2)

...

χ(a′ + dr) = χ(a′ + 2dr) = · · · = χ(a′ + (k − 1)dr)

where χ(a′ + di) are all different colors, and different from a′ (or else there
would already be a monochromatic k-AP). How far apart are corresponding
elements in adjacent blocks? Since the blocks viewed as points are D′ apart,
and each block has U(r) elements in it, corresponding elements in adjacent
blocks are D = D′ × U(r) apart. Hence

χ(a′ + d1) = χ(a′ +D + d1) = · · · = χ(a′ + (k − 2)D + d1)

χ(a′ + d2) = χ(a′ +D + d2) = · · · = χ(a′ + (k − 2)D + d2)
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...

χ(a′ + dr) = χ(a′ +D + dr) = · · · = χ(a′ + (k − 2)D + dr)

We now note that we have only worked with the second half of [U ]. Since
we know that

a >
1

2
U = U(r)W (k − 1, cU(r))

and

D ≤ 1

k − 1
U(r)W (k − 1, cU(r)) ≤ U(r)W (k − 1, cU(r))

so we find that a = a′ −D > 0 and thus a ∈ [U ]. The number a is going to
be our new anchor.

So now we have

χ(a+ (D + d1)) = χ(a+ 2(D + d1)) = · · · = χ(a+ (k − 1)(D + d1))
χ(a+ (D + d2)) = χ(a+ 2(D + d2)) = · · · = χ(a+ (k − 1)(D + d2))

...
χ(a+ (D + dr)) = χ(a+ 2(D + dr)) = · · · = χ(a+ (k − 1)(D + dr))

Where each progression uses different color.
We need an (r + 1)st monochromatic set of points. Consider

{a+D, a+ 2D, . . . , a+ (k − 1)D}.

These are corresponding points in blocks which have the same color under
χ∗, hence

χ(a+D) = χ(a+ 2D) = · · · = χ(a+ (k − 1)D)).

In addition, since

(∀i)[χ(a′) ̸= χ(a′ + di)]

the color of this new progression is different from the r progression above.
Hence we have r + 1 monochromatic (k − 1)-AP’s, all of different colors,

and all with projected first term a. Formally the new parameters are a,D+
d1, . . . , D + dr, and D.
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Theorem 1.2.8 (Van der Waerden’s Theorem) ∀k, c ∈ N,∃W = W (k, c)
such that, for all c-colorings χ:[W ] → [c], ∃a, d ∈ N, d ̸= 0 such that

χ(a) = χ(a+ d) = χ(a+ 2d) = · · · = χ(a+ (k − 1)d)

Proof:
We prove this by induction on k. That is, we show that

• (∀c)[W (1, c) exists]

• (∀c)[W (k, c) exists] =⇒ (∀c)[W (k + 1, c) exists]

Base Case: k = 1 As noted above W (1, c) = 1 suffices. In fact, we also
know that W (2, c) = c+ 1 suffices.

Recall that VDW(k, c) means that Van der Waerden’s Theorem holds
with parameters k, c.
Induction Step: Assume (∀c)[VDW(k− 1, c) holds]. Fix c. Consider what
Lemma 1.2.7 says when r = c. In any c-coloring of U = U(c), either there
is a monochromatic k-AP or there are c monochromatic (k − 1)-AP’s which
are all colored differently, and a number a whose color differs from all of
them. Since there are only c colors, this cannot happen, so we must have a
monochromatic k-AP. Hence W (k, c) ≤ U(c) and hence exists.

Note that the proof of VDW(k, c) depends on VDW(k − 1, c′) where c′

is quite large. Formally the proof is an induction on the following order on
N× N.

(1, 1) ≺ (1, 2) ≺ · · · ≺ (2, 1) ≺ (2, 2) ≺ · · · ≺ (3, 1) ≺ (3, 2) · · ·

This is an ω2 ordering. It is well founded, so induction works.
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Chapter 2

The Polynomial van der
Waerden’s Theorem

2.1 Introduction

In this Chapter we state and proof a generalization of van der Waerden’s
Theorem known as the Polynomial van der Waerden’s Theorem. We rewrite
van der Waerden’s Theorem with an eye toward generalizing it.
Van der Waerden’s Theorem: For all k, c ∈ N there exists W = W (k, c)
such that, for all c-colorings χ:[W ] → [c], there exists a, d ∈ [W ], such that
the following set is monochromatic:

{a} ∪ {a+ id | 1 ≤ i ≤ k − 1}.

Note that van der Waerden’s Theorem was really about the set of func-
tions {id | 1 ≤ i ≤ k − 1}. Why this set of functions? Would other sets of
functions work? What about sets of polynomials? The following statement
is a natural generalization of van der Waerden’s Theorem; however, it is not
true.

False POLYVDW: Fix c ∈ N and P ⊆ Z[x] finite. Then there exists
W = W (P, c) such that, for all c-colorings χ:[W ] → [c], there are a, d ∈ N,
d ̸= 0, such that the following set is monochromatic:

{a} ∪ {a+ pi(d) | p ∈ P}.

