Behrend's Theorem for Dense Subsets of Finite Vector Spaces

T. C. Brown and J. P. Buhler

Citation data: T.C. Brown and J.P. Buhler, *Behrend's theorem for dense subsets of finite vector spaces*, Canad. J. Math. **35** (1983), 724–734.

1 Introduction

The "combinatorial line conjecture" states that for all $q \ge 2$ and $\varepsilon > 0$ there exists $N(q,\varepsilon)$ such that if $n \ge n(q,\varepsilon)$, X is a q-element set, and A is any subset of X^n (= cartesian product on n copies of X) with more than $\varepsilon |X^n|$ elements (that is, A has density greater than ε), then A contains a combinatorial line. (For a definition of combinatorial line, together with statements and proofs of many results related to the combinatorial line conjecture, including all those results mentioned below, see [5]. Since we are not directly concerned with combinatorial lines in this paper, we do not reproduce the definition here.)

This conjecture (which is a strengthened version of a conjecture of Moser [7]), if true, would bear the same relation to the Hales-Jewett theorem that Szemerédi's theorem bears to van der Waerden's theorem. In particular, it would imply Szemerédi's theorem. The conjecture is known to be true for the case q = 2 (see [5] or [2]), as was first observed by R. L. Graham. A reward has been offered by Graham for a proof or disproof of the conjecture for the case q = 3.

A natural weakening of this (apparently very difficult) conjecture is obtained by replacing the integer q by a prime power q, the q-element set X by the q-element field F_q , the cartesian product X^n by an n-dimensional vector space V over F_q , and "combinatorial line in X^n " by "affine line in V". (An affine line is any translate of a 1-dimensional vector subspace; the purist will note that we only use the structure of V as an affine space.)

We thus obtain the "affine line conjecture:" For every prime power q and $\varepsilon > 0$, there exists $n(q, \varepsilon)$ such that if $n \ge n(q, \varepsilon)$, V is an *n*-dimensional vector space over the *q*-element field, and A is any subset of V with more than $\varepsilon |V|$ elements (that is, A has density greater than ε), then A contains an affine line.

The affine line conjecture is known to be true for the cases q = 2 (trivial) and q = 3 ([3]). In [4] it is shown that if the affine line conjecture is true for a given fixed value of q, then it remains true for this value of q when "affine line" is replaced by "k-dimensional affine subspace", for any k, and similarly for the combinatorial line conjecture.

Szemerédi's theorem [9] states that for each k and $\varepsilon > 0$, there exists n such that if A is any subset of $\{1, 2, ..., n\}$ with more than εn elements (that is, A has density greater than ε), then A contains a k-term arithmetic progression. Some 37 years prior to the proof of Szemerédi's theorem, Felix Behrend [1]

proved the following result: If Szemerédi's theorem is false then there exist triples (k, n, A) such that A is a subset of $\{1, 2, ..., n\}$ which contains no k-term arithmetic progression, n is arbitrarily large, and the density of A in $\{1, 2, ..., n\}$ (= |A|/n) is arbitrarily close to 1.

In [2], the exact analogue of Behrend's result was established in the context of the combinatorial line conjecture: If the combinatorial line conjecture is false then there exist triples (X, n, A) such that X is a finite set, A is a subset of X^n which contains no combinatorial line, n is arbitrarily large, and then density of A in X^n (= $|A|/|X^n|$) is arbitrarily close to 1.

In the present paper we show that the exact analogue of Behrend's result is true in the context of the affine line conjecture: If the affine line conjecture is false then there exist triples (F, n, A) such that F is a finite field, A is a subset of F^n (the *n*-dimensional vector space over F) which contains no affine line, n is arbitrarily large, and the density of A in F^n $(|A|/|F^n|)$ is arbitrarily close to 1.

The proof is somewhat technical, and the exact result which we prove is following. Suppose that the affine line conjecture fails for the finite field *F*. (That is, let |F| = q and suppose that $n(q, \varepsilon)$ does not exist for some $\varepsilon > 0$.) Then for every $\eta < 1$ and every n_0 there is a subset *A* of a finite-dimensional vector space *V* over a finite extension *F'* of *F*, where dim_{*F'*} $V \ge n_0$, such that *A* contains no affine line and the density of *A* in V (= |A|/|V|) is greater than η .

The proof is basically a modification of the argument in [2], which in turn followed the lines of the classical paper by Behrend [1].

2 Notation, definitions, and statement of the main theorem

Throughout, F_q denotes the q-element field.

