# Behrend's Theorem for Dense Subsets of Finite Vector Spaces 

T. C. Brown and J. P. Buhler

Citation data: T.C. Brown and J.P. Buhler, Behrend's theorem for dense subsets of finite vector spaces, Canad. J. Math. 35 (1983), 724-734.

## 1 Introduction

The "combinatorial line conjecture" states that for all $q \geq 2$ and $\varepsilon>0$ there exists $N(q, \varepsilon)$ such that if $n \geq n(q, \varepsilon), X$ is a $q$-element set, and $A$ is any subset of $X^{n}$ ( $=$ cartesian product on $n$ copies of $X$ ) with more than $\varepsilon\left|X^{n}\right|$ elements (that is, $A$ has density greater than $\varepsilon$ ), then $A$ contains a combinatorial line. (For a definition of combinatorial line, together with statements and proofs of many results related to the combinatorial line conjecture, including all those results mentioned below, see [5]. Since we are not directly concerned with combinatorial lines in this paper, we do not reproduce the definition here.)

This conjecture (which is a strengthened version of a conjecture of Moser [7]), if true, would bear the same relation to the Hales-Jewett theorem that Szemerédi's theorem bears to van der Waerden's theorem. In particular, it would imply Szemerédi's theorem. The conjecture is known to be true for the case $q=2$ (see [5] or [2]), as was first observed by R. L. Graham. A reward has been offered by Graham for a proof or disproof of the conjecture for the case $q=3$.

A natural weakening of this (apparently very difficult) conjecture is obtained by replacing the integer $q$ by a prime power $q$, the $q$-element set $X$ by the $q$-element field $F_{q}$, the cartesian product $X^{n}$ by an $n$-dimensional vector space $V$ over $F_{q}$, and "combinatorial line in $X^{n "}$ by "affine line in V ". (An affine line is any translate of a 1-dimensional vector subspace; the purist will note that we only use the structure of $V$ as an affine space.)

We thus obtain the "affine line conjecture:" For every prime power $q$ and $\varepsilon>0$, there exists $n(q, \varepsilon)$ such that if $n \geq n(q, \varepsilon), V$ is an $n$-dimensional vector space over the $q$-element field, and $A$ is any subset of $V$ with more than $\varepsilon|V|$ elements (that is, $A$ has density greater than $\varepsilon$ ), then $A$ contains an affine line.

The affine line conjecture is known to be true for the cases $q=2$ (trivial) and $q=3$ ( [3]). In [4] it is shown that if the affine line conjecture is true for a given fixed value of $q$, then it remains true for this value of $q$ when "affine line" is replaced by " $k$-dimensional affine subspace", for any $k$, and similarly for the combinatorial line conjecture.

Szemerédi's theorem [9] states that for each $k$ and $\varepsilon>0$, there exists $n$ such that if $A$ is any subset of $\{1,2, \ldots, n\}$ with more than $\varepsilon n$ elements (that is, $A$ has density greater than $\varepsilon$ ), then $A$ contains a $k$-term arithmetic progression. Some 37 years prior to the proof of Szemerédi's theorem, Felix Behrend [1]
proved the following result: If Szemerédi's theorem is false then there exist triples $(k, n, A)$ such that $A$ is a subset of $\{1,2, \ldots, n\}$ which contains no $k$-term arithmetic progression, $n$ is arbitrarily large, and the density of $A$ in $\{1,2, \ldots, n\}(=|A| / n)$ is arbitrarily close to 1 .

In [2], the exact analogue of Behrend's result was established in the context of the combinatorial line conjecture: If the combinatorial line conjecture is false then there exist triples $(X, n, A)$ such that $X$ is a finite set, $A$ is a subset of $X^{n}$ which contains no combinatorial line, $n$ is arbitrarily large, and then density of $A$ in $X^{n}\left(=|A| /\left|X^{n}\right|\right)$ is arbitrarily close to 1 .

In the present paper we show that the exact analogue of Behrend's result is true in the context of the affine line conjecture: If the affine line conjecture is false then there exist triples $(F, n, A)$ such that $F$ is a finite field, $A$ is a subset of $F^{n}$ (the $n$-dimensional vector space over $F$ ) which contains no affine line, $n$ is arbitrarily large, and the density of $A$ in $F^{n}\left(|A| /\left|F^{n}\right|\right)$ is arbitrarily close to 1 .

