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Abstract

Let α be a positive irrational real number, and let Cα (n) = ∑1�k�n(fkαg� 1
2 ), n � 1, where fxg

denotes the fractional part of x. We give an explicit formula for Cα (n) in terms of the simple continued

fraction for α , and use this formula to give simple proofs of several results of A. Ostrowski, G. H.

Hardy and J. E. Littlewood, and V. T. Sós. We also show that there exist positive constants dA such

that if α = [a0;a1;a2; : : :] and (1=t)∑1� j�t a j � A holds for infinitely many t, then Cα (x) > dA logx

and Cα (x)<�dA logx each hold for infinitely many x.

1 Introduction

For real numbers β , let us agree to write fβg for the fractional part of β , that is, fβg = β � [β ], where
[β ] is the greatest integer less than or equal to β .

For an irrational number α , 0 < α < 1, and for integers n � 1, we write

Cα(n) = ∑
1�k�n

(fkαg� 1
2
):

There are a number of papers dealing with estimates of Cα(n) as a function of n. Most of the known
results are contained in two long 1922 papers by G. H. Hardy and J. E. Littlewood [2, 3], a long 1922
paper by A. Ostrowski [5], and a 1957 paper by Vera T. Sós [8]. Further references can be found in [6].

In the present note we give a simple and self-contained proof of a formula for Cα(n) which is more
explicit than those which have appeared before, namely in [5, 8]. We then use this formula to derive
several of the main results in [2, 3, 5] and the main result in [8]. It seems to us that our proofs are far
simpler than those given previously. In some cases they lead to improvements.

In addition, we extend one of the main results in [3,5]. Ostrowski and Hardy and Littlewood showed
independently that there exist positive constants c and cA with the following properties. If α is an
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arbitrarily positive irrational number, then the inequality jCa(x)j> c logx holds for infinitely many x. If
α = [a0;a1;a2; : : :] and ai �A for all i, then Ca(x)> cA logx and Ca(x)<�cA logx each hold for infinitely
many x. (Hardy and Littlewood [3] call the proofs of these two results the most difficult in their paper.
They give no values for the constants c and cA. Ostrowski gives c � 1

720 and cA � 1=8(A+ 1)6.) We
show that there exist positive constants dA such that if α[a0;a1;a2; : : :] and (1=5)∑1� j�t a j � A holds
for infinitely many t, then Cα(x)> dA logx and Cα(x)<�dA logx each hold for infinitely many x. (We
show that dA � 1=(7 �64(A+1)2 log(A+1)). Since cA � dA, this improves Ostrowski’s bound. We also
show that c � 1

256 .)

2 Notation

Let α be a positive irrational real number, and let

α = a0 +
1

a1 +
1

a2+���

be the simple continued fraction for α , which we abbreviate as α = [a0;a1;a2; : : :]. We write pn=qn =

[a0;a1;a2; : : : ;an] and d2k = q2kα � p2k, d2k+1 = p2k+1 � q2k+1α , k � 0. Then pn = an pn�1 + pn�2,
qn = anqn�1 +qn�2, n � 2, p2k=q2k < α < p2k+1=q2k+1, k � 0, and 0 < dn < 1=qn+1, n � 0.

3 A formula for Cα(n)

Throughout this section, α is a fixed irrational number, 0 < α < 1, α = [a0;a1;a2; : : :]. Let us use the
notation

Sα(n) = ∑
1�k�n

[kα]; n � 1:

Lemma 1. If 1 � k � qn, then [kα] = [k(pn=qn)]. Also, [qnα] = pn, n even, [qnα] = pn�1, n odd.

Proof. This follows from dn < 1=qn+1.

Lemma 2. For n � 1,

Sα(qn) =
1
2
(pnqn�qn + pn +(�1)n);

Cα(qn) =
1
2
(�1)n(dn(qn +1)�1):

Proof. The second part follows from the first using [β ]+fβg= β and the definition of dn. To prove the
first part, observe that since (pn;qn) = 1, kpn runs through all the non-zero residue classes modulo qn,
therefore

∑
1�k�qn�1

�
k

pn

qn

�
= ∑

1�t�qn�1

t
qn

=
qn�1

2
;

hence

∑
1�k�qn�1

�
k

pn

qn

�
= ∑

1�k�qn�1

�
k

pn

qn
�
�

k
pn

qn

��
=

(pn�1)(qn�1)
2

:
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Now apply Lemma 1.