Definition 1. For each prime power q and $\varepsilon > 0$, $n(q, \varepsilon)$ denotes the smallest integer (if one exists) such that if V is a finite-dimensional vector space over \mathbb{F}_q , $\dim(V) \ge n(q, \varepsilon)$, $A \subset V$, $|A| > \varepsilon |V|$, then A contains an affine line.

For a fixed prime power q, consider the infinite array

$$m(q) = (d(n,k)) \quad (n \ge 1, k \ge 1)$$

where the rows are indexed by *n* and the columns are indexed by *k*, and where d(n,k) is defined as follows. Let *V* be an *n*-dimensional vector space over \mathbb{F}_{q^k} and let *A* be a subset of *V* that has maximum cardinality subject to the condition that *A* contains no affine line. Then

$$d(n,k) = |A|/|V|$$

In other words, d(n,k) is the smallest real number with the following property. If *B* is any subset of *V* (*V* as above) with |B| > d(n,k)|V|, then *B* contains an affine line.

Remark. It follows directly from the preceding two sentences and the definition of $n(q, \varepsilon)$ that for all n, k,

$$n \ge n(q^k, \varepsilon)$$
 if and only if $d(n, k) \le \varepsilon$.

We shall see below that each column of the array M(q) decreases. We define, for each $k \ge 1$,

$$\gamma(k) = \lim_{n \to \infty} d(n, k),$$

so that

$$d(1,k) \geq \cdots \geq d(n,k) \geq \cdots \geq \gamma(k)$$

We shall also see that for each row of M(q),

$$d(n,1) \leq d(n,2) \leq d(n,4) \leq \cdots \leq d(n,2^l) \leq \cdots \leq 1,$$

so that

$$0 \leq \gamma(1) \leq \cdots \leq \gamma(2^l k) \leq \cdots \leq \Gamma(q),$$

where by definition

$$\Gamma(q) = \lim_{l \to \infty} \gamma(2^l).$$

Theorem. $\Gamma(q) = 0$ or $\Gamma(q) = 1$.

Corollary. Suppose the affine line conjecture is false. In particular, suppose that $n(q, \varepsilon)$ does not exist. Let $\eta < 1$ be given. Then there exists an integer k and a subset A of a finite-dimensional vector space V (of arbitrarily large dimension) over \mathbb{F}_{q^k} such that A contains no affine line and A has density greater than η .

Proof of Corollary. We prove the contrapositive. We are assuming that (as is shown in Lemma 1 below) d(n,k) decreases to $\gamma(k)$ and that $\gamma(2^l)$ increases to $\Gamma(q)$.

Now let q and $\eta < 1$ be given, and suppose that for each $k \ge 1$, if A is a subset of a vector space V over \mathbb{F}_{q^k} with density greater than η , and dim V is sufficiently large, then A must contain an affine line. In other words, we are assuming that $n(q^k, \eta)$ exists for all $k \ge 1$. We need to show that $n(q, \varepsilon)$ exists for all $\varepsilon > 0$.

Construct the array M(q) as above, and consider the entries d(n,k) in the *k*th column of M(q). Since $n(q^k, \eta)$ exists then by the Remark above

$$d(n,k) \leq \eta$$
 for all $n \geq n(q^k,\eta)$

Since d(n,k) decreases to $\gamma(k)$, it follows that $\gamma(k) \leq \eta$, for each $k \geq 1$. In particular, $\gamma(2^l) \leq \eta$ for each l; since $\gamma(2^l)$ increases to $\gamma(q)$, it follows that $\Gamma(q) \leq \eta < 1$. By the theorem, we must have $\Gamma(q) = 0$ and hence $\gamma(1) = 0$.

Now let $\varepsilon > 0$ be given. Since d(n, 1) decreases to $\gamma(1) = 0$, $d(n, 1) < \varepsilon$ for sufficiently large *n*, say $d(n_0, 1) < \varepsilon$. Then using the Remark once more, we obtain $n_0 \ge n(q, \varepsilon)$. Thus, $n(q, \varepsilon)$ exists.