The proof is somewhat technical, and the exact result which we prove is following. Suppose that the affine line conjecture fails for the finite field $F$. (That is, let $|F|=q$ and suppose that $n(q, \varepsilon)$ does not exist for some $\varepsilon>0$.) Then for every $\eta<1$ and every $n_{0}$ there is a subset $A$ of a finite-dimensional vector space $V$ over a finite extension $F^{\prime}$ of $F$, where $\operatorname{dim}_{F^{\prime}} V \geq n_{0}$, such that $A$ contains no affine line and the density of $A$ in $V(=|A| /|V|)$ is greater than $\eta$.

The proof is basically a modification of the argument in [2], which in turn followed the lines of the classical paper by Behrend [1].

## 2 Notation, definitions, and statement of the main theorem

Throughout, $F_{q}$ denotes the $q$-element field.
Definition 1. For each prime power $q$ and $\varepsilon>0, n(q, \varepsilon)$ denotes the smallest integer (if one exists) such that if $V$ is a finite-dimensional vector space over $\mathbb{F}_{q}, \operatorname{dim}(V) \geq n(q, \varepsilon), A \subset V,|A|>\varepsilon|V|$, then $A$ contains an affine line.

For a fixed prime power $q$, consider the infinite array

$$
m(q)=(d(n, k)) \quad(n \geq 1, k \geq 1)
$$

where the rows are indexed by $n$ and the columns are indexed by $k$, and where $d(n, k)$ is defined as follows. Let $V$ be an $n$-dimensional vector space over $\mathbb{F}_{q^{k}}$ and let $A$ be a subset of $V$ that has maximum cardinality subject to the condition that $A$ contains no affine line. Then

$$
d(n, k)=|A| /|V| .
$$

In other words, $d(n, k)$ is the smallest real number with the following property. If $B$ is any subset of $V$ ( $V$ as above) with $|B|>d(n, k)|V|$, then $B$ contains an affine line.

Remark. It follows directly from the preceding two sentences and the definition of $n(q, \varepsilon)$ that for all $n, k$,

$$
n \geq n\left(q^{k}, \varepsilon\right) \quad \text { if and only if } \quad d(n, k) \leq \varepsilon
$$

We shall see below that each column of the array $M(q)$ decreases. We define, for each $k \geq 1$,

$$
\gamma(k)=\lim _{n \rightarrow \infty} d(n, k),
$$

so that

$$
d(1, k) \geq \cdots \geq d(n, k) \geq \cdots \geq \gamma(k)
$$

We shall also see that for each row of $M(q)$,

$$
d(n, 1) \leq d(n, 2) \leq d(n, 4) \leq \cdots \leq d\left(n, 2^{l}\right) \leq \cdots \leq 1
$$

so that

$$
0 \leq \gamma(1) \leq \cdots \leq \gamma\left(2^{l} k\right) \leq \cdots \leq \Gamma(q)
$$

where by definition

$$
\Gamma(q)=\lim _{l \rightarrow \infty} \gamma\left(2^{l}\right)
$$

Theorem. $\Gamma(q)=0$ or $\Gamma(q)=1$.
Corollary. Suppose the affine line conjecture is false. In particular, suppose that $n(q, \varepsilon)$ does not exist. Let $\eta<1$ be given. Then there exists an integer $k$ and a subset $A$ of a finite-dimensional vector space $V$ (of arbitrarily large dimension) over $\mathbb{F}_{q^{k}}$ such that A contains no affine line and A has density greater than $\eta$.

Proof of Corollary. We prove the contrapositive. We are assuming that (as is shown in Lemma 1 below) $d(n, k)$ decreases to $\gamma(k)$ and that $\gamma\left(2^{l}\right)$ increases to $\Gamma(q)$.

