Solutions 5

8.7.1 (Page 295)

1 _ 1 1 1
Note that m—F—m—w NOW
™1 dr 1 1+r7m 1 1—-7r
5 = log — — - log —=lo
ro T(1—172) rg 2 1+ 2 1—rg
1 r2(1 —r2
= §log é( (2))
r5(1+17)
= 2m,

and therefore 7(1—72) = €*™(r3(1+r?)). Rearrange terms and we get 1 = [l —e 4 (ry? —

1)]~Y/2. Note that P'(r) = [1l — e 4" (r~2 — 1)]*3/2(614#) which equal to e=47 for 7* = 1.

8.7.2 (Page 295)

Let yo be an initial condition on S, which can be chosen to be any vertical line on the
cylinder. Since § = 1, the first return to S occurs after a time of flight 27, then y; — P(yo),
where 3 satisfies fy%l % = OQW dt = 2rr. This yields 31 = yoe?*™. In this case, P(y) = ye?".
It has a fixed point at y* = 0. which corresponds to a periodic orbit in the dynamical
system. This fixed point is stable when |P’(0)] < 1 or a < 0. Note that for a = 0 the

dynamics is trivial.

9.2.1 (Page 342)
a) Recall that the fixed points C* and C'~ are

(x*,y*,z*) = (:l:\/b(?“ - 1),:|:\/b(7“ - 1)7T - 1)7

where r > 1. In the following we’ll write (z,vy, z) instead of (z*,y*, z*).

-0 0 0
The Jacobian A= | r—2z —1 —z | has characteristic polynomial

Y x —=b
det(\I — A) = N> + (0 + 1+ b)\*+
Do+ 1)+ 22 +o(z+1 =X+ [bo(z+1—7)+o(z? + 2y)].

Notice that at C* and C~, we have 22 = zy = b(r — 1), z = r — 1, therefore the eigenvalues

satisfy

N4 (0 4+ 1+ b)A2 +b(r + o)\ + 20b(r — 1) = 0.
1



b) Hopf bifurcation occurs when two eigenvalues are pure imaginary (cf. Figure 8.2.4).

In this case A = iw, where w is real and nonzero. Thus the characteristic equation becomes
—iw3 — (o + 1+ b)w? + ib(r + o)w + 20b(r — 1) = 0.

We then seperate the real part and the imaginary part of the above and obtain that

20b(r — 1)
2
:b =
w (r+o) 170
Solving for r, we get
B B (O'+b+3)
T—TH—Uia_b_l .

It is required that » must be positive, so Hopf bifurcation can only occur if rg is positive,
ie. o >b+1.

c) If r = rg, then the two imaginary roots are

Ao = £i\/b(rg +0).
It’s well known that all 3 roots should add up to —(o + b+ 1), since the two imaginary ones
cancel, we have \3 = —(c +b+1).
9.2.2 (Page 343)
Let C(t) = ra(t)? + oy(t)? + o(2(t) — 2r)? be the value of C at time t. Then
C'(t) = 2raa’ + 20yy’ + 20(z — 2r)2’

=2rzo(y —z) + 20y(re —y — xz) + 20(z — 2r)(xy — bz)

= —20(rz® 4+ y? + bz? — 2brz)

= 20(ra® + y* +b(z — r)? — r?b)

20 x Yy )2
S Y R A PR
r2b(br + br2 + r2 )

It is then clear that if at time ¢, (z,y, z) is outside the ellipsoid

2 2 (

K: —+4+—=+-—5—
then C(t) will decrease. We can pick C' so large that the above ellipsoid is contained in
E: re*+oy®+o(z—2r)?<C,
which is another ellipsoid, then eventually all trajectories will enter E.

The smallest possible value of C' is obtained when the ellipsoids £ and K are tangent.
The picture is that one shrinks E by decreasing C' until the surface of E touches K. This

is equivalent to the following problem:



Given condition ) ) )
x z—7
P Gl ) Y
br  br r

find the maximum of
re? +oy? +o(z — 2r)2.
The maximum is the smallest possible C'. This problem can be solved using Langrange

multipliers. In practice, given a pair of parameters r and o, one can use a computer to

handle the extreme value problem.

