Sequences with Translates Containing Many Primes

Tom C. Brown, ${ }^{*}$ Peter Jau-Shyong Shiue and X. Y. Yu ${ }^{\dagger}$

Citation data: T.C. Brown, P. J.-S. Shiue, and X.Y. Yu, Sequences with translates containing many primes, Canad. Math. Bull. 41 (1998), 15-19.

Abstract

Garrison [3], Forman [2], and Abel and Siebert [1] showed that for all positive integers k and N, there exists a positive integer λ such that $n^{k}+\lambda$ is prime for at least N positive integers n. In other words, there exists λ such that $n^{k}+\lambda$ represents at least N primes.

We give a quantitative version of this result. We show that there exists $\lambda \leq x^{k}$ such that $n^{k}+\lambda$, $1 \leq n \leq x$, represents at least $\left(\frac{1}{k}+o(1)\right) \pi(x)$ primes, as $x \rightarrow \infty$. We also give some related results.

1 Introduction

In [1], Abel and Siebert make the wonderful observation that if $A=\left\{a_{n}\right\}$ is a sequence of natural numbers and $A(x)=\sum_{a_{n} \leq x} 1$, then

$$
\sum_{\lambda \leq 2 x} \sum_{a_{n} \leq x} \sum_{p=a_{n}+\lambda} 1 \geq[\pi(2 x)-\pi(x)] A(x),
$$

where p denotes a prime and $\pi(x)$ denotes the number of primes $p \leq x$. They used this inequality, together with Chebyshev's inequalities, to show that if $\lim \sup _{x \rightarrow \infty} \frac{A(x)}{\log x}=\infty$, then for all N there exists λ such that $a_{n}+\lambda$ represents at least N primes. Forman [2] obtained the same result with methods different from those of Abel and Siebert.

Earlier, Sierpenski [5] showed that $n^{2}+\lambda$ represents arbitrarily many primes. Then Garrison [3] extended this to $n^{k}+\lambda$. Forman [2] and Abel and Siebert [1] showed that $g(n)+\lambda$ represents arbitrarily many primes, where $g(x)$ is any polynomial with integer coefficients and positive leading coefficient.

In this note we consider sums of the form

$$
S(x)=\sum_{\lambda \leq 2 x} \sum_{a_{n} \leq x} \sum_{p=a_{n}+\lambda} f\left(b_{m}\right) \text { and } T(x)=\sum_{\lambda \leq x} \sum_{a_{n} \leq x} \sum_{p=a_{n}+\lambda} f\left(b_{m}\right)
$$

where $A=\left\{a_{n}\right\}$ and $B=\left\{b_{m}\right\}$ are given sequences of natural numbers and f is a given nonnegative function defined on the natural numbers. In particular, if B is the sequence of primes and $f \equiv 1$, then $T(x)=(1+o(1)) A(x) \pi(x)$. This implies that if $A=\left\{n^{k}: n \geq 1\right\}$, then $T(x)=(1+o(1)) x^{\frac{1}{k}} \pi(x)$. It follows that there exists a positive integer $\lambda \leq x^{k}$ such that $n^{k}+\lambda, n \leq x$, represents at least $\left(\frac{1}{k}+\right.$ $o(1)) \pi(x)$ primes.

[^0]
2 Results

Theorem 1. Let $A=\left\{a_{n}\right\}, B=\left\{b_{m}\right\}$ be sequences of natural numbers, and let f be a nonnegative function defined on the natural numbers. Let $A(x)=\sum_{a_{n} \leq x} 1, B(x)=\sum_{b_{m} \leq x} f\left(b_{m}\right)$.

Assume that $B(x)=(1+o(1)) x^{\alpha} \varphi(x)$, where φ is monotonic and $\lim _{x \rightarrow \infty} \frac{\varphi(2 x)}{\varphi(x)}=1$. Let $S(x)$ denote the sum

$$
S(x)=\sum_{\lambda \leq 2 x} \sum_{a_{n} \leq x} \sum_{b_{m}=a_{n}+\lambda} f\left(b_{m}\right)
$$

Then

$$
\left(2^{\alpha}-1+o(1)\right) A(x) B(x) \leq S(x) \leq\left(3^{\alpha}+o(1)\right) A(x) B(x)
$$

Proof. For the lower bound, we start with Abel and Seibert's inequality

$$
S(x) \geq[B(2 x)-B(x)] A(x)
$$

Next,

$$
\frac{B(2 x)-B(x)}{B(x)}=\frac{(1+o(1))(2 x)^{\alpha} \varphi(2 x)}{(1+o(1)) x^{\alpha} \varphi(x)}-1 \rightarrow 2^{\alpha}-1
$$

hence $B(2 x)-B(x)=\left(2^{\alpha}-1+o(1)\right) B(x)$.
For the upper bound, we write

$$
\begin{aligned}
S(x) & =\sum_{a_{n} \leq x a_{n}+1 \leq b_{m} \leq a_{n}+2 x} f\left(b_{m}\right) \\
& =\sum_{a_{n} \leq x}\left[B\left(a_{n}+2 x\right)-B\left(a_{n}\right)\right] \leq \sum_{a_{n} \leq x} B\left(a_{n}+2 x\right) .
\end{aligned}
$$