Now let $q$ and $\eta<1$ be given, and suppose that for each $k \geq 1$, if $A$ is a subset of a vector space $V$ over $\mathbb{F}_{q^{k}}$ with density greater than $\eta$, and $\operatorname{dim} V$ is sufficiently large, then $A$ must contain an affine line. In other words, we are assuming that $n\left(q^{k}, \eta\right)$ exists for all $k \geq 1$. We need to show that $n(q, \varepsilon)$ exists for all $\varepsilon>0$.

Construct the array $M(q)$ as above, and consider the entries $d(n, k)$ in the $k$ th column of $M(q)$. Since $n\left(q^{k}, \eta\right)$ exists then by the Remark above

$$
d(n, k) \leq \eta \quad \text { for all } n \geq n\left(q^{k}, \eta\right)
$$

Since $d(n, k)$ decreases to $\gamma(k)$, it follows that $\gamma(k) \leq \eta$, for each $k \geq 1$. In particular, $\gamma\left(2^{l}\right) \leq \eta$ for each $l$; since $\gamma\left(2^{l}\right)$ increases to $\gamma(q)$, it follows that $\Gamma(q) \leq \eta<1$. By the theorem, we must have $\Gamma(q)=0$ and hence $\gamma(1)=0$.

Now let $\varepsilon>0$ be given. Since $d(n, 1)$ decreases to $\gamma(1)=0, d(n, 1)<\varepsilon$ for sufficiently large $n$, say $d\left(n_{0}, 1\right)<\varepsilon$. Then using the Remark once more, we obtain $n_{0} \geq n(q, \varepsilon)$. Thus, $n(q, \varepsilon)$ exists.

## 3 Proof of the main theorem

Lemma 1. Fix $q$, and let the numbers $d(n, k)$ be defined as above. Then

$$
d(1, k) \geq \cdots \geq d(n, k) \geq d(n+1, k) \geq \cdots
$$

and

$$
d(n, 1) \leq \cdots \leq d\left(n, 2^{l}\right) \leq d\left(n, 2^{l+1}\right) \leq \cdots
$$

Proof. For the first part, let

$$
\operatorname{dim}_{\mathbb{F}_{q^{k}}} V=n+1
$$

and let $V_{0}$ be an $n$-dimensional subspace of $V$. Let

$$
V=\bigcup\left\{V_{\alpha}: \alpha \in \mathbb{F}_{q^{k}}\right\}
$$

where the $V_{\alpha}$ are cosets (translates) of $V_{0}$. Let $A$ be a subset of $V$ which has maximum cardinality subject to the condition that $A$ contains no affine line. Then $A \cap V_{\alpha}$ contains no affine line for each $\alpha$, hence

$$
d(n+1, k) \cdot\left(q^{k}\right)^{n+1}=|A|=\sum\left|A \cap V_{\alpha}\right| \leq q^{k} \cdot d(n, k) \cdot\left(q^{k}\right)^{n}
$$

For the second part, let $F=\mathbb{F}_{q^{2^{l}}}$ and let $F^{\prime}=F(\beta)$, where $\beta$ has degree 2 over $F$. Let

$$
\begin{aligned}
V & =\left\{\left(x_{1}, \ldots, x_{n}\right): x_{i} \in F\right\} \\
V^{\prime} & =\left\{\left(x_{1}+y_{1} \beta, \ldots, x_{n}+y_{n} \beta\right): x_{i}, y_{i} \in F\right\}
\end{aligned}
$$

so that $V \subset V^{\prime}$.
Let $A$ be an affine-line-free subset of $V$ with

$$
|A|=d\left(n, 2^{l}\right)|V|
$$

and let $A^{\prime}=A+\beta V$. Then $A^{\prime}$ is a subset of $V^{\prime}$, and $A^{\prime}$ contains no affine line. For if $u_{0}, v_{0}, u_{1}, v_{1} \in V$ and

$$
\left(u_{0}+v_{0} \beta\right)+F^{\prime}\left(u_{1}+v_{1} \beta\right) \subset A^{\prime}
$$

then

$$
u_{0}+F u_{1} \subset A
$$

If $u_{1}=0$, we use

$$
\beta^{2}=x_{1}+y_{1} \beta, \quad x_{1}, y_{1} \in F, x_{1} \neq 0
$$

then $A^{\prime}$ contains

$$
\left(u_{0}+v_{0} \beta\right)+F \beta\left(u_{1}+v_{1} \beta\right)=\left(u_{0}+v_{0} \beta\right)+F\left(u_{1} \beta+v_{1} x_{1}+v_{1} y_{1} \beta\right)
$$