Lemma 3. If n � 1, qn � N < qn+1, N = bqn + k, 1 � k < qn, then [Nα] = bpn +[kα]. If N = bqn, then

[Nα] = bpn�1 if n is odd, [Nα] = bpn if n is even.

Proof. Assume N = bqn + k, 1 � k < qn. Let L = [k(pn=qn)]. Then L+ 1=qn � k(pn=qn) � L+(qn �
1)=qn. If n is even, then 0 < (bqn +k)(α � pn=qn)< qn+1=qn+1qn = qn, or 0 < Nα �bpn�k(pn=qn)<

1=qn. Adding to the second preceding inequality gives L < Nα �bpn < L+1, hence [Nα] = bpn +L =

bpn +[k(pn=qn)] = bpn +[kα]. (For the last equality we used Lemma 1.)
If n is odd the calculation is similar. The second statement of the lemma is easy. (Actually, even

more is true, namely if 0 < q < qn+1, then [(q+qn)α] = pn +[qα]; see [1].)

Lemma 4. (a) Let n � 1, qn < bqn +m < qn+1, 1 � m < qn. Then

Sα(bqn +m) = Sα(bqn)+Sα(m)+mbpn:

(b) Let n � 1, qn < bqn < qn+1. Then

Sα(bqn) =
1
2

b(bpnqn�qn + pn +(�1)n):

Proof. (a)

Sα(bqn +m) = ∑
1�k�bqn+m

[kα] = Sα(bqn)+ ∑
1�k�m

[(bqn + k)α]

= Sα(bqn)+ ∑
1�k�m

(bpn +[kα]):

(b) For b = 1, Lemma 2 applies. Now induction using part (a) does the rest.

Lemma 5. (a) Let n � 1, qn < bqn +m < qn+1, 1 � m < qn. Then

Cα(bqn +m) =Cα(bqn)+Cα(m)+mb(qnα � pn):

(b) Let n � 1, qn � bqn < qn+1. Then

Cα(bqn) =
1
2
(�1)nb(dn(bqn +1)�1):

Proof. These follow from Lemma 4.

Theorem 1. For any m � 1, let m = ztqt�1 + � � �+ z2q1 + z1q0, where

1. 0 � z1 � a1�1,

2. 0 � zi � ai, 2 � i � t,

3. If zi = ai then zi�1 = 0, 2 � i � t.
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(This is the so-called “Zeckendorff representation of m.” To find it, subtract the largest possible q j from

m and repeat.)

(a)

Sα(m) =
1
2 ∑

1�i�t
zi(zi pi�1qi�1�qi�1 + pi�1 +(�1)i�1)+ ∑

1�i< j�t
ziz jqi�1 p j�1:

(b)

Cα(m) =
1
2 ∑

1�i�t
(zi(qi�1α � pi�1)(ziqi�1 +1)+(�1)izi)+ ∑

1�i< j�t
ziz jqi�1(q j�1α � p j�1):

(c)

Cα(m) = ∑
1� j�t

(�1) jz j

�
1
2
�d j�1

�
m j�1 +

1
2

z jq j�1 +
1
2

��
;

where m j = ∑1�i� j ziqi�1, m0 = 0.

Proof. Part (a) follows from Lemma 4 by induction on t. Part (b) then follows from part (a) (or from
Lemma 5 and induction). Part (c) is a rearrangement of part (b).

4 A Bound for max0<m<qt jCα(m)j

Theorem 2. For t � 1,

1
32 ∑

1� j�t
(a j �1)< max

0<m<qt
jCα(m)j< 1

2 ∑
1� j�t

a j:

Proof. Let m = ∑1� j�t z jq j�1. Since 0 < m j�1 +
1
2 z jq j�1 +

1
2 � q j and 0 < d j�1 < 1=q j, Theorem 1(c)

gives jCα(m)j< 1
2 ∑1� j�t z j � 1

2 ∑1� j�t a j.
For the other side, define M1 = ∑1� j�t z jq j�1 by z j = [a j=2] if j is odd, z j = 0 if j is even. Then m j �

