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Abstract

Garrison [3], Forman [2], and Abel and Siebert [ 1] showed that for all positive integers k and N,
there exists a positive integer A such that nf + A is prime for at least N positive integers n. In other
words, there exists A such that #€ + A represents at least N primes.

We give a quantitative version of this result. We show that there exists A < x* such that n* + A,

1 <n < x, represents at least (% +0(1)) 7(x) primes, as x — . We also give some related results.

1 Introduction

In [1], Abel and Siebert make the wonderful observation that if A = {a, } is a sequence of natural numbers
and A(x) =Y, <. 1, then
Y )Y Y 1>[n20)-rWAR),
A<2xan<xp=a,+A

where p denotes a prime and 7(x) denotes the number of primes p < x. They used this inequality,
together with Chebyshev’s inequalities, to show that if limsup,_,, ’1%))( = oo, then for all N there exists A
such that a, + A represents at least N primes. Forman [2] obtained the same result with methods different
from those of Abel and Siebert.

Earlier, Sierpenski [5] showed that n> + A represents arbitrarily many primes. Then Garrison [3]
extended this to n¥ + A. Forman [2] and Abel and Siebert [ 1] showed that g(n) + A represents arbitrarily
many primes, where g(x) is any polynomial with integer coefficients and positive leading coefficient.

In this note we consider sums of the form

S=3Y Y Y flwadTx)=3 ) Y flbu),

A<2xan<xp=an+A A<xan<xp=an+A

where A = {a,} and B = {b,,} are given sequences of natural numbers and f is a given nonnegative
function defined on the natural numbers. In particular, if B is the sequence of primes and f = 1, then
T(x) = (14 0(1))A(x)7(x). This implies that if A = {n* : n > 1}, then T(x) = (1 +0(1))x%77:(x). It
follows that there exists a positive integer A < x* such that n* + A, n < x, represents at least (% +
o(1))m(x) primes.
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2 Results

Theorem 1. Let A = {a,}, B = {bn} be sequences of natural numbers, and let f be a nonnegative
function defined on the natural numbers. Let A(x) =Y, <. 1, B(x) = ¥, <, f(bm).

Assume that B(x) = (14 0(1))x*@(x), where @ is monotonic and limy_. % = 1. Let S(x) denote
the sum
S(x) = Z Z Z f(bm)
A<2xan<xby=a,+7
Then

(2% —1+40(1))A(x)B(x) < S(x) < (3% +0(1))A(x)B(x).
Proof. For the lower bound, we start with Abel and Seibert’s inequality
S(x) = [B(2x) = B(x)]A(x).

Next,

B(2x) —B(x) _ (1+0(1))(2x)%¢(2x) a_
B (ool 0 "
hence B(2x) — B(x) = (2% — 14+ 0(1))B(x).

For the upper bound, we write

SW=3% Y flbw)

an<xap+1<by<an+2x

= ) [B(ay+2x) ~ B(ay)] < ), Blan+2x).

an<x an<x

We now estimate B(a, + 2x) from above.

Il
—_
<
~
=
_
=

Let a be an integer, 1 < a < x. Since ¢ is monotonic, x < a+x < 2x, and %
follows that for every € > 0 there exists N = N(&) such that

o(a+x)
¢(x)

<l+4+e x>N, 1<a<x

e 9(3x) _ 9o(3x)  @(2x)
From this it follows that o) = o) o0 — 1.

Now since 2x < a+ 2x < 3x, ¢ is monotonic, and
€ > 0 there exists N = N(¢&) such that

9(2)

o — L 9B3x) _, 1 it follows that for every

o(x)

o(a+2x)

<l+eg x>N,1<a<ux
¢(x)

It now follows that for any a = a(x), 1 < a < x, and any € > 0,

B(a+2x) _ (1+o(1))(a+2x)*@(a+2x)

B (to(Dvpl) 0 ¢




for sufficiently large x. Hence, independent of the choice of a, 1 < a < x,
B(a+2x) < (3% +0(1))B(x),

and
) < Z B(a, +2x) < (3 +0(1))A(x)B(x).

anp<x

Now we let B be the sequence of primes.

Theorem 2. Let A = {a,} be a sequence of natural numbers. Then

SW=Y ¥ ¥ 1>(1+o(1)Awr),

A<2xan<x p=ap+A

where p denotes a prime. Hence there exists A, 1 < A < 2x, such that a, + A, 1 < a, < x represents at
least (% —i—o(l))@n(x) primes.

Proof. This proof is a direct application of the method of Abel and Siebert. We have

sw=Y ¥ ¥ 1>@2)-1))AE) = (1+0(1)AX (),

A<2xan<x p=an+A

or
1 & ( A(x)
DY +o)) *a),
2x A=1 (an<xp =a,+A ) X
so at least one A, 1 < A < 2x, has the required property. O

We now improve this result by using part of the method of Theorem 1.

Theorem 3. Let A = {a,} be a sequence of natural numbers. Then

=Y Y ¥ 1=0+o(1)A®)r(x),

A<xan<x p=a,+A

where p denotes a prime. Hence there exists A, 1 < A < x, such that a, + A, 1 < a, < x represents at
least (1+ 0(1))@%()6) primes.

Proof. As in the proof of Theorem 1, we write

T(x)= Z Z 1= Z [7(an+x) — 7(ay,)].

ap<xap+1<p<ap+x an<x

It is not hard to show that for every € > 0 there exists N = N(€) such that

n(a+x) — n(a)
(x)

l—e< <l+4+eg x>N, 1<a<ux



(For fixed &, divide [1,x] into subintervals of length €x, and use the Prime Number Theorem to estimate

=) when a € [(i — 1)ex, ie] )

Summing this over all ai, a; < x, gives
(I-g)A(x)m(x) <T(x) < (1+&)A(x)m(x), x> N,

or T(x) = (14 0(1))A(x)(x). The rest follows as in the proof of Theorem 2. O

Corollary. Let k > 1 be given. Then there exists a positive integer A < x* such that n* + A, n < x,

represents at least (1 + o(1))m(x) primes.

Proof. Setting a, = n* in Theorem 3, and replacing x by x* in the conclusion of Theorem 3 shows that
there exists 1, 1 < A < x, such that n* + 4, 1 < n¥ < x*, represents at least

(k) 3 x X 1

() = (1 o) giora =1 +0(1))k1§gx = <k +0(1)> 7(x)

(I+o(1))

primes. O
We now apply our methods to the case when B is the sequence of square-free numbers.

Theorem 4. Let A = {a,} be a given sequence of natural numbers. Let A(x) =Y, <1, and let o be
any fixed real number with % < a < 1. Let € > 0 be given. Then for all sufficiently large x, there exists

A, 1 <A < x% such that more than (% — €)A(x) of the numbers a, + A, a,, < x, are square-free.

Proof. Let B = {b,} be the sequence of square-free numbers, and let B(x) = Y, <, 1. It is known

(see [4]) that
_ bx

B(x) = =

+0(vx).

Let o be fixed, 1/2 < a < 1, and let L denote the number L = [x%].
Let € > 0 be given. Then

¥YY ¥ =YL ¥

A=lan<xbyu=a,+A an<x A<Lbp=an+A

1

an<xap+1<bm<ap+L

= ), (B(ay+L)~B(ay))

an<x

=) (ZI;+0(M)>

ap<x

= ¥ (o)
6
> (7[2—3>L !

an<x



holds for sufficiently large x. Hence there exists at least one A, 1 < A < L = [x%], for which

6
a;}(bm:%-i_l] > <7'EZ —8> A()C),

which was to be proved. O
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