So $A$ contains $u_{0}+F v_{1}$.
We now fix some further notation which will be used in the remainder of the proof.
Definition 2. For any prime power $q, V(q)=\left\{\left(x_{1}, x_{2} \ldots\right): x \in \mathbb{F}_{q}\right.$ and $x_{i}=0$ for all but finitely many $\left.i\right\}$, and

$$
V(q)(m)=\left\{\left(x_{1}, x_{2}, \ldots\right) \in V(q): x_{j}=0, j>m\right\}
$$

For any subset $S$ of $V(q)$,

$$
S(m)=S \cap V(q)(m) \quad \text { and } \quad \bar{d}(S)=\underset{m \rightarrow \infty}{\limsup }|S(m)| \cdot q^{-m}
$$

Lemma 2. If $S \subset V\left(q^{k}\right)$ and $\bar{d}(S)>\gamma(k)$ (where $\gamma(k)$ is defined in terms of the array $M(q)$ )m then $S$ contains an affine line. (That is, $S(m)$ contains an affine line for some $m$.)

Proof. Choose $\varepsilon>0$ so that

$$
\gamma(k)+\varepsilon<|S(m)| \cdot q^{-k m}
$$

for infinitely many $m$. Next, choose $n$ so that

$$
d(n, k)<\gamma(k)+\varepsilon .
$$

Finally, choose $m$ so that simultaneously

$$
\gamma(k)+\varepsilon<|S(m)| \cdot q^{-k m} \quad \text { and } \quad n<m-n
$$

Assume that $S$ contains no affine line. Then for each $x \in V\left(q^{k}\right)(n), S(m)$ can contain at most $d(m-n, k)$. $\left(q^{k}\right)^{m-n}$ elements whose first $n$ coordinates agree with the first $n$ coordinates of $x$. Hence

$$
|S(m)| \leq\left(q^{k}\right)^{n} \cdot d(m-n, k) \cdot\left(q^{k}\right)^{m-n}
$$

Since $d(m-n, k) \leq d(n, k)<\gamma(k)+\varepsilon$, this gives

$$
\gamma(k)+\varepsilon<|S(m)| q^{-k m}<\gamma(k)+\varepsilon
$$

Lemma 3. For each $t \geq 1$, if $S \subset V\left(q^{k}\right)$ and $\bar{d}(S)>\gamma(k t)$ (where $\gamma(k t)$ is defined in terms of the array $M(q)$ ), then $S$ contains a $t$-dimensional affine subspace.

Proof. Identify $\mathbb{F}_{q^{k} t}$ with $\left\{\left(x_{1}, \ldots, x_{t}\right): x_{i} \in \mathbb{F}_{q^{k}}\right\}$, so that

$$
V\left(q^{k t}\right)=\left\{\left(\left(x_{1}, \ldots, x_{t}\right),\left(x_{t+1}, \ldots, x_{2 t}\right), \ldots\right): x_{i} \in \mathbb{F}_{q^{k}}\right\}
$$

Let $S \subset V\left(q^{k}\right), \bar{d}(S)>\gamma(k t)$. Choose $\varepsilon>0$ so that

$$
|S(m)| \cdot q^{-k m}>\gamma(k t)+\varepsilon
$$

for infinitely many $m$. From amongst these $m$, choose a subsequence $m_{0}<m_{1}<m_{2}<\cdots$ such that all the $m_{i}$ 's are congruent modulo $t$.

Let $\pi: S \mapsto V\left(q^{k}\right)$ be the mapping which shifts an element of $S$ " $m_{0}$ places to the left," i.e.,

$$
\pi\left(x_{1}, \ldots, x_{m_{0}}, x_{m_{0}+1}, \ldots\right)=\left(x_{m_{0}+1}, \ldots\right),
$$

For any $T \subset S$, let $T^{\prime}$ denote $\pi(T)$.