∑1�i�t(ai=2)qi�1 � (q j�1)=2, so if j is odd, m j�1+
1
2 z jq j�1+

1
2 = m j�2+

1
2 [a j=2]q j�1+

1
2 � 1

2 (q j�1�
1+ 1

4 a jq j�1 +1) = 1
4 (2q j�2 +a jq j�1) =

1
4 (q j +q j�2)<

3
8 q j, therefore Cα(M1)<�∑ j odd z j(

1
2 � 3

8 ) =

� 1
8 ∑ j odd z j � � 1

16 ∑ j odd(a j � 1). Define M2 = ∑1� j�t z jq j�1 by z j = [a j=2] if j is even, z j = 0 if
j is odd; then a similar calculation gives Cα(M2) >

1
16 ∑ j even(a j � 1). Thus Cα(M2)�Cα(M1) >

1
16 ∑1� j�t(a j �1), therefore 1

32 ∑1� j�t(a j �1)< max0<m<qt jCα(m)j.

5 Known Asymptotic Bounds and Inequalities for Cα(n)

The following facts are known, but the proofs we give are simpler (and shorter) than those given before.
In some cases our results are slight improvements. We use the notation α = [0;a1;a2; : : :] for each α ,
0 < α < 1.

Fact 1. (Sierpenski [7]). For every α , Cα(n) = o(n).
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Proof. Given α = [0;a1;a2; : : :] and ε > 0, choose n so that (
p

2)�(n�1) < ε , and let P = a1 + � � �+ an.
Choose s > n so that P=qn < ε . For m � qs, let m = ∑1� j�t+1 z jq j�1; then t � s and zt+1 � 1. Then

1
m
jCα(m)j< 1

2m ∑
1� j�t

z j � 1
2

P
qt

+
1
2

∑n+1� j�t+1 z j

∑n+1� j�t+1 z jq j�1

<
1
2

ε +
1
2

∑n+1� j�t+1 z j

(
p

2)n�1 ∑n+1� j�t+1 z j
< ε:

(Here we used qn > (
p

2)n�1.)

Fact 2. (Lerch (without proof) [4], Hardy and Littlewood [2], and Ostrowski [5] have this result under

the stronger hypothesis that ai � A for all i.) If α = [0;a1;a2; : : :] and (1=t)∑1� j�t a j � A for all i, then

Cα(n) = O(logn). In fact,

jCα(n)j< A
2logτ

logn+

 
log

p
5

2logτ
� 1

2

!
A; n � 2; where τ =

1+
p

5
2

:

Consequently, jCα(n)j< 3
2 A logn, n� 1, and for every ε > 0 there is N0 such that jCα(n)j< (1=(2logτ)+

ε)A logn, n � N0. In particular, jCα(n)j< (1:04)A logn, n � N0.

Proof. Let

Pn

Qn
=

n+1z }| {
[1;1; : : : ;1] :

Then Q0 = Q1 = 1, Qn+1 = Qn+Qn�1, and Qt = (1=
p

5)(τ t+1�(�1=τ)t+1)> (1=
p

5)(τ t+1�1). Since
jCα(qt)j < 1

2 , we can assume without loss of generality that qt < n < qt+1. Then
p

5n >
p

5qt + 1 �p
5Qt + 1 > τ t+1, so t + 1 < (log

p
5+ logn)= logτ , 1

2 t < 1
2 (log

p
5= logτ � 1)+ logn=(2logτ). Since

jCα(n)j< 1
2 ∑1� j�t a j � 1

2 tA, the result follows.

Fact 3. If f (n) = o(n), then there exists α such that

limsup
n!∞

����Cα(n)
f (n)

����= ∞:

Proof. Assume that f (n) > 0 for all n. Suppose a1; : : : ;at have already been chosen. Choose M so that
f (x)=x< 1=64(t+1)qt , x>M. Let P = maxf f (x) : 1� x�Mg. Choose at+1 � 3 so that 1

32 (at+1�1)>
(t + 1)P. Finally, choose x, 0 < x < qt+1, so that 1

32 (at+1 � 1) � 1
32 ∑1� j�t+1(a j � 1) < jCα(x)j. If

1 � x � M, then
jCα(x)j

f (x)
>

(at+1�1)
32P

> (t +1):

If M < x < qt+1, then

jCα(x)j
f (x)

=
jCα(x)j

x
x

f (x)
>

(at+1�1)
32qt+1

�64(t +1)qt > t +1;

since 2(at+1�1)qt � (at+1 +1)qt > qt+1.
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Fact 4. If A � 2 and f (n) = o(logn), then there exists α = [0;a1;a2; : : :] with ai � A for all i and

limsup
n!∞

����Cα(n)
f (n)

����= ∞:

In fact, this is true for every α such that ai < A for all i and ∑1�i�t ai � ct infinitely often, for some fixed

c > 1.