9.2.6 (Page 343)
a) Let f = (—vz + zy, —vy + (z — a)z,1 — xy) be the instantaneous velocity, then

0 0 0
Vof = gty + vyt (- a)e) + (L)

=—v—-—v+0=-2v <0,

therefore the system is dissipative (cf. Figure 9.2.1).
b) A fixed points (z,y, z) satisfies that

(1) 2y = va
@) (=~ a)e = vy
(3) 1=uay.

From (1) and (3) we have z = vx?, then use (2)

(va? — a)z? = vay = 1.

Since zy = 1, x # 0, so
a=ve?—vr?=vk?—-k?),

where 22 = k%, 2y = 1, and z = va?. This is exactly the parametric form described in the

problem.
—v z vy —v vk? k=1
c) The Jacobian A= | z—a —v x | evaluatesto | vk?—-a —v &k at fixed
-y —xz 0 -kt —k 0

point (k, k™!, vk?). The characteristic polynomial is
FO) =X 42N+ 2 — vk (k? —a) + B2+ k)N 4+ 20(k® + k72).
Using the relation a = v(k? — k=2) to eliminate a, it follows that

FOY =X+ 20X + (B + kDA + 2 + k%) = A+ 20) (N + K + k7).
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Therefore the eigenvalues are —2r and +v'k? + k~214. Since there are two imaginary eigen-

values, the fixed points are centers.

9.3.8 (Page 344)
a) Yes. D is the set 7 < 1. It’s clear from 7 = 7(1 — r?) that r either stays at 0 or

approaches 1 as t — co. So trajectories starting from D will never leave the region.

b) Yes. Any open subset of D can be an open set of initial conditions that are attracted
to D (in fact they never leave D). The basin of attraction (we can speak of that even we

don’t know D is an attractor) of D is the whole plane.

c¢) No. The circle 22 + y? = 1 is a proper subset of D. It’s also invariant and attracts an
open set of initial conditions (cf. part d).

d) Yes. First r* = 1 is a stable fixed point of 7 = r(1 — 7?), so 22 + y? = 1 is invariant
and any initial condition with r > 0 will be attracted to r = 1. Secondly notice that that
¢ = 1, trajectories starting on the circle will wind along it and never stop. So there can be

no invariant proper subset of z? + y? = 1.

9.4.2 (Page 344)
a) Because the graph of f(z,,) looks like a tent.

b) The fixed points satisfy z* = f(2*), Hence z* = 0 or z* = % Since the multiplier is
A = f/(x*) = £2, both these fixed points are unstable.

c) We can solve for p = f(q),q = f(p) where [p, q| constitutes a 2-cycle. Let p < % and
q> %, then 2p = q,p = 2—2q gives p = %, q= %. Since the multiplier is A = [f(f(x))] |a=p =
POV F(F(B) = F'()f'(g) = —4, the 2-cycle is unstable.

d) Similarily, we can solve for the period-3 and period-4 points by noting that only

L . 1 2 4 8 2 4 8 16
one of these points in the cycle is greater than 5. Hence [5,3,5] and [5%, 15, 15, 17] are

the period-3 and period-4 solutions. (In fact, the general period-n solutions has the form
2! 22 2"
[2n+17 PICES A A TN |

where p; are the points on the orbit, the multiplier is always greater than 1 and all the

].) Since the multiplier for all a period-n orbit equal to [} f'(pi),

periodic orbit are unstable.

10.1.2 (Page 388)

The fixed points satisfy z* = (2*)3. Hence z* = 0 or #* = 41. The multiplier is
A = f/(z*) = 3(z*)?. The fixed point z* = 0 is stable since |\| = 0 < 1, and * = £1 is
unstable since |A\| = 3 > 1. If we keep pressing the appropriate function key of a pocket

calculater, unless we start at +1, eventually we get very close to 0.



10.1.6 (Page 388)

Line y = x intersects y = tan x infinitely many times, so there are infinitely many fixed
points. For any fixed point z* where 2* = tanz*, the multiplier A = f’(z*) = sec?(z*) is
always greater than 1 unless z* = 0. So they’re all unstable. Even in the marginal case
z* = 0, it’s clear from the cobweb that x* is also unstable since the positive part of the
curve y = tanx containing (0,0) is always above y = z and the negative part below it.
Therefore unless we start with a fixed point, we are not likely to get a pattern no matter

how many times we press the button.