For each $x=\left(x_{1}, \ldots, x_{m_{0}}, 0, \ldots\right) \in V\left(q^{k}\right)\left(m_{0}\right)$, let

$$
S_{x}=\left\{y=\left(y_{1}, \ldots\right) \in S: y_{i}=x_{i}, 1 \leq i \leq m_{0}\right\}
$$

Then $S$ is the disjoint union

$$
S=\bigcup\left\{S_{x}: x \in V\left(q^{k}\right)\left(m_{0}\right)\right\}
$$

Therefore for each $i \geq 1$,

$$
\sum_{x}\left|S_{x}\left(m_{l}\right)\right|=\left|S\left(m_{i}\right)\right|>a^{k m_{i}}(\gamma(k t)+\varepsilon)
$$

Hence for some $x_{i} \in V\left(q^{k}\right)\left(m_{0}\right)$,

$$
\begin{aligned}
\left|S_{x_{i}}^{\prime}\left(m_{i}-m_{0}\right)\right| & =\left|S_{x_{i}}\left(m_{i}\right)\right| \geq q^{-k m_{0}}\left|S\left(m_{i}\right)\right| \\
& >q^{k\left(m_{i}-m_{0}\right)}(\gamma(k t)+\varepsilon)
\end{aligned}
$$

Since each $x_{i}$ comes from the finite set $V\left(q^{k}\right)\left(m_{0}\right)$, there is an infinite subsequence $\left\{m_{i_{j}}\right\}$ of $\left\{m_{i}\right\}$ on which $x_{i_{j}}$ is constant, say $x_{i_{1}}=x_{i_{2}}=\cdots=x_{0}$. Set

$$
n_{j}=m_{i_{j}}-m_{0}, \quad j \geq 1
$$

Then each $n_{j}$ is a multiple of $t$, say

$$
n_{j}=t b_{j} \quad \text { and } \quad\left|S_{x_{o}}^{\prime}\left(n_{j}\right)\right|>q^{k n_{j}}(\gamma(k t)+\varepsilon), \quad j \geq 1
$$

We now inject $S_{x_{0}}$ into $V\left(q^{k t}\right)$ by insertion of parentheses, that is, we define $g: S_{x_{0}} \mapsto V\left(q^{k t}\right)$ by

$$
g\left(x_{1}, \ldots\right)=\left(\left(x_{1}, \ldots, x_{t}\right),\left(x_{t+1}, \ldots, x_{2 t}\right), \ldots\right)
$$

Then for each $j \geq 1$,

$$
\left|g\left(S_{x_{0}}^{\prime}\right)\left(b_{j}\right)\right|=\left|S_{x_{0}}^{\prime}\left(t b_{j}\right)\right|=\left|S_{x_{0}}^{\prime}\left(n_{j}\right)\right|>\left(q^{k t}\right)^{b j}(\gamma(k t)+\varepsilon)
$$

This means that in $V\left(q^{t k}\right)$,

$$
\bar{d}\left(g\left(S_{x_{0}}^{\prime}\right)\right)>\gamma(k t)
$$

Here, $\gamma(k t)$ is the limit down the $(k t)$ th column of the array $M(q)$, which is identical with the $k$ th column of the array $M\left(q^{t}\right)$. Thus

$$
g\left(S_{x_{0}}^{\prime}\right) \subset V\left(\left(q^{t}\right)^{k}\right)
$$

and

$$
\bar{d}\left(g\left(S_{x_{0}}^{\prime}\right)\right)>\gamma(k)
$$

(where $\gamma(k)$ is defined in terms of the array $M\left(q^{t}\right)$ ). Hence by Lemma $2 g\left(S_{x_{0}}^{\prime}\right)$ contains an affine line. This affine line (the underlying field is $\mathbb{F}_{q^{k t}}$ ) is easily seen to be the image under $g$ of a $t$-dimensional affine subspace of $S_{x_{0}}^{\prime}$ (where the underlying field if $\mathbb{F}_{q^{k}}$ ). From the definition of $S_{x_{0}}^{\prime}$ it follows that $S$
itself contains a $t$-dimensional affine subspace.
Lemma 4. There exists $S \subset V\left(q^{k}\right)$ such that $\bar{d}(S)=\gamma(k)$ (where $\gamma(k)$ is defined in terms of the array $M(q))$ and such that $S$ contains no affine line.