The above statement is false since the polynomial p(x) = 2 and the

19
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coloring
1 2 3 4 5 6 7 8 9 10 · · ·
R R B B R R B B R R · · ·

provides a counterexample. Hence we need a condition to rule out constant
functions. The condition (∀p ∈ P )[p(0) = 0] suffices.
The Polynomial van der Waerden Theorem (POLYVDW) Fix c ∈ N
and P ⊆ Z[x] finite, with (∀p ∈ P )[p(0) = 0]. Then there exists W = W (P, c)
such that, for all c-colorings χ:[W ] → [c], there are a, d ∈ [W ], such that the
following set is monochromatic:

{a} ∪ {a+ pi(d) | p ∈ P}.

This was proved for k = 1 by Fürstenberg [3] and (independently) Sarkozy [4].
The original proof of the full theorem by Bergelson and Leibman [1] used
ergodic methods. A later proof by Walters [8] uses purely combinatorial
techniques. We will present an expanded version of Walters’ proof.

Note 2.1.1 Do we need the condition d ∈ [W ]? For the classical van der
Waerden Theorem d ∈ [W ] was obvious since

{a} ∪ {a+ d, . . . , a+ (k − 1)d} ⊆ [W ] =⇒ d ∈ [W ].

For the Polynomial van der Waerden’s Theorem one could have a polynomial
with negative coefficients, hence it would be possible to have

{a} ∪ {a+ p(d) | p ∈ P} ⊆ [W ] and d /∈ [W ].

For the final result we do not care where d is; however, in order to prove
POLYVDW inductively we will need the condition d ∈ [W ].

Recall that VDW was proven by induction on k and c. The main step
was showing that if (∀c)[W (k, c) exists ] then (∀c)[W (k + 1, c) exists ]. To
prove POLYVDW we will do something similar. We will assign to every set
of polynomials (that do not have a constant term) a type. The types will be
ordered. We will then do an induction on the types of polynomials.

Def 2.1.2 Let ne, . . . , n1 ∈ N. Let P ⊆ Z[x]. P is of type (ne, . . . , n1) if
the following hold:

1. P is finite.



2.1. INTRODUCTION 21

2. (∀p ∈ P )[p(0) = 0]

3. The largest degree polynomial in P is of degree ≤ e.

4. For all i, 1 ≤ i ≤ e, There are ≤ ni different lead coefficients of the
polynomials of degree i. Note that there may be many more than ni

polynomials of degree i.

Note 2.1.3

1. Type (0, ne, . . . , n1) is the same as type (ne, . . . , n1).

2. We have no n0. This is intentional. All the polynomials p ∈ P have
p(0) = 0.

3. By convention P will never have 0 in it. For example, if

Q = {x2, 4x}

then
{q − 4x : q ∈ Q}

will be {x2 − 4x}. We will just omit the 0.

Example 2.1.4

1. The set {x, 2x, 3x, 4x, . . . , 100x} is of type (100).

2. The set

{x4+17x3−65x, x4+x3+2x2−x, x4+14x3,−x4−3x2+12x,−x4+78x,

x3 − x2, x3 + x2, 3x, 5x, 6x, 7x}
is of type (2, 1, 0, 4)

3. The set

{x4 + b3x
3 + b2x

2 + b1x | −1010 ≤ b1, b2, b3 ≤ 1010 }

is of type (1, 0, 0, 0).
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4. If P is of type (1, 0) then there exists b ∈ Z and k ∈ N such that

P ⊆ {bx2 + ix | −k ≤ i ≤ k}.

5. If P is of type (1, 1) then there exists b2, b1 ∈ Z, and k ∈ N such that

P ⊆ {b2x2 − kx, b2x
2 − (k − 1)x, . . . , b2x

2 + kx} ∪ {b1x} ∪ {0}.

6. If P is of type (n3, n2, n1) then there exists b
(1)
3 , . . . , b

(n3)
3 ∈ Z, b(1)2 , . . . , b

(n2)
2 ∈

Z, b(1)1 , . . . , b
(n1)
1 ∈ Z, k1, k2 ∈ N, T1 of type (k1), and T2 of type (k2, k1)

such that

P ⊆ {bi3x3 + p(x) | 1 ≤ i ≤ f, p ∈ T2}∪
{bi2x2 + p(x) | 1 ≤ i ≤ g, p ∈ T1}∪
{bi1x | 1 ≤ i ≤ h}

7. Let
P = {2x2 + 3x, x2 + 20x, 5x, 8x}.

Let
Q = {p(x)− 8x | p ∈ P}.

Then
Q = {2x2 − 5x, x2 + 12x,−3x, }.

P is of type (2, 2) and Q is of type (2, 1). If we did not have out
convention of omitting 0 then the type of Q would have been (2, 2).
The type would not have gone “down” (in an ordering to be defined
later). This is why we have the convention.