We now estimate $B\left(a_{n}+2 x\right)$ from above.
Let a be an integer, $1 \leq a \leq x$. Since φ is monotonic, $x \leq a+x \leq 2 x$, and $\frac{\varphi(x)}{\varphi(x)}=1, \frac{\varphi(2 x)}{\varphi(x)} \rightarrow 1$, it follows that for every $\varepsilon>0$ there exists $N=N(\varepsilon)$ such that

$$
\frac{\varphi(a+x)}{\varphi(x)}<1+\varepsilon, x>N, 1 \leq a \leq x
$$

From this it follows that $\frac{\varphi(3 x)}{\varphi(x)}=\frac{\varphi(3 x)}{\varphi(2 x)} \cdot \frac{\varphi(2 x)}{\varphi(x)} \rightarrow 1$.
Now since $2 x \leq a+2 x \leq 3 x, \varphi$ is monotonic, and $\frac{\varphi(2 x)}{\varphi(x)} \rightarrow 1, \frac{\varphi(3 x)}{\varphi(x)} \rightarrow 1$, it follows that for every $\varepsilon>0$ there exists $N=N(\varepsilon)$ such that

$$
\frac{\varphi(a+2 x)}{\varphi(x)}<1+\varepsilon, x>N, 1 \leq a \leq x
$$

It now follows that for any $a=a(x), 1 \leq a \leq x$, and any $\varepsilon>0$,

$$
\frac{B(a+2 x)}{B(x)}=\frac{(1+o(1))(a+2 x)^{\alpha} \varphi(a+2 x)}{(1+o(1)) x^{\alpha} \varphi(x)}<3^{\alpha}+\varepsilon
$$

for sufficiently large x. Hence, independent of the choice of $a, 1 \leq a \leq x$,

$$
B(a+2 x) \leq\left(3^{\alpha}+o(1)\right) B(x)
$$

and

$$
S(x) \leq \sum_{a_{n} \leq x} B\left(a_{n}+2 x\right) \leq\left(3^{a}+o(1)\right) A(x) B(x)
$$

Now we let B be the sequence of primes.
Theorem 2. Let $A=\left\{a_{n}\right\}$ be a sequence of natural numbers. Then

$$
S(x)=\sum_{\lambda \leq 2 x} \sum_{a_{n} \leq x} \sum_{p=a_{n}+\lambda} 1 \geq(1+o(1)) A(x) \pi(x)
$$

where p denotes a prime. Hence there exists $\lambda, 1 \leq \lambda \leq 2 x$, such that $a_{n}+\lambda, 1 \leq a_{n} \leq x$ represents at least $\left(\frac{1}{2}+o(1)\right) \frac{A(x)}{x} \pi(x)$ primes.

Proof. This proof is a direct application of the method of Abel and Siebert. We have

$$
S(x)=\sum_{\lambda \leq 2} \sum_{a_{n} \leq x} \sum_{p=a_{n}+\lambda} 1 \geq(\pi(2 x)-\pi(x)) A(x)=(1+o(1)) A(x) \pi(x)
$$

or

$$
\frac{1}{2 x} \sum_{\lambda=1}^{2 x}\left(\sum_{a_{n} \leq x} \sum_{p=a_{n}+\lambda} 1\right) \geq\left(\frac{1}{2}+o(1)\right) \frac{A(x)}{x} \pi(x)
$$

so at least one $\lambda, 1 \leq \lambda \leq 2 x$, has the required property.
We now improve this result by using part of the method of Theorem 1 .
Theorem 3. Let $A=\left\{a_{n}\right\}$ be a sequence of natural numbers. Then

$$
T(x)=\sum_{\lambda \leq x} \sum_{a_{n} \leq x} \sum_{p=a_{n}+\lambda} 1=(1+o(1)) A(x) \pi(x),
$$

where p denotes a prime. Hence there exists $\lambda, 1 \leq \lambda \leq x$, such that $a_{n}+\lambda, 1 \leq a_{n} \leq x$ represents at least $(1+o(1)) \frac{A(x)}{x} \pi(x)$ primes.

Proof. As in the proof of Theorem 1, we write

$$
T(x)=\sum_{a_{n} \leq x a_{n}+1 \leq p \leq a_{n}+x} \sum_{a_{n} \leq x}\left[\pi\left(a_{n}+x\right)-\pi\left(a_{n}\right)\right] .
$$

It is not hard to show that for every $\varepsilon>0$ there exists $N=N(\varepsilon)$ such that

$$
1-\varepsilon<\frac{\pi(a+x)-\pi(a)}{\pi(x)}<1+\varepsilon, x>N, 1 \leq a \leq x
$$

(For fixed ε, divide $[1, x]$ into subintervals of length εx, and use the Prime Number Theorem to estimate $\frac{\pi(a+x)-\pi(a)}{\pi(x)}$ when $a \in[(i-1) \varepsilon x, i \varepsilon x]$.)