10.1.11 (Page 388)
a) Fixed points satisfy z* = f(z*) = 3z* — (2*)3, therefore 2* = 0, ++/2. The multiplier
A =3(1 — (x*)?) is always greater than 1, so all these fixed point are unstable.

b,c) Here are the cobweb graphs for zo = 1.9 (left) and xo = 2.1 (right).
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d) Note that f(z) has local extrema equal to £2 at = £1. From the graphs above, we
can see that if we start with an initial values zo where |zg| < 2, the cobweb will stay inside
the square with corners at (£2,42). However, if we start an initial value xo where |zo| > 2,

then after the cobweb misses the first peak/valley of f(x),x, will get larger and larger.

10.3.4 (Page 390)
a) Fixed points satisfy 2* = (2*)? + ¢, therefore

. 1+yT—dc

x 2
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where ¢ < %. The multiplier A = 22* = 1 + /1 — 4c is always greater than 1 at the
greater fixed point, denoted by 1. So x7 is unstable. At the other fixed point zo we have
—1 < A <1 when —% <c< i, SO x5 is stable when ¢ > —%, and unstable when ¢ < —%.

b) It’s clear from part a) that a saddle-node bifurcation occurs at ¢ = i, where two fixed

points are created, and a flip bifurcation occurs at ¢ = —%, where x5 loses its stability.

c) To get the 2-cycles we apply f(x) = 22 + ¢ to itself and obtain the equation

r=f(f(x)=(@*+c)? +e

This is a quartic equation, but recall that all the fixed points should satisfy this equation

and the fixed points are also roots of x = 22 + ¢. So we write x = f(f(z)) as

(> -z +e)(z®+x+c+1) =0,

and get the other two roots

)

-1+ 3—dc
- 5 7

which are real for ¢ < —%, thus a 2-cycle exists for all ¢ < —%. The multiplier of the 2-cycle

is

A= 2 @Damp = BV @) = 4pa.

Notice that p, ¢ are roots of 22 + x +c+ 1, s0 pg = ¢+ 1. Then || < 1 if —% <c< —%,
those are the values of ¢ for which the 2-cycle is stable. The 2-cycle is superstable when
A=0,ie c=—1.

d) In the bifurcation diagram below, solid lines indicate stable fixed points, dashed lines
indicate unstable fixed points, the pair of dashed-dot lines indicate stable 2-cycles. The
diagram is drawn according to the results in shown part a, b and c. Notice that the stable

part is also part of the orbit diagram.
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Bifurcation parameter ¢

10.3.6 (Page 390)
a) Fixed points satisfy x* = rz* — (2*)3, therefore

xf=0,+Vr—1,

where r > 1. The multiplier A = r — 3(2*)? which equal to r for z* = 0 and 3 — 2r for
* = +/r—1. For |r| < 1, zero fixed point is stable, while for 1 < r < 2 the fixed point
x* = £+4/r — 1 is stable.

b) Suppose f(p) = q and f(q) = p and let s = ¢*> — r then we have

3)3

r(rg—q*) = (rg—q
qr(r =) = ¢*(r —¢*)° = 1
ql-rs+ (s+r)s> —1

]
]
qs* +rs® —rs —1]
gs—D(s+1)(s*> +rs+1)

q(¢® —r =1 —r+1)(¢" —r¢* +1)

q
0
0
0
0
0

Solve for ¢ and we have ¢ = 0, £1/r — 1, /1 + 1, £/ 2E"=4 V2T274. Note that the first three so-
lutions are the fixed point. Therefore the 2-cycles are [++/r + 1, —/7 + 1]and [+ \/’"Jr V2’"274, j:\/’"f V2’"274
for r > 2.

¢) For the 2-cycle [++/r + 1, —+/r + 1], the multipler A = f'(p)f'(q) = (r — 3(r +1))? =
(3+42r)? which is always larger than 1 for » > —1. Therefore this 2-cycle is always unstable.
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For [:t\/’"+v2’"2_4,:|:\/7"_v27"2_4, the multipler A = f'(p)f'(¢) = 9 — 2r? which sits between
-1 and 1 for 2 < 7 < v/5. Therefore these 2-cycles are stable for this range of values of r.
d) In the bifurcation diagram below, solid lines indicate stable fixed points, the pair

ofdashed-dot lines indicate stable 2-cycles.
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