8. Let P be of type (ne, . . . , ni + 1, 0, . . . , 0). Let bxi be the leading term
of some polynomial of degree i in P (note that we are not saying that
bxi ∈ P ). Let

Q = {p(x)− bxi | p ∈ P}.

There are numbers ni−1, . . . , n1 such thatQ is of type (ne, . . . , ni, ni−1, . . . , n1).
The type is decreasing in an ordering to be defined later.

Def 2.1.5
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1. Let P ⊆ Z[x] such that (∀p ∈ P )[p(0) = 0]. POLYVDW(P ) means
that the following holds:

For all c ∈ N, there exists W = W (P, c) such that for all c-colorings
χ:[W ] → [c], there exists a, d ∈ [W ] such that

{a} ∪ {a+ p(d) | p ∈ P} is monochromatic.

(If we use this definition on a coloring of {s + 1, . . . , s +W} then the
conclusion would have a ∈ {s+ 1, . . . , s+W} and d ∈ [W ].)

2. Let ne, . . . , n1 ∈ N. POLYVDW(ne, . . . , n1) means that, for all P ⊆
Z[x] of type (ne, . . . , n1) POLYVDW(P ) holds.

3. Let (ne, . . . , ni, ω, . . . , ω) be the e-tuple that begins with (ne, . . . , ni)
and then has i− 1 ω’s.

POLYVDW(ne, . . . , ni, ω, . . . , ω)

is the statement∧
ni−1,...,n1∈N

POLYVDW(ne, . . . , ni, ni−1, . . . , n1).

4. POLYVDW is the statement

∞∧
i=1

POLYVDW(ω, . . . , ω)( ω occurs i times).

Note that POLYVDW is the complete Polynomial van der Waerden
Theorem.

Example 2.1.6

1. The statement POLYVDW(ω) is equivalent to the ordinary van der
Waerden’s Theorem.

2. To prove POLYVDW(1, 0) it will suffice to prove POLYVDW(P ) for
all P of the form

{bx2 − kx, bx2 − (k − 1)x, . . . , bx2 + kx}.
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3. Assume that you know

POLYVDW(ne, . . . , ni, ω, . . . , ω)

and that you want to prove

POLYVDW(ne, . . . , ni + 1, 0, . . . , 0).

Let P be of type (ne, . . . , ni + 1, 0 . . . , 0). Let bxi be the first term of
some polynomial of degree i in P .

(a) Let

Q = {p(x)− bxi | p ∈ P}.

Then there exists ni−1, . . . , n1, such that Q is of type

(ne, . . . , ni, ni−1, . . . , n1).

Since

POLYVDW(ne, . . . , ni, ω, . . . , ω)

holds by assumption, we can assert that POLYVDW(Q) holds.

(b) Let U ∈ N. Let

Q = {p(x+ u)− p(u)− bxi | p ∈ P, 0 ≤ u ≤ U}.

Note q(0) = 0 for all q ∈ Q. Then there exists ni−1, . . . , n1, such
that Q is of type

(ne, . . . , ni, ni−1, . . . , n1).

Since

POLYVDW(ne, . . . , ni, ω, . . . , ω)

holds by assumption, we can assert that POLYVDW(Q) holds.

We will prove the Polynomial van der Waerden’s Theorem by an induction
on a complicated structure. We will prove the following:

1. POLYVDW(1) (this will easily follow from the pigeon hole principle).
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2. For all ne, . . . , ni ∈ N,

POLYVDW(ne, . . . , ni, ω, . . . , ω) =⇒ POLYVDW(ne, . . . , ni+1, 0, 0, . . . , 0).

Note that this includes the case

POLYVDW(ne, . . . , n2, n1) =⇒ POLYVDW(ne, . . . , n2, n1 + 1).

The ordering we use is formally defined as follows:

Def 2.1.7 (ne, . . . , n1) ⪯ (me′ , . . . ,m1) if either

• e < e′, or

• e = e′ and, for some i, 1 ≤ i ≤ e, ne = me, ne−1 = me−1, . . .,
ni+1 = mi+1, but ni < mi.

This is an ωω ordering.

Example 2.1.8 We will use the following ordering on types.

(1) ≺ (2) ≺ (3) ≺ · · ·

(1, 0) ≺ (1, 1) ≺ · · · ≺ (2, 0) ≺ (2, 1) ≺ · · · ≺ (3, 0) · · · ≺

(1, 0, 0) ≺ (1, 0, 1) ≺ · · · ≺ (1, 1, 0) ≺ (1, 1, 1) ≺ (1, 2, 0) ≺ (1, 2, 1) ≺

(2, 0, 0) ≺ · · · ≺ (3, 0, 0) ≺ · · · (4, 0, 0) · · · .
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2.2 The Proof of the Polynomial van derWaer-

den Theorem

2.2.1 POLYVDW({x2, x2 + x, . . . , x2 + kx})
Def 2.2.1 Let k ∈ N.

Pk = {x2, x2 + x, . . . , x2 + kx}.

We show POLYVDW(Pk). This proof contains many of the ideas used in
the proof of POLYVDW.