3 Proof of the main theorem

Lemma 1. Fix q, and let the numbers d(n,k) be defined as above. Then

$$d(1,k) \ge \cdots \ge d(n,k) \ge d(n+1,k) \ge \cdots$$

and

$$d(n,1) \leq \cdots \leq d(n,2^l) \leq d(n,2^{l+1}) \leq \cdots$$

Proof. For the first part, let

$$\dim_{\mathbb{F}_{n^k}} V = n+1$$

and let V_0 be an *n*-dimensional subspace of V. Let

$$V = \bigcup \{ V_{\alpha} : \alpha \in \mathbb{F}_{q^k} \},\$$

where the V_{α} are cosets (translates) of V_0 . Let *A* be a subset of *V* which has maximum cardinality subject to the condition that *A* contains no affine line. Then $A \cap V_{\alpha}$ contains no affine line for each α , hence

$$d(n+1,k) \cdot (q^k)^{n+1} = |A| = \sum |A \cap V_{\alpha}| \le q^k \cdot d(n,k) \cdot (q^k)^n$$

For the second part, let $F = \mathbb{F}_{a^{2^l}}$ and let $F' = F(\beta)$, where β has degree 2 over F. Let

$$V = \{(x_1, ..., x_n) : x_i \in F\},\$$

$$V' = \{(x_1 + y_1\beta, ..., x_n + y_n\beta) : x_i, y_i \in F\},\$$

so that $V \subset V'$.

Let A be an affine-line-free subset of V with

$$|A| = d(n, 2^l) |V|,$$

and let $A' = A + \beta V$. Then A' is a subset of V', and A' contains no affine line. For if $u_0, v_0, u_1, v_1 \in V$ and

$$(u_0+v_0\beta)+F'(u_1+v_1\beta)\subset A'$$

then

$$u_0 + Fu_1 \subset A.$$

If $u_1 = 0$, we use

$$\beta^2 = x_1 + y_1\beta, \quad x_1, y_1 \in F, x_1 \neq 0;$$

then A' contains

$$(u_0 + v_0\beta) + F\beta(u_1 + v_1\beta) = (u_0 + v_0\beta) + F(u_1\beta + v_1x_1 + v_1y_1\beta).$$

So A contains $u_0 + Fv_1$.

We now fix some further notation which will be used in the remainder of the proof.

Definition 2. For any prime power q, $V(q) = \{(x_1, x_2 \dots) : x \in \mathbb{F}_q \text{ and } x_i = 0 \text{ for all but finitely many } i\}$, and

$$V(q)(m) = \{(x_1, x_2, \dots) \in V(q) : x_j = 0, j > m\}.$$

For any subset *S* of V(q),

$$S(m) = S \cap V(q)(m)$$
 and $\bar{d}(S) = \limsup_{m \to \infty} |S(m)| \cdot q^{-m}$

Lemma 2. If $S \subset V(q^k)$ and $\overline{d}(S) > \gamma(k)$ (where $\gamma(k)$ is defined in terms of the array M(q))m then S contains an affine line. (That is, S(m) contains an affine line for some m.)

Proof. Choose $\varepsilon > 0$ so that

$$\gamma(k) + \varepsilon < |S(m)| \cdot q^{-km}$$

for infinitely many *m*. Next, choose *n* so that

$$d(n,k) < \gamma(k) + \varepsilon.$$

Finally, choose *m* so that simultaneously

$$\gamma(k) + \varepsilon < |S(m)| \cdot q^{-km}$$
 and $n < m - n$.

Assume that *S* contains no affine line. Then for each $x \in V(q^k)(n)$, S(m) can contain at most $d(m-n,k) \cdot (q^k)^{m-n}$ elements whose first *n* coordinates agree with the first *n* coordinates of *x*. Hence

$$|S(m)| \le (q^k)^n \cdot d(m-n,k) \cdot (q^k)^{m-n}.$$

Since $d(m-n,k) \le d(n,k) < \gamma(k) + \varepsilon$, this gives

$$\gamma(k) + \varepsilon < |S(m)|q^{-km} < \gamma(k) + \varepsilon.$$

Lemma 3. For each $t \ge 1$, if $S \subset V(q^k)$ and $\overline{d}(S) > \gamma(kt)$ (where $\gamma(kt)$ is defined in terms of the array M(q)), then S contains a t-dimensional affine subspace.

Proof. Identify $\mathbb{F}_{q^k t}$ with $\{(x_1, \ldots, x_t) : x_i \in \mathbb{F}_{q^k}\}$, so that

$$V(q^{kt}) = \{((x_1, \dots, x_t), (x_{t+1}, \dots, x_{2t}), \dots) : x_i \in \mathbb{F}_{q^k}\}.$$

Let $S \subset V(q^k)$, $\overline{d}(S) > \gamma(kt)$. Choose $\varepsilon > 0$ so that

$$|S(m)| \cdot q^{-km} > \gamma(kt) + \varepsilon$$

for infinitely many *m*. From amongst these *m*, choose a subsequence $m_0 < m_1 < m_2 < \cdots$ such that all the m_i 's are congruent modulo *t*.

