
Solutions 5

8.7.1 (Page 295)

Note that 1
r(1−r2)

= 1
r − 1

2(1+r) − 1
2(1−r) . Now

∫ r1

r0

dr

r(1 − r2)
= log

r1

r0
− 1

2
log

1 + r1

1 + r0
− 1

2
log

1 − r1

1 − r0

=
1

2
log

r2
1(1 − r2

0)

r2
0(1 + r2

1)

= 2π,

and therefore r2
1(1−r2

0) = e4π(r2
0(1+r2

1)). Rearrange terms and we get r1 = [1−e−4π(r−2
0 −

1)]−1/2. Note that P ′(r) = [1 − e−4π(r−2 − 1)]−3/2(e−4π

r ) which equal to e−4π for r∗ = 1.

8.7.2 (Page 295)

Let y0 be an initial condition on S, which can be chosen to be any vertical line on the

cylinder. Since θ̇ = 1, the first return to S occurs after a time of flight 2π, then y1 −P (y0),

where y1 satisfies
∫ y1

y0

dy
ay =

∫ 2π
0 dt = 2π. This yields y1 = y0e

2aπ. In this case, P (y) = ye2aπ.

It has a fixed point at y∗ = 0. which corresponds to a periodic orbit in the dynamical

system. This fixed point is stable when |P ′(0)| < 1 or a < 0. Note that for a = 0 the

dynamics is trivial.

9.2.1 (Page 342)

a) Recall that the fixed points C+ and C− are

(x∗, y∗, z∗) = (±
√

b(r − 1),±
√

b(r − 1), r − 1),

where r > 1. In the following we’ll write (x, y, z) instead of (x∗, y∗, z∗).

The Jacobian A =







−σ σ 0

r − z −1 −x

y x −b






has characteristic polynomial

det(λI − A) = λ3 + (σ + 1 + b)λ2+

[b(σ + 1) + x2 + σ(z + 1 − r)]λ + [bσ(z + 1 − r) + σ(x2 + xy)].

Notice that at C+ and C−, we have x2 = xy = b(r− 1), z = r− 1, therefore the eigenvalues

satisfy

λ3 + (σ + 1 + b)λ2 + b(r + σ)λ + 2σb(r − 1) = 0.
1
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b) Hopf bifurcation occurs when two eigenvalues are pure imaginary (cf. Figure 8.2.4).

In this case λ = iω, where ω is real and nonzero. Thus the characteristic equation becomes

−iω3 − (σ + 1 + b)ω2 + ib(r + σ)ω + 2σb(r − 1) = 0.

We then seperate the real part and the imaginary part of the above and obtain that

ω2 = b(r + σ) =
2σb(r − 1)

σ + 1 + b
.

Solving for r, we get

r = rH = σ(
σ + b + 3

σ − b − 1
).

It is required that r must be positive, so Hopf bifurcation can only occur if rH is positive,

i.e. σ > b + 1.

c) If r = rH , then the two imaginary roots are

λ1,2 = ±i
√

b(rH + σ).

It’s well known that all 3 roots should add up to −(σ + b+1), since the two imaginary ones

cancel, we have λ3 = −(σ + b + 1).

9.2.2 (Page 343)

Let C(t) = rx(t)2 + σy(t)2 + σ(z(t) − 2r)2 be the value of C at time t. Then

C ′(t) = 2rxx′ + 2σyy′ + 2σ(z − 2r)z′

= 2rxσ(y − x) + 2σy(rx − y − xz) + 2σ(z − 2r)(xy − bz)

= −2σ(rx2 + y2 + bz2 − 2brz)

= −2σ(rx2 + y2 + b(z − r)2 − r2b)

= − 2σ

r2b
(
x2

br
+

y2

br2
+

(z − r)2

r2
− 1).

It is then clear that if at time t, (x, y, z) is outside the ellipsoid

K :
x2

br
+

y2

br2
+

(z − r)2

r2
≤ 1,

then C(t) will decrease. We can pick C so large that the above ellipsoid is contained in

E : rx2 + σy2 + σ(z − 2r)2 ≤ C,

which is another ellipsoid, then eventually all trajectories will enter E.

The smallest possible value of C is obtained when the ellipsoids E and K are tangent.

The picture is that one shrinks E by decreasing C until the surface of E touches K. This

is equivalent to the following problem:
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Given condition
x2

br
+

y2

br2
+

(z − r)2

r2
= 1,

find the maximum of

rx2 + σy2 + σ(z − 2r)2.

The maximum is the smallest possible C. This problem can be solved using Langrange

multipliers. In practice, given a pair of parameters r and σ, one can use a computer to

handle the extreme value problem.