We prove a lemma from which POLYVDW(Pk) will be obvious.

Lemma 2.2.2 Fix k, c throughout. For all r there exists U = U(r) such that
for all c-colorings χ:[U ] → [c] one of the following statements holds.
Statement I: There exists a, d ∈ [U ], such that

• {a} ∪ {a+ d2, a+ d2 + d, . . . , a+ d2 + kd} ⊆ [U ],

• {a} ∪ {a+ d2, a+ d2 + d, . . . , a+ d2 + kd} is monochromatic.

Statement II: There exists a, d1, . . . , dr ∈ [U ] such that the following hold.

• {a+ d21, a+ d21 + d1, . . . , a+ d21 + kd1} ⊆ [U ].

{a+ d22, a+ d22 + d2, . . . , a+ d22 + kd2} ⊆ [U ].

...

{a+ d2r, a+ d2r + dr, . . . , a+ d2r + kdr} ⊆ [U ].

(The element a is called the anchor)

• {a+ d21, a+ d21 + d1, . . . , a+ d21 + kd1} is monochromatic.

{a+ d22, a+ d22 + d2, . . . , a+ d22 + kd2} is monochromatic.

...

{a+ d2r, a+ d2r + dr, . . . , a+ d2r + kdr} is monochromatic.

With each monochromatic set being colored differently and differently
from a. We refer to a as the anchor.

Informal notes:
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1. We are saying that if you c-color [U ] either you will have a monochro-
matic set of the form

{a} ∪ {a+ d2, a+ d2 + d, . . . , a+ d2 + kd}

or you will have many monochromatic sets of the form

{a+ d2, a+ d2 + d, . . . , a+ d2 + kd},

all of different colors, and different from a. Once “many” is more
than c, then the latter cannot happen, so the former must, and we have
POLYVDW(P ).

2. If we apply this theorem to a coloring of {s + 1, . . . , s + U} then we
either have

d ∈ [U ] and {a} ∪ {a+ d2 + d, . . . , a+ d2 + kd} ⊆ {s+ 1, . . . , s+ U}.

or
d1, . . . , dr ∈ [U ] and, for all i with 1 ≤ i ≤ r such that

{a} ∪ {a+ d2i + di, . . . , a+ d2i + kdi} ⊆ {s+ 1, . . . , s+ U}, and

{a+d2i+di, . . . , a+d2i+kdi} ⊆ {s+1, . . . , s+U} monochromatic for each i.

Proof:
We define U(r) to be the least number such that this Lemma holds. We

will prove U(r) exists by giving an upper bound on it.
Base Case: r = 1. U(1) ≤ W (k + 1, c)2 +W (k + 1, c).

Let χ be any c-coloring of [W (k + 1, c) + W (k + 1, c)2]. Look at the
coloring restricted to the last W (k + 1, c) elements. By van der Waerden’s
Theorem applied to the restricted coloring there exists

a′ ∈ [(W (k + 1, c))2 + 1, . . . , (W (k + 1, c))2 +W (k + 1, c)]

and
d′ ∈ [W (k + 1, c)]

such that

{a′, a′ + d′, a′ + 2d′, . . . , a′ + kd′} is monochromatic .
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Let the anchor be a = a′ − (d′)2 and let d1 = d′.

{a′, a′+d′, a′+2d′, . . . , a′+kd′} = {a+d21, a+d21+d1, . . . , a+d21+kd1} is monochromatic.

If a is the same color then Statement I holds. If a is a different color then
Statement II holds. There is one more issue– do we have

a, d1 ∈ [(W (k + 1, c))2 +W (k + 1, c)]?

Since
a′ ≥ (W (k + 1, c))2 + 1

and
d′ ≤ W (k + 1, c)

we have that

a ≥ (W (k + 1, c))2 + 1− (W (k + 1, c))2 = 1.

Clearly
a < a′ ≤ W (k + 1, c) + (W (k + 1, c))2.

Hence
a ∈ [W (k + 1, c) + (W (k + 1, c))2].

Since d1 = d′ ∈ [W (k + 1, c)] we clearly have

d1 ∈ [W (k + 1, c) + (W (k + 1, c))2].

Induction Step: Assume U(r) exists, and let

X = W (k + 2U(r), cU(r)).

(X stands for eXtremely large.)
We show that

U(r + 1) ≤ (X × U(r))2 +X × U(r).

Let χ be a c-coloring of

[(X × U(r))2 +X × U(r)].
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View this set as (X × U(r))2 consecutive elements followed by X blocks of
length U(r). Let the blocks be

B1, B2, . . . , BX .

Restrict χ to the blocks. Let χ∗:[X] → [cU(r)] be the coloring viewed as
a cU(r)-coloring of the blocks. By VDW applied to χ∗ and the choice of X
there exists A,D′ ∈ [X] such that

• {A,A+D′, . . . , A+ (k + 2U(r))D′} ⊆ [X],

• {BA, BA+D′ , . . . , BA+(k+2U(r))D′} is monochromatic. How far apart are
corresponding elements in adjacent blocks? Since the blocks viewed
as points are D′ apart, and each block has U(r) elements in it, cor-
responding elements in adjacent blocks are D = D′ × U(r) numbers
apart.