Proof. Choose $0=n_{0}<n_{1}<\cdots$ so that $n_{i}-n_{i-1} \rightarrow \infty$ as $i \rightarrow \infty$. For $i \geq 1$, let $A_{i} \subset V\left(q^{k}\right)\left(n_{i}\right)$ be such that $A_{i}$ contains no affine line,

$$
\left|A_{i}\right|=a^{k n_{i}} d\left(n_{i}, k\right) \quad \text { and } \quad 0 \notin A_{i} .
$$

(If $L$ is some fixed affine line $V\left(q^{k}\right)\left(n_{i}\right)$ and $A \subset V\left(q^{k}\right)\left(n_{i}\right)$ contains no affine line, then for some $a \in L$, $a+A$ does not contain 0 .) Let

$$
B_{i}=A_{i}-V\left(q^{k}\right)\left(n_{i-1}\right) \quad \text { and } \quad S=\bigcup B_{i}, i \geq 1
$$

Then

$$
\left|S\left(n_{i}\right)\right| \geq\left|B_{i}\right| \geq\left|A_{i}\right|-q^{k n_{i-1}}=q^{k n_{i}} d\left(n_{i}, k\right)-\left(q^{k}\right)^{n_{i-1}-n_{i}}
$$

hence

$$
\bar{d}(S) \geq \gamma(k)=\lim _{t \rightarrow \infty} d\left(n_{i}, k\right)
$$

The sets $B_{i}$ are pairwise disjoint, and if $x=\left(x_{1}, \ldots\right) \in S$ and $j$ is the largest index with $x_{j} \neq 0$ then $x \in B_{i}$, where $n_{i-1}<j \leq n_{i}$.

Suppose that $S$ contains the affine line $u_{1}, \ldots, u_{q^{k}}$. Choose $i_{0}$ minimal so that $u_{1}, \ldots, u_{q^{k}} \in B_{1} \cup \cdots \cup$ $B_{i_{0}}$. Then there are $u_{s}$ and $j, n_{i_{0}-1}<j \leq n_{i_{0}}$, such that the $j$ th coordinate of $u_{s}$ is not zero. Since the $j$ th coordinates of $u_{1}, \ldots, u_{q^{k}}$ are either constant or are some permutation of $\mathbb{F}_{q^{k}}$ at least $q^{k}-1$ of $u_{1}, \ldots, u_{q^{k}}$ are contained in $B_{i_{0}}$. Suppose $u_{1} \notin B_{i_{0}}$. Let $j^{\prime}$ be the largest index such that the $j^{\prime}$ th coordinate of $u_{1}$ is not zero. ( $j^{\prime}$ exists since $u_{1} \neq 0$.) Then $j^{\prime}<n_{i_{0}-1}$, and hence the $j^{\prime}$ th coordinates of $u_{2}, \ldots, u_{q^{k}}$ are all zero. But since $u_{1}, \ldots, u_{q^{k}}$ are an affine line, then the $j^{\prime}$ th coordinates are either constant or are a permutation of $\mathbb{F}_{q^{k}}$.

Thus we have arrived at a contradiction (except in the case $q^{k}=2$ ) and therefore $S$ contains no affine line. (When $q^{k}=2$, then $\gamma(1)=0$. Any singleton set $S=\{x\} \subset V(2)$ has $\bar{d}(S)=0=\gamma(1)$, and $S$ contains no affine line.) Since $\bar{d}(S) \geq \gamma(k)$, Lemma 2 gives $\bar{d}(S)=\gamma(k)$.