9.2.6 (Page 343)

a) Let f = (−νx + zy,−νy + (z − a)x, 1 − xy) be the instantaneous velocity, then

∇ · f =
∂

∂x
(−νx + zy) +

∂

∂y
(−νy + (z − a)x) +

∂

∂z
(1 − xy)

= −ν − ν + 0 = −2ν < 0,

therefore the system is dissipative (cf. Figure 9.2.1).

b) A fixed points (x, y, z) satisfies that

zy = νx(1)

(z − a)x = νy(2)

1 = xy.(3)

From (1) and (3) we have z = νx2, then use (2)

(νx2 − a)x2 = νxy = ν.

Since xy = 1, x 6= 0, so

a = νx2 − νx−2 = ν(k2 − k−2),

where x2 = k2, xy = 1, and z = νx2. This is exactly the parametric form described in the

problem.

c) The Jacobian A =







−ν z y

z − a −ν x

−y −x 0






evaluates to







−ν νk2 k−1

νk2 − a −ν k

−k−1 −k 0






at fixed

point (k, k−1, νk2). The characteristic polynomial is

f(λ) = λ3 + 2νλ2 + [ν2 − νk2(νk2 − a) + k2 + k−2)λ + 2ν(k2 + k−2).

Using the relation a = ν(k2 − k−2) to eliminate a, it follows that

f(λ) = λ3 + 2νλ2 + (k2 + k−2)λ + 2ν(k2 + k−2) = (λ + 2ν)(λ2 + k2 + k−2).
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Therefore the eigenvalues are −2ν and ±
√

k2 + k−2 i. Since there are two imaginary eigen-

values, the fixed points are centers.

9.3.8 (Page 344)

a) Yes. D is the set r ≤ 1. It’s clear from ṙ = r(1 − r2) that r either stays at 0 or

approaches 1 as t → ∞. So trajectories starting from D will never leave the region.

b) Yes. Any open subset of D can be an open set of initial conditions that are attracted

to D (in fact they never leave D). The basin of attraction (we can speak of that even we

don’t know D is an attractor) of D is the whole plane.

c) No. The circle x2 + y2 = 1 is a proper subset of D. It’s also invariant and attracts an

open set of initial conditions (cf. part d).

d) Yes. First r∗ = 1 is a stable fixed point of ṙ = r(1 − r2), so x2 + y2 = 1 is invariant

and any initial condition with r > 0 will be attracted to r = 1. Secondly notice that that

σ̇ = 1, trajectories starting on the circle will wind along it and never stop. So there can be

no invariant proper subset of x2 + y2 = 1.

9.4.2 (Page 344)

a) Because the graph of f(xn) looks like a tent.

b) The fixed points satisfy x∗ = f(x∗), Hence x∗ = 0 or x∗ = 2
3 . Since the multiplier is

λ = f ′(x∗) = ±2, both these fixed points are unstable.

c) We can solve for p = f(q), q = f(p) where [p, q] constitutes a 2-cycle. Let p < 1
2 and

q > 1
2 , then 2p = q, p = 2−2q gives p = 2

5 , q = 4
5 . Since the multiplier is λ = [f(f(x))]′|x=p =

f ′(p)f ′(f(p)) = f ′(p)f ′(q) = −4, the 2-cycle is unstable.

d) Similarily, we can solve for the period-3 and period-4 points by noting that only

one of these points in the cycle is greater than 1
2 . Hence [29 , 4

9 , 8
9 ] and [ 2

17 , 4
17 , 8

17 , 16
17 ] are

the period-3 and period-4 solutions. (In fact, the general period-n solutions has the form

[ 21

2n+1 , 22

2n+1 , . . . , 2n

2n+1 ].) Since the multiplier for all a period-n orbit equal to
∏n

1 f ′(pi),

where pi are the points on the orbit, the multiplier is always greater than 1 and all the

periodic orbit are unstable.

10.1.2 (Page 388)

The fixed points satisfy x∗ = (x∗)3. Hence x∗ = 0 or x∗ = ±1. The multiplier is

λ = f ′(x∗) = 3(x∗)2. The fixed point x∗ = 0 is stable since |λ| = 0 < 1, and x∗ = ±1 is

unstable since |λ| = 3 > 1. If we keep pressing the appropriate function key of a pocket

calculater, unless we start at ±1, eventually we get very close to 0.
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10.1.6 (Page 388)

Line y = x intersects y = tan x infinitely many times, so there are infinitely many fixed

points. For any fixed point x∗ where x∗ = tan x∗, the multiplier λ = f ′(x∗) = sec2(x∗) is

always greater than 1 unless x∗ = 0. So they’re all unstable. Even in the marginal case

x∗ = 0, it’s clear from the cobweb that x∗ is also unstable since the positive part of the

curve y = tan x containing (0, 0) is always above y = x and the negative part below it.

Therefore unless we start with a fixed point, we are not likely to get a pattern no matter

how many times we press the button.