Proof. Assume that f (n)> 0 for all n. Fix L� 1. Choose M so that f (x)= logx< (c�1)=32L log(A+1),
x > M. Let P = maxf f (x) : 1 � x � Mg. Choose t so that 1

32 ∑1�i�t(a j �1)� 1
32 (c�1)t > LP. Choose

x, 0 < x < qt , so jCα(x)j> 1
32 ∑1�i�t(a j �1)> LP. If 1 � x � M then

jCα(x)j
f (x)

� jCα(x)j
P

> L:

If M < x < qt then

jCα(x)j
f (x)

=
jCα(x)j

logx
logx
f (x)

>
(c�1)t
32logqt

� 32L log(A+1)
(c�1)

> L;

where the last inequality holds since qs+1 � Aqs +qs�1 < (A+1)qs, so logqt < t log(A+1).

6 New Results

Theorem 3. Let α = [a0;a1;a2; : : :].

(a) If ∑1�i�t a j � (1+ 1
7 )t infinitely often, then the inequality jCα(x)j > 1

256 logx holds for infinitely

many x.

(b) If ∑1�i�t a j � (1+ 1
7 )t infinitely often, then Cα(x)> 1

56 logx and Cα(x)<� 1
56 logx each hold for

infinitely many x.

Lemma 6. ( [5]). For each t � 1, ∑1�i�t ai > logqt .

Proof of Lemma. qt � (at +1)qt�1 � � � � (at +1) � � �(a2 +1)(a1 +1)� eat � � �ea2ea1 .

Proof of Theorem. (a) For t such that ∑1�i�t a j � (1+ 1
7 )t, apply Theorem 2 to get x, 0 < x < qt ,

with jCα(x)j > 1
32 ∑1� j�t(a j � 1) � 1

32 (t=7). By the Lemma, either ∑1� j�t(a j � 1) < 1
8 logqt or

t > 7
8 logqt ; in either case we get jCα(x)j> (1=(8 �32)) logx.

(b) For t such that ∑1� j�t a j � (1+ 1
7 )t, let G = f j : 6 j+1� t;a6 j = a6 j+1 = 1g. Since the number of

a j > 1 among a1; : : : ;at is at most [t=7], it follows that jGj � 6t=7. Let x = ∑ j2G q6 j. Note that 0 <
x < qt , so that 8

7 t � ∑1�i�t a j > logqt > logx. According to Theorem 1(c), Cα(x) =�∑ j2G(
1
2 �

d6 j(m6 j +
1
2 q6 j +

1
2 )). To estimate d6 jm6 j, we use d6 j < 1=q6 j+1, m6 j � q6 + q12 + � � �+ q6 j+1

(since qs < 2qs+2), q12 < (1=8 j�2)q6 j+1, etc., to get

d6 jm6 j <
1
8
+

1
82 + � � �+ 1

8 j�1 =
1
7
� 1

7
� 1

8 j�1 :
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Next, for j 2 G we have q6 j=q6 j+1 = (q6 j�1 + q6 j�2)=(2q6 j�1 + q6 j�2) <
2
3 . Finally, d6 j <

1=q6 j+1 < 1=8 j. Therefore

Cα(x)<� ∑
j2G

�
1
2
�
�

1
7
� 1

7
� 1

8 j�1 +
1
3
+

1
2
� 1

8 j

��

<� ∑
j2G

�
1
2
�
�

1
7
+

1
3

��
=�jGj 1

42
:

Since jGj � 6t=7 and 8t=7 > logx, this gives Cα(x)<� 1
56 logx.

The proof that Cα(x)> 1
56 logx for infinity many x is essentially the same.

Theorem 4. Let A be a positive constant. Then there exists a positive constant dA such that if α =

[0;a1;a2; : : :] is any irrational such that ∑1�i�t a j � At for infinitely many t, then each of Cα(x)> dA logx

and Cα(x)<�dA logx holds for infinitely many x.