Let $\pi: S \mapsto V(q^k)$ be the mapping which shifts an element of S " m_0 places to the left," i.e.,

$$\pi(x_1,\ldots,x_{m_0},x_{m_0+1},\ldots)=(x_{m_0+1},\ldots),$$

For any $T \subset S$, let T' denote $\pi(T)$.

For each $x = (x_1, ..., x_{m_0}, 0, ...) \in V(q^k)(m_0)$, let

$$S_x = \{y = (y_1, \dots) \in S : y_i = x_i, 1 \le i \le m_0\}.$$

Then S is the disjoint union

$$S = \bigcup \{S_x : x \in V(q^k)(m_0)\}.$$

Therefore for each $i \ge 1$,

$$\sum_{x} |S_x(m_l)| = |S(m_i)| > a^{km_i}(\gamma(kt) + \varepsilon).$$

Hence for some $x_i \in V(q^k)(m_0)$,

$$egin{aligned} S'_{x_i}(m_i - m_0) &| = |S_{x_i}(m_i)| \geq q^{-km_0} |S(m_i)| \ &> q^{k(m_i - m_0)}(\gamma(kt) + m{arepsilon}). \end{aligned}$$

Since each x_i comes from the finite set $V(q^k)(m_0)$, there is an infinite subsequence $\{m_{i_j}\}$ of $\{m_i\}$ on which x_{i_j} is constant, say $x_{i_1} = x_{i_2} = \cdots = x_0$. Set

$$n_j = m_{i_j} - m_0, \quad j \ge 1.$$

Then each n_i is a multiple of t, say

$$n_j = tb_j$$
 and $|S'_{x_0}(n_j)| > q^{kn_j}(\gamma(kt) + \varepsilon), \quad j \ge 1.$

We now inject S_{x_0} into $V(q^{kt})$ by insertion of parentheses, that is, we define $g: S_{x_0} \mapsto V(q^{kt})$ by

$$g(x_1,\ldots) = ((x_1,\ldots,x_t),(x_{t+1},\ldots,x_{2t}),\ldots).$$

Then for each $j \ge 1$,

$$|g(S'_{x_0})(b_j)| = |S'_{x_0}(tb_j)| = |S'_{x_0}(n_j)| > (q^{kt})^{bj}(\gamma(kt) + \varepsilon)$$

This means that in $V(q^{tk})$,

$$\bar{d}(g(S'_{x_0})) > \gamma(kt).$$

Here, $\gamma(kt)$ is the limit down the (kt)th column of the array M(q), which is identical with the *k*th column of the array $M(q^t)$. Thus

$$g(S'_{x_0}) \subset V((q^t)^k)$$

and

$$\bar{d}(g(S'_{x_0})) > \gamma(k)$$

(where $\gamma(k)$ is defined in terms of the array $M(q^t)$). Hence by Lemma 2 $g(S'_{x_0})$ contains an affine line. This affine line (the underlying field is $\mathbb{F}_{q^{kt}}$) is easily seen to be the image under g of a t-dimensional affine subspace of S'_{x_0} (where the underlying field if \mathbb{F}_{q^k}). From the definition of S'_{x_0} it follows that S itself contains a t-dimensional affine subspace.

Lemma 4. There exists $S \subset V(q^k)$ such that $\overline{d}(S) = \gamma(k)$ (where $\gamma(k)$ is defined in terms of the array M(q)) and such that S contains no affine line.

Proof. Choose $0 = n_0 < n_1 < \cdots$ so that $n_i - n_{i-1} \to \infty$ as $i \to \infty$. For $i \ge 1$, let $A_i \subset V(q^k)(n_i)$ be such that A_i contains no affine line,

$$|A_i| = a^{kn_i}d(n_i,k)$$
 and $0 \notin A_i$

(If *L* is some fixed affine line $V(q^k)(n_i)$ and $A \subset V(q^k)(n_i)$ contains no affine line, then for some $a \in L$, a + A does not contain 0.) Let

$$B_i = A_i - V(q^k)(n_{i-1})$$
 and $S = \bigcup B_i, i \ge 1$

Then

$$|S(n_i)| \ge |B_i| \ge |A_i| - q^{kn_{i-1}} = q^{kn_i} d(n_i, k) - (q^k)^{n_{i-1} - n_i}$$

hence

$$\bar{d}(S) \geq \gamma(k) = \lim_{t \to \infty} d(n_i, k).$$

The sets B_i are pairwise disjoint, and if $x = (x_1, ...) \in S$ and j is the largest index with $x_j \neq 0$ then $x \in B_i$, where $n_{i-1} < j \le n_i$.