Consider the coloring of BA. Since BA is of size U(r) either there exists
a, d ∈ U(r) such that

• {a} ∪ {a+ d2, a+ d2 + d, . . . , a+ d2 + kd} ⊆ BA,

• {a} ∪ {a+ d2, a+ d2 + d, . . . , a+ d2 + kd} is monochromatic

in which case Statement I holds so we are done, or there exists
a′ ∈ BA, d

′
1, . . . , d

′
r ∈ [U(r)]

such that

• {a′ + d′1
2, a′ + d′1

2 + d′1, . . . , a
′ + d′1

2 + kd′1} ⊆ BA

{a′ + d′2
2, a′ + d′2

2 + d′2, . . . , a
′ + d′2

2 + kd′2} ⊆ BA

...

{a′ + d′r
2, a′ + d′r

2 + d′r, . . . , a
′ + d′r

2 + kd′r} ⊆ BA

• {a′ + d′1
2, a′ + d′1

2 + d′1, . . . , a
′ + d′1

2 + kd′1} is monochromatic.

{a′ + d′2
2, a′ + d′2

2 + d′2, . . . , a
′ + d′2

2 + kd′2} is monochromatic.

...

{a′ + d′r
2, a′ + d′r

2 + d′r, . . . , a
′ + d′r

2 + kd′r} is monochromatic.
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with each monochromatic set colored differently from the others and
from a′.

Since {BA, BA+D, . . . , BA+(k+2U(r))D} is monochromatic we also have
that, for all j with 0 ≤ j ≤ k + 2U(r),

NEED FIGURE

{a′+d′1
2
+jD, a′+d′1

2
+d′1+jD, . . . , a′+d′1

2
+kd′1+jD | 0 ≤ j ≤ k+2U(r)}

is monochromatic

{a′+d′2
2
+jD, a′+d′2

2
+d′2+jD, . . . , a′+d′2

2
+kd′2+jD} | 0 ≤ j ≤ k+2U(r)}

is monochromatic
...

{a′+d′r
2
+jD, a′+d′r

2
+d′r+jD, . . . , a′+d′2

2
+kd′r+jD} | 0 ≤ j ≤ k+2U(r)}

is monochromatic.

with each monochromatic set colored differently from the others and from a′,
but the same as their counterpart in BA.

Let the new anchor be a = a′−D2. Let di = D+d′i for all 1 ≤ i ≤ r, and
dr+1 = D. We first show that these parameters work and then show that
a, d1, . . . , dr ∈ [U(r + 1)].

For 1 ≤ i ≤ r we need to show that

{a+ (D + d′i)
2, a+ (D + d′i)

2 + (D + d′i), . . . , a+ (D + d′i)
2 + k(D + d′i)}

is monochromatic. Let 0 ≤ j ≤ k. Note that

a+(D+d′i)
2+j(D+d′i) = (a′−D2)+(D2+2Dd′i+d′i

2
)+(jD+jd′i) = a′+d′i

2
+jd′i+(j+2d′i)D.

Notice that 0 ≤ j + 2d′i ≤ k + 2U(r). Hence a+ d2i + jdi ∈ BA+(j+2d′i)D
′ ,

the (j + 2d′i)th block. Since BA is the same color as BA+(j+2d′i)D
′ ,

χ(a+ d2i ) = χ(a+ d2i + jdi).
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So we have that, for all 0 ≤ i ≤ r, for all j, 0 ≤ j ≤ k, the set

{a+ d2i , a+ d2i + di, . . . , a+ d2i + kdi}

is monochromatic for each i. And, since the original sequences were
different colors, so are our new sequences. Finally, if χ(a) = χ(a + d2i ) for
some i, then we have {a, a+d2i , a+d2i +di, . . . , a+d2i +kdi} monochromatic,
satisfying Statement I. Otherwise, we satisfy Statement II.

We still need to show that a, d1, . . . , dr ∈ [X × U(r))2 +X × U(r)]. This
is an easy exercise based on the lower bound on a′ (since it came from the
later X × U(r) coordinates) the inductive upper bound on the di’s, and the
upper bound D ≤ U(r).

Theorem 2.2.3 For all k, POLYVDW(Pk).

Proof: We show W (Pk, c) exists by bounding it. Let U(r) be the function
from Lemma 2.2.2. We show W (Pk, c) ≤ U(c). If χ is any c-coloring of [U(c)]
then second case of Lemma 2.2.2 cannot happen. Hence the first case must
happen, so there exists a, d ∈ [U(c)] such that

• {a} ∪ {a+ d2, a+ d2 + d, . . . , a+ d2 + kd} ⊆ [U(c)]

• {a} ∪ {a+ d2, a+ d2 + d, . . . , a+ d2 + kd} is monochromatic.

