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Abstract

Garrison [3], Forman [2], and Abel and Siebert [1] showed that for all positive integers k and N,

there exists a positive integer λ such that nk +λ is prime for at least N positive integers n. In other

words, there exists λ such that nk +λ represents at least N primes.

We give a quantitative version of this result. We show that there exists λ � xk such that nk +λ ,

1� n� x, represents at least
� 1

k +o(1)
�

π(x) primes, as x! ∞. We also give some related results.

1 Introduction

In [1], Abel and Siebert make the wonderful observation that if A= fang is a sequence of natural numbers
and A(x) = ∑an�x 1, then

∑
λ�2x

∑
an�x

∑
p=an+λ

1� [π(2x)�π(x)]A(x);

where p denotes a prime and π(x) denotes the number of primes p � x. They used this inequality,
together with Chebyshev’s inequalities, to show that if limsupx!∞

A(x)
logx = ∞, then for all N there exists λ

such that an+λ represents at least N primes. Forman [2] obtained the same result with methods different
from those of Abel and Siebert.

Earlier, Sierpenski [5] showed that n2 + λ represents arbitrarily many primes. Then Garrison [3]
extended this to nk +λ . Forman [2] and Abel and Siebert [1] showed that g(n)+λ represents arbitrarily
many primes, where g(x) is any polynomial with integer coefficients and positive leading coefficient.

In this note we consider sums of the form

S(x) = ∑
λ�2x

∑
an�x

∑
p=an+λ

f (bm) and T (x) = ∑
λ�x

∑
an�x

∑
p=an+λ

f (bm);

where A = fang and B = fbmg are given sequences of natural numbers and f is a given nonnegative
function defined on the natural numbers. In particular, if B is the sequence of primes and f � 1, then
T (x) = (1+ o(1))A(x)π(x). This implies that if A = fnk : n � 1g, then T (x) = (1+ o(1))x

1
k π(x). It

follows that there exists a positive integer λ � xk such that nk + λ , n � x, represents at least ( 1
k +

o(1))π(x) primes.
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2 Results

Theorem 1. Let A = fang, B = fbmg be sequences of natural numbers, and let f be a nonnegative

function defined on the natural numbers. Let A(x) = ∑an�x 1, B(x) = ∑bm�x f (bm).

Assume that B(x) = (1+o(1))xα ϕ(x), where ϕ is monotonic and limx!∞
ϕ(2x)
ϕ(x) = 1. Let S(x) denote

the sum

S(x) = ∑
λ�2x

∑
an�x

∑
bm=an+λ

f (bm)

Then

(2α �1+o(1))A(x)B(x)� S(x)� (3α +o(1))A(x)B(x):

Proof. For the lower bound, we start with Abel and Seibert’s inequality

S(x)� [B(2x)�B(x)]A(x):

Next,
B(2x)�B(x)

B(x)
=

(1+o(1))(2x)α ϕ(2x)
(1+o(1))xα ϕ(x)

�1! 2α �1;

hence B(2x)�B(x) = (2α �1+o(1))B(x).
For the upper bound, we write

S(x) = ∑
an�x

∑
an+1�bm�an+2x

f (bm)

= ∑
an�x

[B(an +2x)�B(an)]� ∑
an�x

B(an +2x):

We now estimate B(an +2x) from above.
Let a be an integer, 1 � a � x. Since ϕ is monotonic, x � a+ x � 2x, and ϕ(x)

ϕ(x) = 1, ϕ(2x)
ϕ(x) ! 1, it

follows that for every ε > 0 there exists N = N(ε) such that

ϕ(a+ x)
ϕ(x)

< 1+ ε; x > N; 1� a� x:

From this it follows that ϕ(3x)
ϕ(x) = ϕ(3x)

ϕ(2x) �
ϕ(2x)
ϕ(x) ! 1.

Now since 2x � a+ 2x � 3x, ϕ is monotonic, and ϕ(2x)
ϕ(x) ! 1, ϕ(3x)

ϕ(x) ! 1, it follows that for every
ε > 0 there exists N = N(ε) such that

ϕ(a+2x)
ϕ(x)

< 1+ ε; x > N; 1� a� x:

It now follows that for any a = a(x), 1� a� x, and any ε > 0,

B(a+2x)
B(x)

=
(1+o(1))(a+2x)α ϕ(a+2x)

(1+o(1))xα ϕ(x)
< 3α + ε
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for sufficiently large x. Hence, independent of the choice of a, 1� a� x,

B(a+2x)� (3α +o(1))B(x);

and
S(x)� ∑

an�x
B(an +2x)� (3a +o(1))A(x)B(x):

Now we let B be the sequence of primes.

