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Abstract

This paper attempts to identify football players who have a similar style to a player

of interest. Playing style is not adequately quantified with traditional statistics, and

therefore style statistics are created using tracking data. Tracking data allow us to

monitor players throughout a match, and therefore include both “on-the-ball” and

“off-the-ball” observations. Having developed style features, tractable discrepancy

measures are introduced that are based on Kullback-Leibler divergence in the context

of multivariate normal distributions. Examples are provided where a pool of players

from the Chinese Super League are identified as having a playing style that is similar

to players of interest.
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1 INTRODUCTION

In association football (i.e. soccer), most managers have a sense of how they might improve

their side. For example, they may feel the need to acquire a holding midfielder, a centre

back or a “number 9”. In professional football, determining a team’s needs is an important

problem, and filling these needs may be accomplished through various means including

trades, transfers, player development and drafting.

However, the identification of potential players is a challenging problem as sometimes

players do not meet expectations. In this paper, we pose a simple problem - can we identify

players who are similar in style to a given player? For example, all teams would welcome a

star player like Kylian Mbappe on their team. But there is only one Kylian Mbappe, and

he is not likely a realistic acquisition. Therefore, it may be of interest to identify a pool of

players who have stylistic characteristics that are similar to Mbappe.

Playing style is an important component of success. Yet, historically, it has been difficult

to analyze playing style in invasion sports (e.g., football, hockey, rugby, basketball) since

these sports are fluid, with players in continual motion. Motion on the field can be both

complex and subtle. The landscape for studying playing style has changed in recent years

with the advent of player tracking data. With player tracking data, the location coordinates

for every player on the field are recorded frequently (e.g. 10 times per second in football).

Player tracking data are particularly important in football because traditional statistics

only consider “on-the-ball” activities where players typically have the ball at their feet for

less than three minutes per match (https://www.pastemagazine.com/soccer/football/25-

johan-cruyff-quotes/). Tracking data also allow us to investigate what players are doing

when they are off-the-ball, and this is a component of style.

Of course, player style and player role are slightly different concepts. For example, a

manager who has more of a defensive focus may require that a particular midfielder does

not play too high up the pitch. This would limit the player’s intrinsic attacking style.

Our methods consider an individual’s playing style subject to the system in which they

currently play. It is understood that managers have an influence on player roles. In the

characterization of playing style, we have attempted to select playing features that are more

personal and are less influenced by player role.

With detailed tracking data, the opportunity to explore novel questions in sport has

never been greater. The massive datasets associated with player tracking also introduce

data management issues and the need to adopt and develop modern data science methods
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beyond traditional statistical analyses. Gudmundsson and Horton (2017) provide a review

of spatio-temporal analyses that have been used in invasion sports where player tracking

data are available. For a review of statistical contributions that have been made across

major sports, see the text by Albert et al. (2017). Specifically in football, player tracking

data have been successfully utilized by McHale and Relton (2018) to identify key players

in a team using network analysis. In this paper, we use tracking data to develop statistics

related to the individual playing styles of outfield players.

Most of the literature that involves playing style in football is concerned with style at the

team level rather than at the player level. For example, Shen (2022) and Epasinghege Dona

and Swartz (2023) examined pace of play in football. However, the most investigated aspect

of team playing style in football concerns formations. For example, the book “Inverting

the Pyramid” (Wilson 2013) considers the history of football tactics with an emphasis on

positional play and player roles. It is now common for television broadcasts to provide

graphical statistics that depict the average location of each player during a match. Such

information is useful in determining match strategy as it can highlight features such as

gaps in player alignment. There are also technical papers that investigate player formation.

For example, Shaw and Glickman (2019) used tracking data and clustering methods to

determine a team’s offensive and defensive formations. This is useful as the fluidity of the

sport and changing tactics sometimes make it difficult to distinguish between formations

(e.g. 4-4-2 versus 3-5-2). Goes et al. (2021) also identified formations using tracking data

and related attacking success to formations. Other papers that address team playing style

in football include Hewitt, Greenham and Norton (2016), Lagos-Peñas, Gómez-Ruano and

Yang (2017) and Gómez et al. (2018).