Proof. We show that Cα(x) < �dA logx holds infinitely often. The proof of the other inequality is
essentially the same. Our method is similar to the proof of Fact 5.

First, choose L so that 1=(2L�1)< 1
4 � (1=(4A+2)). Let t > 4L and t > 12A, with ∑1�i�t a j � At.

From among the even terms a2;a4; : : : ;a2k; : : : with 2k < t, choose u = [t=4] terms each less than or
equal to 4A. From among these u terms choose the Lth, (2L)th, . . . , (wL)th successive terms, where
w = [t=4L]. Let us call these w terms a j1 ; : : : ;a jw .

Then a j1 ; : : : ;a jw have the following properties.

1. jk is even, 1 � k � w.

2. a jk � 4A, 1 � j � w.

3. j1 < � � �< jw and jk+1� jk � 2L, 1 � k � w�1.

Now let x = q j1 + � � �+q jw . (Then x < qt .) We will show using Theorem 1(c) (as in the proof of Fact
5) that Cα(x)<�dt for some constant d depending only on A. Then since logx< logqt <∑1�i�t a j �At,
we will have Cα(x)<�(d=A) logx, and we can take dA = d=A.

To apply Theorem 1(c), since the jk’s are even we have Cα(x) =�∑1�k�w(
1
2 �d jk(m jk +

1
2 q jk +

1
2 )).

Since d jk < 1=q jk+1, m jk = q j1 + � � �+q jk�1 , and q j2 > 2La j1 , etc. (since j2� j1 � 2L), we get

d jk m jk <
1
2L +

1
22L + � � �+ 1

2(k�1)L =
1

2L�1

�
1� 1

2(k�1)L

�
:

Next, we use the (easily verified) fact that if as+1 � 2 then qs=qs+1 <
1
2 and if as+1 = 1 then qs=qs+1 <

1�1=(as +2). Since a jk � 4A (and 1
2 < 1�1=(4A+2)), d jk q jk < q jk=q jk+1 < 1�1=(4A+2).

Finally, d jk < 1=q jk+1 < 1=2kL. Putting all these together gives

Cα(x)<� ∑
1�k�w

�
1
2
� 1

2L�1

�
1� 1

2(k�1)L

�
� 1

2

�
1� 1

4A+2

�
� 1

2
1

2kL

�

<� ∑
1�k�w

�
1
2

�
1

4A+2

�
� 1

2L�1

�
<�w � 1

4
� 1

4A+2
<�dt;
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since w = [t=4L] and L depends only on A. This completes the proof.

By tracing back through the choice of L, one can see that dA � 1=(7 �64(A+1)2 log(A+1)).

Theorem 5. Let α = [0;a1;a2; : : :].

(a) If liminft!∞(1=t)∑1� j�t a j = 1, then Cα(x)> 1
56 logx, Cα(x)<� 1

56 logx hold infinitely often.

(b) If liminft!∞(1=t)∑1� j�t a j < ∞, then Cα(x) > d logx, Cα(x) < �d logx hold infinitely often, for

some d > 0.

(c) If liminft!∞(1=t)∑1� j�t a j = ∞, then such a d may fail to exist. (See the theorem of Vera T. Sós

below.) However, for every ε > 0, jCα(x)j> ( 1
32 � ε) logx holds infinitely often.

Proof. Part (a) follows from Theorem 3(b). Part (b) follows from Theorem 4. Part (c) is proved in the
same way as Theorem 3(a).

7 The Vera T. Sós Theorem

Our final application of Theorem 1(c) will be a simplified proof of the following result of Vera T. Sós [8],
which answered a question of Ostrowski [5].

Fact 5. Let α = [0;a1;a2; : : :], where a2n+1 = 1, a2n = n2, n � 0. Then there exists a constant C such

that Cα(n)>C for all n � 1.

(In Sós’s paper, the ai’s are indexed differently, and n3 appears rather than n2.)

Lemma 1. For k � 1, 1
2 (q2k�2=q2k�1 +d2k=d2k�1�2)< k2( 1

2 �d2k�1q2k�1(1+ 1
2 k2))< 0.