We now have necessary machinery to prove the main theorem. Recall that for a prime power $q, M(q)$ is the array

$$
\left((d(n, k)), \quad \gamma\left(2^{l}\right)=\lim _{n \rightarrow \infty} d\left(n, 2^{l}\right), \quad \Gamma(q)=\lim _{l \rightarrow \infty} \gamma\left(2^{l}\right)\right.
$$

Theorem. For every prime power $q, \Gamma(q)=0$ or $\Gamma(q)=1$.
Proof. Fix $q$, and assume that $0<\Gamma(q)<1$. Choose $l$ so that

$$
\begin{equation*}
0<\gamma\left(2^{i}\right) \tag{1}
\end{equation*}
$$

Using Lemma 4, choose $S \subset V\left(q^{2^{l}}\right)$ so that

$$
\begin{equation*}
\bar{d}(S)=\gamma\left(2^{l}\right) \tag{2}
\end{equation*}
$$

Choose $\varepsilon<0$ so that

$$
\begin{equation*}
\Gamma(q)<\frac{\gamma\left(2^{l}\right)-\varepsilon}{\gamma\left(2^{l}\right)+\varepsilon}-\varepsilon \tag{4}
\end{equation*}
$$

Choose $n$ so that

$$
\left\{\begin{array}{c}
A \subset V\left(q^{k}\right)(n)  \tag{5}\\
|A|>\left(\gamma\left(2^{l}\right)+\varepsilon\right) q^{k n}
\end{array}\right\} \Rightarrow\left\{\begin{array}{c}
A \text { contains } \\
\text { an affine line }
\end{array}\right\}
$$

Choose $t$ (using the extended Hales-Jewett theorem; see [5] or [8]) so that $t$ is a power of 2 and

$$
\left\{\begin{array}{c}
T \text { is a } t \text {-dimensional affine subspace }  \tag{6}\\
\text { and } T=T_{1} \cup \cdots \cup T_{s} \text {, where } s=2^{q^{k n}-1}
\end{array}\right\} \Rightarrow\left\{\begin{array}{c}
\text { some } T_{i} \\
\text { contains an } \\
\text { affine line }
\end{array}\right\} .
$$

Set

$$
\begin{equation*}
V^{\prime}=V\left(q^{k}\right)-V\left(q^{k}\right)(n), \quad B_{v}=\left(v+V\left(q^{k}(n)\right) \cap S, \quad v \in V^{\prime} .\right. \tag{7}
\end{equation*}
$$

Partition $V^{\prime}$ into $2^{q^{k n}}$ classes $C_{\sigma}$ as follows.

$$
\begin{equation*}
C_{\sigma}=\left\{v \in V^{\prime}: B_{v}=v+\sigma\right\}, \quad \sigma \subset V\left(q^{k}\right)(n) \tag{8}
\end{equation*}
$$

(Note that $C_{\sigma}=\left\{v \in V^{\prime}: B_{v}=\phi\right\}$.)
Let

$$
C=\bigcup\left\{C_{\sigma}: \sigma \neq \phi\right\}
$$

and let

$$
\begin{equation*}
\bar{d}_{V^{\prime}}(C)=\limsup _{m \rightarrow \infty}\left(q^{-k}\right)^{(m-n)}\left|C \cap V^{\prime}(m)\right| . \tag{9}
\end{equation*}
$$

Since

$$
\left|C \cap V^{\prime}(m)\right|<\left(\bar{d}_{V^{\prime}}(C)+\varepsilon\right) q^{k(m-n)}
$$

for all but finitely many $m$, and since

$$
|S(m)|>\left(\gamma\left(2^{l}\right)-\varepsilon\right) q^{-k m}
$$

for infinitely many $m$ (by (2)), we can choose $m$ so that $n<m$ and

$$
\begin{gather*}
\left(\gamma\left(2^{l}\right)-\varepsilon\right) q^{k m}<|S(m)|  \tag{10}\\
\left|C \cap V^{\prime}(m)\right|<\left(\bar{d}_{V^{\prime}}(C)+\varepsilon\right) q^{k(m-n)} \tag{11}
\end{gather*}
$$

Using (7), (3), and (5) we get

$$
\begin{equation*}
\left|B_{v}\right| \leq\left(\gamma\left(2^{l}\right)+\varepsilon\right) q^{k n}, \quad v \in V^{\prime} \tag{12}
\end{equation*}
$$

Note that $m>n$ and

$$
V\left(q^{k}\right)(m)=\bigcup\left\{v+V\left(q^{k}\right)(n): v \in V^{\prime}(m)\right\}
$$

so that

$$
\begin{aligned}
V\left(q^{k}\right)(m) \cap S & =\bigcup\left\{\left(v+V\left(q^{k}\right)(n) \cap S: v \in V^{\prime}(m)\right\}\right. \\
& =\bigcup\left\{B_{v}: v \in V^{\prime}(m) \text { and } B_{v} \neq \phi\right\} \\
& =\bigcup\left\{B_{v}: v \in V^{\prime}(m) \cap C\right\} .
\end{aligned}
$$