Although the literature on team-level playing style in football is abundant, little work

has been done on the style of individual players. Decroos and Davis (2020) developed

18-dimensional player vectors and utilized machine learning techniques such as clustering

and nearest neighbor analyses to characterize playing style. However, they only considered

offensive actions. Decroos, Van Roy and Davis (2021) proposed a mixture-model based soft

clustering approach to analyze playing style. A major difference between their approaches

and the methods developed in this paper is that the football actions that are considered

by Decroos and Davis (2020) and Decroos, Van Roy and Davis (2021) are determined via

event data. Event data consist of on-the-ball activities, and hence, omit off-the-ball player

movements which comprise the vast majority of play in football. In addition, this paper

takes a different approach and introduces statistical discrepancy measures and stochastic
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models to discriminate players. In the sport of basketball, individual playing style has been

investigated by Skinner and Guy (2015) who used tracking data to learn player skills.

Our methods provide a data-driven and objective approach for the stylistic compar-

ison of football players. With scouting, comparisons are typically subjective. With the

increasing availability of tracking data, our methods may result in significant time savings

when searching the universe of football players. Earlier, we had motivated the problem by

considering the search for the next Mbappe. In fact, football is widely considered to be a

weak-link sport. That is, a team’s success is largely predicated on the strength of its weakest

players rather than the strength of its strongest players (a strong-link sport). If this is true,

then searching replacements for a team’s weakest link does not necessarily involve finding a

great replacement player. Rather, a team is simply looking for improvements involving the

weakest links. Therefore, it is possible that there are many potential replacements that will

help a team improve, and the identification of such players is an exercise of considerable

value. Gill and Swartz (2019) characterize the degree of weak and strong links in doubles

sports.

In Section 2, we describe the player tracking data that are used in our analyses. We then

use the tracking data to develop features that are related to individual playing style. In

Section 3, we develop methods from multivariate statistics to identify players who are similar

in style to a player of interest. The player characteristics form a multivariate distribution

and we use distributional distance measures (i.e. Kullback-Leibler divergence) to assess

similarity. Two estimation schemes of player parameters are introduced; a basic approach

and a Bayesian approach based on a more complex model. Section 4 identifies players who

are similar to a specific player of interest, Marouane Fellaini, and a second player, Graziano

Pellè. A reliability analysis and a prior sensitivity analysis are also provided. We conclude

with a short discussion in Section 5.

2 DATA

Our data consist of matches from the 2019 season of the Chinese Super League (CSL). The

league involved 16 teams where each team played every opponent twice, once at home and

once on the road. From these potential 240 matches, we have three missing matches.

Event data and tracking data are collected independently where event data consist of

on-the-ball actions such as tackles and passes, and these are recorded along with auxiliary

information whenever an “event” takes place. The events are manually recorded by tech-
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nicians who view film. Both event data and tracking data have timestamps so that the

two files can be compared for internal consistency. There are various ways in which track-

ing data are collected. One approach involves the use of Radio Frequency Identification

(RFID) technology where each player and the ball have tags that allow for the accurate

tracking of objects. In the CSL dataset, tracking data are obtained from video and the

use of optical recognition software. The tracking data consist of roughly one million rows

per match measured on 7 variables where the data are recorded every 1/10th of a second.

Each row corresponds to either the ball or a particular player at a given instant in time. Of

particular interest, a row corresponding to a player contains the (x, y) coordinate for the

player which provides their position on the field. With 237 matches of roughly one million

rows, the dataset may be thought of as big data.

2.1 Features Involving Style

Football is a team game. Consequently, common player statistics not only reflect their play

but also the play of teammates and the opposition. For example, a striker who does not

receive service from the midfield is unlikely to score.

In this subsection, we attempt to define features/statistics that are intrinsic to a player’s

individual style and rely less on the actions of teammates and the opposition. Values of

the style statistics that we propose can neither be assessed as good nor bad; they describe

qualities such as positioning and role, and are relative to the amount of possession by the

player’s team. To illustrate the point, there are great players who play further up the pitch

and there are great players whose positioning is deeper. Our methods can be applied to all

playing positions excluding the goalkeeper.