Therefore W (Pk, c) ≤ U(c).

Note 2.2.4 The proof of Theorem 2.2.3 used VDW. Hence it used POLYVDW(ω).
The proof can be modified to proof POLYVDW(1, 0). So the proof can be
viewed as showing that POLYVDW(ω) =⇒ POLYVDW(1, 0).

2.2.2 The Full Proof

We prove a lemma from which the implication

POLYVDW(ne, . . . , ni, ω, . . . , ω) =⇒ POLYVDW(ne, . . . , ni+1, 0, 0, . . . , 0)

will be obvious.
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Lemma 2.2.5 Let ne, . . . , ni ∈ N. Assume that POLYVDW(ne, . . . , ni, ω, . . . , ω)
holds. Let P ⊆ Z[x] of type (ne, . . . , ni + 1, 0, . . . , 0). Let c ∈ N. We regard
these as fixed. For all r, there exists U = U(r)1 such that for all c-colorings
χ:[U ] → [c] one of the following Statements holds.
Statement I: there exists a, d ∈ [U ], such that

• {a} ∪ {a+ p(d) | p ∈ P} ⊆ [U ].

• {a} ∪ {a+ p(d) | p ∈ P} is monochromatic.

Statement II: there exists a, d1, . . . , dr ∈ [U ] such that the following hold.

• {a+ p(d1) | p ∈ P} ⊆ [U ]

{a+ p(d2) | p ∈ P} ⊆ [U ]

...

{a+ p(dr) | p ∈ P} ⊆ [U ]

(The number a is called the anchor)

• {a+ p(d1) | p ∈ P} is monochromatic

{a+ p(d2) | p ∈ P} is monochromatic

...

{a+ p(dr) | p ∈ P} is monochromatic

With each monochromatic set being colored differently and differently from
a.

Informal notes:

1. We are saying that if you c-color [U ] either you will have a monochro-
matic set of the form

{a} ∪ {a+ p(d) | p ∈ P}

or you will have many monochromatic sets of the form

{a+ p(d) | p ∈ P},
1Formally U depends on P , c, r; however, we suppress the dependence on P and c for

notational ease.
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all of different colors, and different from a. Once “many” is more than
c, then the latter cannot happen, so the former must, and we have

POLYVDW(ne, . . . , ni, ω, . . . , ω) =⇒ POLYVDW(ne, . . . , ni+1, 0, . . . , 0).

2. If we apply this theorem to a coloring of {s + 1, . . . , s + U} then we
either have

d ∈ [U ] and {a} ∪ {a+ p(d) | p ∈ P} ⊆ {s+ 1, . . . , s+ U}

or
d1, . . . , dr ∈ [U ] and, for all i with 1 ≤ i ≤ r

{a} ∪ {a+ p(di) | p ∈ P} ⊆ {s+ 1, . . . , s+ U}.

Proof: We define U(r) to be the least number such that this Lemma holds.
We will prove U(r) exists by giving an upper bound on it. In particular, for
each r, we will bound U(r). We will prove this theorem by induction on r.

One of the fine points of this proof will be that we are careful to make
sure that a ∈ [U ]. The fact that we have inductively bounded the di’s will
help that.

Fix P ⊆ Z[x] of type (ne, . . . , ni+1, 0, . . . , 0). Fix c ∈ N. We can assume
P actually has ni + 1 lead coefficients for degree i polynomials (else P is
of smaller type and hence POLYVDW(P, c) already holds and the lemma
is true). In particular there exists some polynomial of degree i in P . We
assume that xi be the first term of some polynomial of degree i in P (the
proof for bxi with b ∈ Z is similar).
Base Case: r = 1. Let

Q = {p(x)− xi | p ∈ P}.

It is easy to show that there exists ni−1, . . . , n1 such that Q is of type
(ne, . . . , ni, ni−1, . . . , n1), and that (∀q ∈ Q)[q(0) = 0]. Since POLYVDW(ne, . . . , ni, ω, . . . , ω)
is true, POLYVDW(Q) is true. Hence W (Q, c) exists.

We show that
U(1) ≤ W (Q, c)i +W (Q, c).

Let χ be any c-coloring of [W (Q, c)i + W (Q, c)]. Look at the coloring
restricted to the last W (Q, c) elements. By POLYVDW(Q) applied to the
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restricted coloring there exists a′ ∈ {W (Q, c)i + 1, . . . ,W (Q, c)i +W (Q, c)}
and d′ ∈ [W (Q, c)] such that

{a′} ∪ {a′ + q(d′) | q ∈ Q} ⊆ {W (Q, c)i + 1, . . . ,W (Q, c)i +W (Q, c)}

{a′} ∪ {a′ + q(d′) | q ∈ Q} is monochromatic .