10.1.11 (Page 388)

a) Fixed points satisfy x∗ = f(x∗) = 3x∗ − (x∗)3, therefore x∗ = 0,±
√

2. The multiplier

λ = 3(1 − (x∗)2) is always greater than 1, so all these fixed point are unstable.

b,c) Here are the cobweb graphs for x0 = 1.9 (left) and x0 = 2.1 (right).
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d) Note that f(x) has local extrema equal to ±2 at x = ±1. From the graphs above, we

can see that if we start with an initial values x0 where |x0| < 2, the cobweb will stay inside

the square with corners at (±2,±2). However, if we start an initial value x0 where |x0| > 2,

then after the cobweb misses the first peak/valley of f(x), xn will get larger and larger.

10.3.4 (Page 390)

a) Fixed points satisfy x∗ = (x∗)2 + c, therefore

x∗ =
1 ±

√
1 − 4c

2
,
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where c ≤ 1
4 . The multiplier λ = 2x∗ = 1 ±

√
1 − 4c is always greater than 1 at the

greater fixed point, denoted by x1. So x1 is unstable. At the other fixed point x2 we have

−1 < λ < 1 when −3
4 < c < 1

4 , so x2 is stable when c > −3
4 , and unstable when c < −3

4 .

b) It’s clear from part a) that a saddle-node bifurcation occurs at c = 1
4 , where two fixed

points are created, and a flip bifurcation occurs at c = −3
4 , where x2 loses its stability.

c) To get the 2-cycles we apply f(x) = x2 + c to itself and obtain the equation

x = f(f(x)) = (x2 + c)2 + c.

This is a quartic equation, but recall that all the fixed points should satisfy this equation

and the fixed points are also roots of x = x2 + c. So we write x = f(f(x)) as

(x2 − x + c)(x2 + x + c + 1) = 0,

and get the other two roots

p, q =
−1 ±

√
−3 − 4c

2
,

which are real for c < −3
4 , thus a 2-cycle exists for all c < −3

4 . The multiplier of the 2-cycle

is

λ =
d

dx
(f(f(x))x=p = f ′(p)f ′(q) = 4pq.

Notice that p, q are roots of x2 + x + c + 1, so pq = c + 1. Then |λ| < 1 if −5
4 < c < −3

4 ,

those are the values of c for which the 2-cycle is stable. The 2-cycle is superstable when

λ = 0, i.e. c = −1.

d) In the bifurcation diagram below, solid lines indicate stable fixed points, dashed lines

indicate unstable fixed points, the pair of dashed-dot lines indicate stable 2-cycles. The

diagram is drawn according to the results in shown part a, b and c. Notice that the stable

part is also part of the orbit diagram.



7

−1.4 −1.2 −1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4
−1.5

−1

−0.5

0

0.5

1

1.5

2

Bifurcation parameter c

F
ix

ed
 p

oi
nt

s 
x

10.3.6 (Page 390)

a) Fixed points satisfy x∗ = rx∗ − (x∗)3, therefore

x∗ = 0,±
√

r − 1,

where r ≥ 1. The multiplier λ = r − 3(x∗)2 which equal to r for x∗ = 0 and 3 − 2r for

x∗ = ±
√

r − 1. For |r| < 1, zero fixed point is stable, while for 1 < r < 2 the fixed point

x∗ = ±
√

r − 1 is stable.

b) Suppose f(p) = q and f(q) = p and let s = q2 − r then we have

r(rq − q3) − (rq − q3)3 = q

q[r(r − q2) − q2(r − q2)3 − 1] = 0

q[−rs + (s + r)s3 − 1] = 0

q[s4 + rs3 − rs − 1] = 0

q(s − 1)(s + 1)(s2 + rs + 1) = 0

q(q2 − r − 1)(q2 − r + 1)(q4 − rq2 + 1) = 0

Solve for q and we have q = 0,±
√

r − 1,±
√

r + 1,±
√

r±
√

r2−4
2 . Note that the first three so-

lutions are the fixed point. Therefore the 2-cycles are [+
√

r + 1,−
√

r + 1]and [±
√

r+
√

r2−4
2 ,±

√

r−
√

r2−4
2

for r > 2.

c) For the 2-cycle [+
√

r + 1,−
√

r + 1], the multipler λ = f ′(p)f ′(q) = (r − 3(r + 1))2 =

(3+2r)2 which is always larger than 1 for r > −1. Therefore this 2-cycle is always unstable.
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For [±
√

r+
√

r2−4
2 ,±

√

r−
√

r2−4
2 , the multipler λ = f ′(p)f ′(q) = 9 − 2r2 which sits between

-1 and 1 for 2 < r <
√

5. Therefore these 2-cycles are stable for this range of values of r.

d) In the bifurcation diagram below, solid lines indicate stable fixed points, the pair

ofdashed-dot lines indicate stable 2-cycles.
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