In Table 1 (see back of manuscript), we propose variables that describe playing style.

The calculation of these features is facilitated through the use of tracking data since many of

the variables relate to “off-the-ball” activities which can only be measured by knowing the

whereabouts of the player at all times during a match. To our knowledge, the development

of individual style features in football is novel.

In Table 1, we have divided the variables into three broad categories, dividing the

field into an offensive third, a middle third and a defensive third. It is well-known that

player responsibilities change according to these categories. It is also well-known that

responsibilities change according to possession (team of interest versus the opponent), and

hence, the variables are also divided according to possession.
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We have developed the features in Table 1 by assessing the options that are available

to players. This has been done using domain knowledge of football. For example, when a

player is in possession of the ball, the player has three options: shoot, pass or dribble. When

a teammate has the ball, the player has choices concerning movement. When the opponent

has possession, we have developed features by considering movement, interceptions and

tackles. For the positional variables, x1, x8, x12, x18, x22 and x26, we recognize the symmetry

of football. That is, the responsibilities and actions on the right side of the field tend to

mirror those on the left side of the field. Therefore, we have flipped right-sided locations to

the left side. With this adjustment, a left fullback will not look too different from a right

fullback, for example, in terms of positioning. Specifically, to develop positional features

involving styles, we create the following coordinate system. We first set the middle of the

pitch as the origin. The x-axis and y-axis are parallel to the touch lines and end lines,

respectively. Each team has its own coordinate system with the x-axis direction being the

team’s attacking direction. To flip right-sided locations to the left side, negative y-axis

values are adjusted to be positive.

An important feature of the statistics proposed in Table 1 is that they have been carefully

developed so that stylistic comparisons are sensible. For example, the use of percentages for

some of the statistics allows us to sensibly compare players from weaker teams with those

from stronger teams. For example, a stronger team will typically have more shots, and

therefore, a player’s percentage of a team shots is more indicative of style than the player’s

total number of shots. Also, the stylistic variables permit the comparison of players from

different teams and leagues since the features are defined relative to team play and are not

absolute measures. Now, a case can be made that a player’s style may vary according to the

demands imposed by their manager. However, we take the view that the statistics reflect

a player’s current style, and not an alternative style that a player may or may not be able

to adopt. The ability to compare the style of players from different leagues is potentially

of great benefit since football is a world game, and it is impossible to have comprehensive

scouting throughout the world.

We wish to emphasize the utility of the proposed variables in Table 1 that are based

on expected possession value EPV (i.e. x2, x4, x13, x15). The idea behind EPV is that there

are positions on the field that are more threatening from a goal-scoring perspective. For

example, having possession six feet directly in front of goal provides a better goal-scoring

opportunity than 60 feet from goal near the side of the pitch. Whereas different factors are

utilized in the various EPV formulae, the most simple derivation of EPV at a particular
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region of the field involves the ratio of the number of goals scored from that location by

the number of shots taken from that location. The EPV statistics in Table 1 are intended

to quantify the attacking quality of actions. The calculation of EPV was made publicly

available by Shaw (2019). When making a pass, we consider the increase in EPV from

where the pass was initiated to its final destination. We modify the EPV covariate of a

player by setting it equal to zero if the player is in an offside position. EPV provides us

with meaningful information concerning player movement.

All of the variables in Table 1 have been standardized such that they have zero mean

and unit variance. This is a common pre-processing step in multivariate statistics such that

large variables do not have undue influence in regression procedures. The variables proposed

in Table 1 may obviously be modified. However, our main objective is the development of

a measure of player discrepancy (Section 3) which is an amalgam of the features in Table

1.

The data management issues and computational tasks associated with the collection of

the features in Table 1 are considerable. For a given player, we need to step through all

of the frames of the tracking data for all matches throughout the season. Possession needs

to be noted and statistics accumulated in each frame. The computational time associated

with this task is roughly two hours on a laptop computer.