Summing this over all $a_{k}, a_{k} \leq x$, gives

$$
(1-\varepsilon) A(x) \pi(x)<T(x)<(1+\varepsilon) A(x) \pi(x), \quad x>N
$$

or $T(x)=(1+o(1)) A(x) \pi(x)$. The rest follows as in the proof of Theorem 2.
Corollary. Let $k \geq 1$ be given. Then there exists a positive integer $\lambda \leq x^{k}$ such that $n^{k}+\lambda, n \leq x$, represents at least $\left(\frac{1}{k}+o(1)\right) \pi(x)$ primes.

Proof. Setting $a_{n}=n^{k}$ in Theorem 3, and replacing x by x^{k} in the conclusion of Theorem 3 shows that there exists $\lambda, 1 \leq \lambda \leq x^{k}$, such that $n^{k}+\lambda, 1 \leq n^{k} \leq x^{k}$, represents at least

$$
(1+o(1)) \frac{\left(x^{k}\right)^{\frac{1}{k}}}{x^{k}} \pi\left(x^{k}\right)=(1+o(1)) \frac{x}{x^{k}} \frac{x^{k}}{\log x^{k}}=(1+o(1)) \frac{x}{k \log x}=\left(\frac{1}{k}+o(1)\right) \pi(x)
$$

primes.
We now apply our methods to the case when B is the sequence of square-free numbers.
Theorem 4. Let $A=\left\{a_{n}\right\}$ be a given sequence of natural numbers. Let $A(x)=\sum_{a_{n} \leq x} 1$, and let α be any fixed real number with $\frac{1}{2}<\alpha<1$. Let $\varepsilon>0$ be given. Then for all sufficiently large x, there exists $\lambda, 1 \leq \lambda \leq x^{\alpha}$, such that more than $\left(\frac{6}{\pi^{2}}-\varepsilon\right) A(x)$ of the numbers $a_{n}+\lambda, a_{n} \leq x$, are square-free.

Proof. Let $B=\left\{b_{m}\right\}$ be the sequence of square-free numbers, and let $B(x)=\sum_{b_{m} \leq x} 1$. It is known (see [4]) that

$$
B(x)=\frac{6 x}{\pi^{2}}+O(\sqrt{x})
$$

Let α be fixed, $1 / 2<\alpha<1$, and let L denote the number $L=\left[x^{\alpha}\right]$.
Let $\varepsilon>0$ be given. Then

$$
\begin{aligned}
\sum_{\lambda=1}^{L} \sum_{a_{n} \leq x} \sum_{b_{m}=a_{n}+\lambda} 1 & =\sum_{a_{n} \leq x} \sum_{\lambda \leq L} \sum_{b_{m}=a_{n}+\lambda} 1 \\
& =\sum_{a_{n} \leq x} \sum_{a_{n}+1 \leq b_{m} \leq a_{n}+L} 1 \\
& =\sum_{a_{n} \leq x}\left(B\left(a_{n}+L\right)-B\left(a_{n}\right)\right) \\
& =\sum_{a_{n} \leq x}\left(\frac{6 L}{\pi^{2}}+O(\sqrt{x+L})\right) \\
& =\sum_{a_{n} \leq x} \frac{6 L}{\pi^{2}}(1+o(1)) \\
& >\left(\frac{6}{\pi^{2}}-\varepsilon\right) L \sum_{a_{n} \leq x} 1 \\
& =\left(\frac{6}{\pi^{2}}-\varepsilon\right) L A(x)
\end{aligned}
$$

holds for sufficiently large x. Hence there exists at least one $\lambda, 1 \leq \lambda \leq L=\left[x^{\alpha}\right]$, for which

$$
\sum_{a_{n} \leq x b_{m}=a_{n}+\lambda} \sum 1>\left(\frac{6}{\pi^{2}}-\varepsilon\right) A(x)
$$

which was to be proved.
Acknowledgement. The authors wish to express their sincere thanks to the referee for very helpful comments and suggestions that led to a considerable improvement of this paper.

References

[1] V. Abel and H. Siebert, Sequences with large number of prime values, Amer. Math. Monthly $\mathbf{1 0 0}$ (1993), 167-169.
[2] Robin Forman, Sequence with many primes, Amer. Math. Monthly 99 (1992), 548-557.
[3] B. Garrison, Polynomials with large number of prime values, Amer. Math. Monthly 97 (1990), 316317.
[4] L.K. Hua, Introduction to number theory, Springer-Verlag, 1982.
[5] W. Sierpiński, Les binomes $x^{2}+n$ et les nombres premiers, Bull. Soc. Royale Sciences Liege 33 (1964), 259-260.

[^0]: *Partially supported by NSERC.
 ${ }^{\dagger}$ Supported by the National Science Grant of the P.R. of China and the Science Grant of Zhejiang Province, P.R. China.