(Note- we will only need that {a′ + q(d′) | q ∈ Q} is monochromatic.)
Let the new anchor be a = a′ − b(d′)i. Let d1 = d′. (We will use b > 0

later to show that a ∈ [U(1) ≤ W (Q, c)i +W (Q, c)].)
Then

{a′ + q(d′) | q ∈ Q} = {a′ + p(d′)− b(d′)i | p ∈ P}
= {(a′ − b(d1)

i) + p(d1) | p ∈ P}
= {a+ p(d1) | p ∈ P} is monochromatic.

If a is the same color then Statement I holds. If a is a different color then
Statement II holds. There is one more issue– do we have a, d ∈ [U(1)]?

Since
a′ ≥ W (Q, c)i + 1

and

d′ ≤ W (Q, c) (Recall that POLYVDW has the restriction d ∈ [W ].)

we have that

a = a′ − b(d′)i ≥ W (Q, c)i + 1− d(d′)i ≥ W (Q, c)i + 1−W (Q, c)i = 1

Clearly
a < a′ ≤ W (Q, c)i +W (Q, c)

Hence
a ∈ [W (Q, c)i +W (Q, c)].

Since d1 = d′ ∈ [W (Q, c)] we clearly have

d1 ∈ [W (Q, c)i +W (Q, c)].

Induction Step: Assume U(r) exists. Let



2.2. THE PROOFOF THE POLYNOMIAL VANDERWAERDEN THEOREM35

Q = {p(x+ u)− p(u)− xi | p ∈ P, 0 ≤ u ≤ U(r)}.

Note that

{p(x)− xi | p ∈ P} ⊆ Q.

Clearly (∀q ∈ Q)[q(0) = 0]. It is an easy exercise to show that, there
exists ni, . . . , n1 such that Q is of type (ne, . . . , ni+1, ni, . . . , n1).

Now, let

Q′ =

{
q(x× U(r))

U(r)
| q ∈ Q

}
Since every q ∈ Q is an integer polynomial with q(0) = 0, it follows that

U(r) divides q(xU(r)), so we have Q′ ⊆ Z[x]. Moreover, it’s clear that Q′

has the same type as Q.
Since POLYVDW(ne, . . . , ni, ω, . . . , ω) holds, we have POLYVDW(Q′).
Hence (∀c′)[W (Q′, c′) exists]. We show that

U(r + 1) ≤ b
(
U(r)W (Q′, cU(r))

)i
+ U(r)W (Q′, cU(r)).

Let χ be a c-coloring of[
b
(
U(r)W (Q′, cU(r))

)i
+ U(r)W (Q′, cU(r))

]
.

View this set as b
(
U(r)W (Q′, cU(r))

)i
elements followed byW (Q′, cU(r)) blocks

of size U(r) each. Restrict χ to the blocks. Now view the restricted c-
coloring of numbers as a cU(r)-coloring of blocks. Call this coloring χ∗.
Let the blocks be

B1, B2, . . . , BW (Q′,cU(r)).

By the definition of W (Q′, cU(r)) applied to χ∗, and the assumption that
POLYVDW(ne, . . . , ni, ω, . . . , ω) holds, there exists A,D′ ∈ [W (Q′, cU(r))]
such that

{BA+q′(D′) | q′ ∈ Q′} is monochromatic.

Note that we are saying that the blocks are the same color. Let D =
D′ × U(r) be the distance between corresponding elements of the blocks.
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Because each block is length U(r), if we have an element x ∈ BA, then in
block BA+q′(D′) we have a point x′, where

CHECK NORMAL VDW WITH THIS POINT ABOUT BLOCKS
NEED FIGURE

x′ = x+ q′(D′)U(r)

= x+ q′
(

D

U(r)

)
U(r)

= x+ q(D) for some q ∈ Q, by definition of Q′

This will be very convenient.

Consider the coloring of BA. Since BA is of size U(r) one of the following
holds.

I) There exists a ∈ BA and d ∈ [U(r)] such that

• {a} ∪ {a+ p(d) | p ∈ P} ⊆ BA

• {a} ∪ {a+ p(d) | p ∈ P} is monochromatic (so we are done).

II) There exists a′ ∈ BA (so a′ ≥ W (Q′, cU(r))i+1) and d′1, . . . , d
′
r ∈ [U(r)]

such that

• {a′ + p(d′1) | p ∈ P} ⊆ BA

{a′ + p(d′2) | p ∈ P} ⊆ BA

...

{a′ + p(d′r) | p ∈ P} ⊆ BA

• {a′ + p(d′1) | p ∈ P} is monochromatic

{a′ + p(d′2) | p ∈ P} is monochromatic

...

{a′ + p(d′r) | p ∈ P} is monochromatic

with each monochromatic set being colored differently from each other
and from a′.

Since {BA+q′(D′) | q′ ∈ Q′} is monochromatic, and since we know that
x ∈ BA corresponds to x+ q(D) ∈ BA+q′(D′), we discover that, for all q ∈ Q,
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{a′ + p(d′1) + q(D) | p ∈ P} is monochromatic
{a′ + p(d′2) + q(D) | p ∈ P} is monochromatic

...
{a′ + p(d′r) + q(D) | p ∈ P} is monochromatic.

with each monochromatic set being colored differently from each other,
and from a′, but the same as their counterpart in BA.