Suppose that *S* contains the affine line u_1, \ldots, u_{q^k} . Choose i_0 minimal so that $u_1, \ldots, u_{q^k} \in B_1 \cup \cdots \cup B_{i_0}$. Then there are u_s and j, $n_{i_0-1} < j \le n_{i_0}$, such that the *j*th coordinate of u_s is not zero. Since the *j*th coordinates of u_1, \ldots, u_{q^k} are either constant or are some permutation of \mathbb{F}_{q^k} at least $q^k - 1$ of u_1, \ldots, u_{q^k} are contained in B_{i_0} . Suppose $u_1 \notin B_{i_0}$. Let *j'* be the largest index such that the *j*'th coordinate of u_1 is not zero. (*j'* exists since $u_1 \neq 0$.) Then $j' < n_{i_0-1}$, and hence the *j*'th coordinates of u_2, \ldots, u_{q^k} are all zero. But since u_1, \ldots, u_{q^k} are an affine line, then the *j*'th coordinates are either constant or are a permutation of \mathbb{F}_{q^k} .

Thus we have arrived at a contradiction (except in the case $q^k = 2$) and therefore *S* contains no affine line. (When $q^k = 2$, then $\gamma(1) = 0$. Any singleton set $S = \{x\} \subset V(2)$ has $\bar{d}(S) = 0 = \gamma(1)$, and *S* contains no affine line.) Since $\bar{d}(S) \ge \gamma(k)$, Lemma 2 gives $\bar{d}(S) = \gamma(k)$.

We now have necessary machinery to prove the main theorem. Recall that for a prime power q, M(q) is the array

$$((d(n,k)), \quad \gamma(2^l) = \lim_{n \to \infty} d(n,2^l), \quad \Gamma(q) = \lim_{l \to \infty} \gamma(2^l).$$

Theorem. For every prime power q, $\Gamma(q) = 0$ or $\Gamma(q) = 1$.

Proof. Fix *q*, and assume that $0 < \Gamma(q) < 1$. Choose *l* so that

$$0 < \gamma(2^i). \tag{1}$$

Using Lemma 4, choose $S \subset V(q^{2^l})$ so that

$$\bar{d}(S) = \gamma(2^l) \tag{2}$$

S contains no affine line.

Choose $\varepsilon < 0$ so that

$$\Gamma(q) < \frac{\gamma(2^l) - \varepsilon}{\gamma(2^l) + \varepsilon} - \varepsilon.$$
(4)

Choose *n* so that

$$\begin{cases} A \subset V(q^k)(n) \\ |A| > (\gamma(2^l) + \varepsilon)q^{kn} \end{cases} \Rightarrow \begin{cases} A \text{ contains} \\ \text{an affine line} \end{cases}.$$
(5)

Choose t (using the extended Hales-Jewett theorem; see [5] or [8]) so that t is a power of 2 and

$$\begin{cases} T \text{ is a } t \text{-dimensional affine subspace} \\ \text{and } T = T_1 \cup \dots \cup T_s, \text{ where } s = 2^{q^{kn} - 1} \end{cases} \Rightarrow \begin{cases} \text{some } T_i \\ \text{contains an} \\ \text{affine line} \end{cases}.$$
(6)

Set

$$V' = V(q^{k}) - V(q^{k})(n), \quad B_{\nu} = (\nu + V(q^{k}(n)) \cap S, \quad \nu \in V'.$$
(7)

Partition V' into $2^{q^{kn}}$ classes C_{σ} as follows.

$$C_{\sigma} = \{ v \in V' : B_v = v + \sigma \}, \quad \sigma \subset V(q^k)(n).$$
(8)

(Note that $C_{\sigma} = \{v \in V' : B_v = \phi\}$.)