Summary statistics for the features in Table 1 are presented in Table 2. These statistics

are calculated across all players and all matches, and are presented prior to standardization.

We observe that, players generally position themselves further back on the pitch when the

ball is in the defensive and middle thirds, compared to the offensive third. This pattern is

illustrated by the smaller values of x coordinates for x22 and x12 compared to x1, as well

as the decreased x coordinates values for x26 and x18 relative to x8. Furthermore, it is

observed that x values of player’s positional variables are smaller when the opponent has

possession, with x values for x8, x18 and x26 smaller than those of x1, x12 and x22. This

suggests that when the opponent is in possession of the ball, players transition between

offensive and defensive roles, moving back to support defense. As previously discussed in

Section 2.1, locations on the right side have been mirrored to the left, leading to positive

values of all positional y values. In addition, we observe a decreasing trend in x9, x19 and

x27. This shows a tactical response where players get closer to their nearest opponent when

the ball gets closer to the player’s own goal.
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3 METHODS

Having developed the playing style statistics in Table 1, the methods proposed here for

assessing player similarity are straightforward. Recall that the statistics listed in Table 1

are obtained for each match.

We refer to the foundational player of interest as player zero. For this player, define

the k-th match vector x
(0)
k = (x

(0)
k1 , . . . , x

(0)
kn )′ for matches k = 1, . . . ,m(0) as multivariate

normal with dimension n = 39 whose component statistics are described in Table 1. Note

that the dimension does not match the number of table entries; this is explained by noting

that the 9 positional variables x1, x3, x8, x12, x14, x18, x22, x23 and x26 have both an x and y

coordinates. We write

x
(0)
k ∼ Normaln(µ(0),Σ(0)) (1)

where independence is assumed across the matches. Multivariate normal distributions

are particularly attractive for this application since they provide interpretable correlation

parameters via Σ that allow us to model the relationships between the variables in Table

1. For example, when making a decision between passing or shooting, only one option can

be chosen. Therefore, passing and shooting are negatively correlated.

3.1 Discrepancy Measures based on Kullback-Leibler Divergence

The mean vector µ(0) = (µ
(0)
1 , . . . , µ

(0)
n )′ of the foundational player is estimated via µ

(0)
i =∑m(0)

k=1 x
(0)
ki /m

(0) and the covariance matrix Σ(0) = (σ
(0)
ij ) is estimated via σ

(0)
ij =

∑m(0)

k=1 (x
(0)
ki −

µ
(0)
i )(x

(0)
kj − µ

(0)
j )/m(0).

We also have N additional players whom we would like to compare against player zero.

For the j-th player, we use similar notation, and for the k-th match, we write

x
(j)
k ∼ Normaln(µ(j),Σ(j)) (2)

where independence across matches is again assumed. For these comparison players, the

mean vectors and covariance matrices are estimated similarly.

Our goal in comparing players is based on the recognition that there is variability in

performance. Therefore, rather than directly compare observed statistics, it seems sensible

to compare distributions from which the statistics arise. Accordingly, we use the Kullback-
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Leibler divergence measure (Kullback and Leibler 1951) which describes the discrepancy

in the distribution of x
(j)
k from the distribution of x

(0)
k . In general, the Kullback-Leibler

divergence of a distribution with density f relative to a distribution with density g is

given by KL(f | g) =
∫
f(x) ln(f(x)/g(x)) dx. In the context of the multivariate normal

distributions given by (1) and (2), the measure is given by

KL(j | 0) =
1

2

[
(µ(j) − µ(0))′(Σ(0))−1(µ(j) − µ(0)) + tr((Σ(0))−1Σ(j)) + ln

|Σ(0)|
|Σ(j)|

− n
]
.(3)

Proof: Using
〈〉

to denote the integration operator with respect to f and using properties

of the trace function, we have

KL(j | 0) =

〈
ln
|Σ(j)|−1/2

|Σ(0)|−1/2
exp

[
−1

2
(x− µ(j))′(Σ(j))−1(x− µ(j))