That is,

$$
\begin{equation*}
S(m)=\bigcup\left\{B_{v}: v \in V^{\prime}(m) \cap C\right\} \tag{13}
\end{equation*}
$$

Now using (10), (13), (12), (11) we get

$$
\left(\gamma\left(2^{l}\right)-\varepsilon\right) q^{k m}<|S(m)|<\left(\gamma\left(2^{l}\right)+\varepsilon\right) q^{k n}\left(\bar{d}_{V^{\prime}}(C)+\varepsilon\right) q^{k(m-n)},
$$

or

$$
\frac{\gamma\left(2^{l}\right)-\varepsilon}{\gamma\left(2^{l}\right)-\varepsilon}-\varepsilon<\bar{d}_{V^{\prime}}(C) .
$$

Using (4), this gives

$$
\begin{equation*}
\Gamma(q)<\bar{d}_{V^{\prime}}(C) \tag{14}
\end{equation*}
$$

The integer $t$ was chosen to be a power of 2 , say $t=2^{b}$, and to satisfy (6). Since

$$
\gamma\left(2^{l} t\right)=\gamma\left(2^{l+b}\right) \leq \Gamma(q)<\bar{d}_{V^{\prime}}(C)
$$

it follows from Lemma 3 that $C$ contains a $t$-dimensional affine subspace $T$. We partition the elements of $T$ into $2^{q^{k n}-1}$ classes $C_{\sigma} \cap T, \sigma \neq \phi$. By (6), some $C_{\sigma_{0}} \cap T$, and hence some $C_{\sigma_{0}}$, contains an affine line $u_{1}, \ldots, u_{q^{k}}$. Using (8) and (7), $u_{1} \in C_{\sigma_{0}}$ implies

$$
u_{1}+\sigma_{0}=B_{u_{1}} \subset S .
$$

Similarly,

$$
\begin{equation*}
u_{i}+\sigma_{0}=B_{U_{i}} \subset S, \quad 1 \leq i \leq q^{k} . \tag{15}
\end{equation*}
$$

In particular, taking any element $v_{0} \in \sigma_{0}\left(\sigma_{0} \neq \phi\right), S$ contains the affine line

$$
u_{1}+v_{0}, \ldots, u_{q^{k}}+v_{0}
$$

which contradicts (3).
This contradiction shows that $0<\Gamma(q)<1$ is impossible, and complete the proof.

## References

[1] F. Behrend, On sequences of integers containing no arithmetic progression, C̆asopis Mat. Fys. Praha (C̆ast Mat.) 67 (1938), 235-239.
[2] T.C. Brown, Behrend's theorem for sequences containing no k-element arithmetic progression of a certain type, J. Combin. Theory Ser. A 18 (1975), 352-356.
[3] T.C. Brown and J.P. Buhler, A density version of a geometric Ramsey theorem, J. Combin. Theory Ser. A 25 (1982), 20-34.
[4] _ Lines imply spaces in density Ramsey theory, J. Combin. Theory Ser. A 36 (1984), 214-220.
[5] Ronald L. Graham, Bruce L. Rothschild, and Joel H. Spencer, Ramsey theory, Wiley-Interscience Series in Discrete Mathematics. A Wiley-Interscience Publication., John Wiley \& Sons, Inc., New York, 1980.
[6] Alfred W. Hales and Robert I. Jewett, Regularity and positional games, Trans. Amer. Math. Soc. 106 (1963), 222-239.
[7] L. Moser, Problem 170, Canad. Math. Bull. 13 (1970), 268.
[8] Joel H. Spencer, Ramsey's theorem for spaces, Trans. Amer. Math. Soc. 249 (1979), 363-371.
[9] E. Szemerédi, On sets of integers containing no k elements in an arithmetic progression, Acta. Arith. 27 (1975), 199-245, Collection of articles in memory of Jurii Vladimirovic Linnik.