Let

$$C = \bigcup \{ C_{\sigma} : \sigma \neq \phi \},\$$

and let

$$\bar{d}_{V'}(C) = \limsup_{m \to \infty} (q^{-k})^{(m-n)} |C \cap V'(m)|.$$
(9)

Since

$$|C \cap V'(m)| < (\bar{d}_{V'}(C) + \varepsilon)q^{k(m-n)}$$

for all but finitely many *m*, and since

$$|S(m)| > (\gamma(2^l) - \varepsilon)q^{-km}$$

for infinitely many *m* (by (2)), we can choose *m* so that n < m and

$$(\gamma(2^l) - \varepsilon)q^{km} < |S(m)| \tag{10}$$

$$|C \cap V'(m)| < (\bar{d}_{V'}(C) + \varepsilon)q^{k(m-n)}.$$
(11)

Using (7), (3), and (5) we get

$$|B_{\nu}| \le (\gamma(2^{l}) + \varepsilon)q^{kn}, \quad \nu \in V'.$$
(12)

Note that m > n and

$$V(q^{k})(m) = \bigcup \{ v + V(q^{k})(n) : v \in V'(m) \},\$$

(3)

so that

$$V(q^{k})(m) \cap S = \bigcup \{ (v + V(q^{k})(n) \cap S : v \in V'(m) \}$$
$$= \bigcup \{ B_{v} : v \in V'(m) \text{ and } B_{v} \neq \phi \}$$
$$= \bigcup \{ B_{v} : v \in V'(m) \cap C \}.$$

That is,

$$S(m) = \bigcup \{ B_v : v \in V'(m) \cap C \}.$$
(13)

Now using (10), (13), (12), (11) we get

$$(\gamma(2^l)-\varepsilon)q^{km} < |S(m)| < (\gamma(2^l)+\varepsilon)q^{kn}(\overline{d}_{V'}(C)+\varepsilon)q^{k(m-n)},$$

or

$$rac{\gamma(2^l)-oldsymbol{arepsilon}}{\gamma(2^l)-oldsymbol{arepsilon}}-oldsymbol{arepsilon}$$

Using (4), this gives

$$\Gamma(q) < \bar{d}_{V'}(C). \tag{14}$$

The integer t was chosen to be a power of 2, say $t = 2^b$, and to satisfy (6). Since

$$\gamma(2^l t) = \gamma(2^{l+b}) \le \Gamma(q) < \bar{d}_{V'}(C),$$

it follows from Lemma 3 that *C* contains a *t*-dimensional affine subspace *T*. We partition the elements of *T* into $2^{q^{kn}-1}$ classes $C_{\sigma} \cap T$, $\sigma \neq \phi$. By (6), some $C_{\sigma_0} \cap T$, and hence some C_{σ_0} , contains an affine line u_1, \ldots, u_{q^k} . Using (8) and (7), $u_1 \in C_{\sigma_0}$ implies

$$u_1 + \sigma_0 = B_{u_1} \subset S.$$

Similarly,

$$u_i + \sigma_0 = B_{U_i} \subset S, \quad 1 \le i \le q^k. \tag{15}$$

In particular, taking any element $v_0 \in \sigma_0$ ($\sigma_0 \neq \phi$), *S* contains the affine line

$$u_1+v_0,\ldots,u_{q^k}+v_0,$$

which contradicts (3).

This contradiction shows that $0 < \Gamma(q) < 1$ is impossible, and complete the proof.

References

[1] F. Behrend, *On sequences of integers containing no arithmetic progression*, Časopis Mat. Fys. Praha (Čast Mat.) **67** (1938), 235–239.

- [2] T.C. Brown, *Behrend's theorem for sequences containing no k-element arithmetic progression of a certain type*, J. Combin. Theory Ser. A **18** (1975), 352–356.
- [3] T.C. Brown and J.P. Buhler, A density version of a geometric Ramsey theorem, J. Combin. Theory Ser. A 25 (1982), 20–34.
- [4] _____, Lines imply spaces in density Ramsey theory, J. Combin. Theory Ser. A 36 (1984), 214–220.
- [5] Ronald L. Graham, Bruce L. Rothschild, and Joel H. Spencer, *Ramsey theory*, Wiley-Interscience Series in Discrete Mathematics. A Wiley-Interscience Publication., John Wiley & Sons, Inc., New York, 1980.
- [6] Alfred W. Hales and Robert I. Jewett, *Regularity and positional games*, Trans. Amer. Math. Soc. 106 (1963), 222–239.
- [7] L. Moser, Problem 170, Canad. Math. Bull. 13 (1970), 268.
- [8] Joel H. Spencer, Ramsey's theorem for spaces, Trans. Amer. Math. Soc. 249 (1979), 363–371.
- [9] E. Szemerédi, On sets of integers containing no k elements in an arithmetic progression, Acta. Arith.
 27 (1975), 199–245, Collection of articles in memory of Jurii Vladimirovic Linnik.