Proof. Using ds+1 < ds, qs < qs+1, qs+1ds +qsds+1 = 1, and q2k = k2q2k�1 +q2k�2, we get

1
d2k�1q2k�1

=
q2k

q2k�1
+

d2k

d2k�1
= k2 +

q2k�2

q2k�1
+

d2k

d2k�1
< k2 +2;

so d2k�1q2k�1(1+ 1
2 k2)> (1+ 1

2 k2)=(k2 +2) = 1
2 , which gives the right-hand inequality. Next,

0 >
1
2
�d2k�1q2k�1

�
1+

1
2

k2
�

=
1
2
� 1+ 1

2 k2

k2 +
q2k�2
q2k�1

+ d2k
d2k�1

=

q2k�2
q2k�1

+ d2k
d2k�1

�2

2
�

k2 +
q2k�2
q2k�1

+ d2k
d2k�1

�
>

q2k�2
q2k�1

+ d2k
d2k�1

�2

2k2 ;

which gives the left-hand inequality.

Lemma 2. For k � 2, q2k�2=q2k�1 > 1�1=(k�1)2. For k � 1, d2k=d2k�1 > d2kq2k > 1�2=k2.
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Proof. For k � 2,

q2k�2

q2k�1
=

q2k�2

q2k�2 +q2k�3
= 1� q2k�3

q2k�2 +q2k�3
> 1� q2k�3

q2k�2
> 1� 1

(k�1)2 :

For k � 1,

d2k

d2k�1
> d2kq2k

=
1

q2k+1
q2k

+
d2k+1

d2k

=
1

1+ q2k�1
q2k

+
d2k+1

d2k

>
1

1+ 1
k2 +

1
(k+1)2

> 1� 2
k2

(Here we used q2k = k2q2k�1 +q2k�2 and d2k = (k+1)2d2k+1 +d2k+2.)

Proof of Fact 5. Let m = ∑1� j�t z jq j�1 be the Zeckendorff representation of m. Then

Cα(m) = ∑
1� j�t

(�1) jz j(
1
2
�d j�1(m j�1 +

1
2

z jq j�1 +
1
2
)) = D0(m)�D1(m);

where
D0(m) = ∑

1�2k�t
z2k(

1
2
�d2k�1(m2k�1 +

1
2

z2kq2k�1 +
1
2
));

D1(m) = ∑
1�2k+1�t

z2k+1(
1
2
�d2k(m2k +

1
2

z2k+1q2k +
1
2
)):

We wish to find constants A and B such that D0(m) � A, D1(m) � B, m � 1, so that Cα(m) � A�B,
m � 1.

Since m2k�1 � q2k�1, we have

D0(m)> ∑
1�2k�t

z2k(
1
2
�d2k�1(q2k�1 +

1
2

z2kq2k�1))

= ∑
1�2k�t

z2k(
1
2
�d2k�1q2k�1(1+

1
2

z2k)):

Using z2k � a2k = k2 and part of Lemma 1, this gives D0(m) � ∑1�2k�t k2( 1
2 � d2k�1q2k�1(1+ 1

2 k2)).
The other part of Lemma 1, followed by Lemma 2, now gives

D0(m)>
1
2

∞

∑
k=1

�
q2k�2

q2k�1
+

d2k

d2k�1
�2
�

>
1
2

�
q0

q1
+

d2

d1
�2
�
+

1
2

∞

∑
k=1

�
� 1
(k�1)2 �

2
k2

�
= A:
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Next, first omitting some negative terms from D1(m) gives

D1(m)� ∑
1�2k+1�t

z2k+1(
1
2
� 1

2
d2kz2k+1q2k):

Using Lemma 2 gives

D1(m)� 1
2

z1(1�d0z1q0)+
1
2 ∑

3�2k+1�t
z2k+1

�
1� z2k+1

�
1� 2

k2

��

� 1
2

z1(1�d0z1q0)+
1
2

∞

∑
k=1

2
k2 = B:

(For the last inequality, we used 0 � z2k+1 � a2k+1 = 1.)

Acknowledgement. The authors are grateful to the referee for Refs. [2, 3, 5, 8], and for the statement

of Theorem 1(c) and the statement and proof of Theorem 2, which simplifies so many of the subsequent

proofs. Indeed, without theorem 2 it is possible that Theorems 3, 4 and 5 would never have been noticed.
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