Theorem 2. Let A = fang be a sequence of natural numbers. Then

S(x) = ∑
λ�2x

∑
an�x

∑
p=an+λ

1� (1+o(1))A(x)π(x);

where p denotes a prime. Hence there exists λ , 1 � λ � 2x, such that an +λ , 1 � an � x represents at

least ( 1
2 +o(1))A(x)

x π(x) primes.

Proof. This proof is a direct application of the method of Abel and Siebert. We have

S(x) = ∑
λ�2x

∑
an�x

∑
p=an+λ

1� (π(2x)�π(x))A(x) = (1+o(1))A(x)π(x);

or
1
2x

2x

∑
λ=1

 
∑

an�x
∑

p=an+λ

1

!
�
�

1
2
+o(1)

�
A(x)

x
π(x);

so at least one λ , 1� λ � 2x, has the required property.

We now improve this result by using part of the method of Theorem 1.

Theorem 3. Let A = fang be a sequence of natural numbers. Then

T (x) = ∑
λ�x

∑
an�x

∑
p=an+λ

1 = (1+o(1))A(x)π(x);

where p denotes a prime. Hence there exists λ , 1 � λ � x, such that an +λ , 1 � an � x represents at

least (1+o(1))A(x)
x π(x) primes.

Proof. As in the proof of Theorem 1, we write

T (x) = ∑
an�x

∑
an+1�p�an+x

1 = ∑
an�x

[π(an + x)�π(an)]:

It is not hard to show that for every ε > 0 there exists N = N(ε) such that

1� ε <
π(a+ x)�π(a)

π(x)
< 1+ ε; x > N; 1� a� x:
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(For fixed ε , divide [1;x] into subintervals of length εx, and use the Prime Number Theorem to estimate
π(a+x)�π(a)

π(x) when a 2 [(i�1)εx; iεx].)
Summing this over all ak, ak � x, gives

(1� ε)A(x)π(x)< T (x)< (1+ ε)A(x)π(x); x > N;

or T (x) = (1+o(1))A(x)π(x). The rest follows as in the proof of Theorem 2.

Corollary. Let k � 1 be given. Then there exists a positive integer λ � xk such that nk + λ , n � x,

represents at least ( 1
k +o(1))π(x) primes.

Proof. Setting an = nk in Theorem 3, and replacing x by xk in the conclusion of Theorem 3 shows that
there exists λ , 1� λ � xk, such that nk +λ , 1� nk � xk, represents at least

(1+o(1))
(xk)

1
k

xk π(xk) = (1+o(1))
x
xk

xk

logxk = (1+o(1))
x

k logx
=

�
1
k
+o(1)

�
π(x)

primes.

We now apply our methods to the case when B is the sequence of square-free numbers.

Theorem 4. Let A = fang be a given sequence of natural numbers. Let A(x) = ∑an�x 1, and let α be

any fixed real number with 1
2 < α < 1. Let ε > 0 be given. Then for all sufficiently large x, there exists

λ , 1� λ � xα , such that more than ( 6
π2 � ε)A(x) of the numbers an +λ , an � x, are square-free.

Proof. Let B = fbmg be the sequence of square-free numbers, and let B(x) = ∑bm�x 1. It is known
(see [4]) that

B(x) =
6x
π2 +O(

p
x):

Let α be fixed, 1=2 < α < 1, and let L denote the number L = [xα ].
Let ε > 0 be given. Then

L

∑
λ=1

∑
an�x

∑
bm=an+λ

1 = ∑
an�x

∑
λ�L

∑
bm=an+λ

1

= ∑
an�x

∑
an+1�bm�an+L

1

= ∑
an�x

(B(an +L)�B(an))

= ∑
an�x

�
6L
π2 +O(

p
x+L)

�

= ∑
an�x

6L
π2 (1+o(1))

>

�
6

π2 � ε

�
L ∑

an�x
1

=

�
6

π2 � ε

�
LA(x)

4



holds for sufficiently large x. Hence there exists at least one λ , 1� λ � L = [xα ], for which

∑
an�x

∑
bm=an+λ

1 >

�
6

π2 � ε

�
A(x);

which was to be proved.
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