Our new anchor is a = a′ −Di. Note that since

a′ ≥ W (Q′, cU(r))i + 1

and
D ≤ W (Q′, cU(r))

we have

a = a′ −Di ≥ W (Q′, cU(r))i + 1−W (Q′, cU(r))i = 1

Clearly a ≤ a′ ≤ W (Q′, cU(r) + U(r)W (Q′, cU(r)). Hence

a ∈ [W (Q′, cU(r))i + U(r)W (Q′, cU(r))].

Since
{BA+q′(D′) | q′ ∈ Q′}

is monochromatic (viewing the coloring on blocks) we know that

{a′ + q(D) | q ∈ Q}

is monochromatic (viewing the coloring on numbers). Remember that the
following is a subset of Q:

{p(x)− xi | p ∈ P}.

Hence the following set is monochromatic:

{a′ + p(D)−Di | p ∈ P} = {a+Di + p(D)−Di | p ∈ P}
= {a+ p(D) | p ∈ P}.

If a is the same color then Statement I holds and we are done. If a is
a different color then we have one value of d, namely dr+1 = D. We seek r
additional ones to show that Statement II holds.
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For each i we want to find a new di that works with the new anchor a.
Consider the monochromatic set {a′ + p(d′i) | p ∈ P}. We will take each
element of it and shift it q(D) elements for some q ∈ Q. The resulting set is
still monochromatic. We will pick q ∈ Q carefully so that the resulting set,
together with the new anchor a and the new values di = d′i +D work.

CHECK VDW AND QVDW FOR THIS POINT
For each p ∈ P we want to find a q ∈ Q such that a+ p(d′i +D) is of the

form a′ + p(d′i) + q(D), and hence the color is the same as a′ + p(d′i).

a′ + p(d′i) + q(D) = a+ p(d′i +D)
a′ + p(d′i) + q(D)− a = p(d′i +D)

Di + p(d′i) + q(D) = p(d′i +D)
q(D) = p(d′i +D)− p(d′i)−Di

Take q(x) = p(x + d′i) − p(d′i) − Di. Note that d′i ≤ U(Q, c, r) so that
q ∈ Q.

— Put bounds on di in here.
BILL - CHECK THIS
Let di = d′i +D for 1 ≤ i ≤ r, and dr+1 = D.
We have seen that

{a+ p(d1) | p ∈ P} is monochromatic

...

{a+ p(dr) | p ∈ P} is monochromatic

AND

{a+ p(dr+1) | p ∈ P} is monochromatic

The first r are guaranteed to be different colors by the inductive assump-
tion. The (r + 1)st is yet another color, because it shares a color with the
anchor of our original sequences, which we assumed had its own color. So
here we see that the Lemma is satisfied with parameters a, d1, . . . , dr, dr+1.

Lemma 2.2.6 For all ne, . . . , ni

POLYVDW(ne, . . . , ni, ω, . . . , ω) =⇒ POLYVDW(ne, . . . , ni+1, 0, 0, . . . , 0).
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Proof: Assume POLYVDW(ne, . . . , ni, ω, . . . , ω). Let P be of type
POLYVDW(ne, . . . , ni + 1, 0, 0, . . . , 0). Apply Lemma 2.2.5 to P with r = c.
Statement II cannot hold, so statement I must, and we are done.

We can now prove the Polynomial van der Waerden Theorem.

Theorem 2.2.7 For all P ⊆ Z[x] finite, such that (∀p ∈ P )[p(0) = 0], for
all c ∈ N, there exists W = W (P, c) such that for all c-colorings χ:[W ] → [c],
there exists a, d ∈ [W ] such that

• {a} ∪ {a+ p(d) | p ∈ P} ⊆ [W ],

• {a} ∪ {a+ p(d) | p ∈ P} is monochromatic.

Proof:
We use the ordering from Definition 2.1.7. The least element of this set

is (0). POLYVDW(0) is the base case. The only sets of polynomials of
type (0) are ∅. For each of these sets, the Polynomial van der Waerden
Theorem requires only one point to be monochromatic (the anchor), so of
course POLYVDW (0) holds.

Lemma 2.2.5 is the induction step.
This proves the theorem.

Note 2.2.8

1. Our proof of POLYVDW did not use van der Waerden’s Theorem. The
base case for POLYVDW was POLYVDW(0) which is trivial.

2. Let p(x) = x2−x and P = {p(x)}. Note that p(1) = 0. The statement
POLYVDW(P, 2012) is true but stupid: if χ is an 2012-coloring of [1]
then let a = 0 and d = 1. Then a, a + p(d) are the same color since
they are the same point. Hence POLYVDW(P, 2012) holds. The proof
of POLYVDW we gave can be modified to obtain a d so that not only
is d ̸= 0 but

{a} ∪ {a+ p(d) | p ∈ P}

has all distinct elements. Once this is done POLYVDW(P, 2012) is
true in a way that is not stupid.
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