]
exp

[
−1

2
(x− µ(0))′(Σ(0))−1(x− µ(0))

]〉
=

1

2

〈
ln
|Σ(0)|
|Σ(j)|

− (x− µ(j))′(Σ(j))−1(x− µ(j)) + (x− µ(0))′(Σ(0))−1(x− µ(0))

〉
=

1

2

[
ln
|Σ(0)|
|Σ(j)|

−
〈
tr((Σ(j))−1(x− µ(j))(x− µ(j))′)

〉
+
〈
tr((Σ(0))−1(x− µ(0))(x− µ(0))′)

〉]
=

1

2

[
ln
|Σ(0)|
|Σ(j)|

− tr((Σ(j))−1(Σ(j))) +
〈
tr(Σ(0))−1(x− µ(j) + µ(j) − µ(0))(x− µ(j) + µ(j) − µ(0))′

〉]
=

1

2

[
ln
|Σ(0)|
|Σ(j)|

− n+ tr(Σ(0))−1(Σ(j) + (µ(j) − µ(0))(µ(j) − µ(0))′)

]
=

1

2

[
ln
|Σ(0)|
|Σ(j)|

− n+ tr((Σ(0))−1Σ(j)) + (µ(j) − µ(0))′(Σ(0))−1(µ(j) − µ(0))

]
. Q.E.D.

Therefore, our procedure is conceptually and computationally simple. We consider

a player of interest (player zero) and we specify players j whom we wish to compare

against player zero. Then, following (3), KL(j | 0) is calculated for all potential play-

ers j = 1, . . . , N . We then rank the players where small values of KL(j | 0) indicate greater

similarity involving player j to player zero.

Now, consider player zero whom we believe to be excellent, and players j1 and j2.

Suppose further that KL(j1 | 0) < KL(j2 | 0). We emphasize that this does not imply that

player j1 is a better player than j2. If we look at the descriptions of the stylistic variables

in Table 1, we see that none of these statistics definitively describe quality. There is no

directional meaning in the statistics in terms of excellence. For example, one player could
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play further up the pitch than another player. Instead, KL(j1 | 0) < KL(j2 | 0) implies

only that player j1 is more similar in style to player zero than is player j2. The quality of

players is a separate issue.

3.2 Discrepancy Measures based on a Bayesian Model

In the construction of the multivariate normal distributions (1) and (2), it may be sensible

to assume that the covariance matrices Σ(j), j = 0, . . . , N have an underlying similarity.

For example, it is reasonable to assume that players who attack and play further up the

field are likely to take more of a team’s shots, and we would expect this pattern to hold

across all players.

To implement this idea, we consider a hierarchical model where we retain the dis-

tributional assumptions (1) and (2), but further assume that the covariance matrices

Σ(0), . . . ,Σ(N) form a sample from an underlying distribution. That is, the Σ’s may be

different but they are all related in the sense that they arise from a common distribution.

Hierarchical models are conveniently handled in a Bayesian framework. Therefore, we

complete the Bayesian specification by introducing the prior distributions

Σ(j) ∼Wishart−1(V, v) (4)

and

µ(j) ∝ 1

for j = 0, . . . , N .

The n by n matrix V and the degrees of freedom v are hyperparameters in the Bayesian

framework. We specify the hyperparameters in Section 3.3 and we provide a prior sensitivity

analysis in Section 4.6.

To analyze the proposed Bayesian model, we note that posterior estimates for µ(j) and

Σ(j), j = 0, . . . , N cannot be obtained analytically. Alternatively, a sampling approach is

used based on a Markov chain Monte Carlo (MCMC) implementation, where we estimate

the posterior means of µ(j) and Σ(j) for j = 0, . . . , N by averaging the MCMC output. Here,

MCMC is carried out using a Gibbs sampler. We derived the corresponding full conditional

distributions and implemented the Gibbs sampler in the R programming language.

To summarize the approach, posterior samples are generated using MCMC. The sam-
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ples are then used to obtain parameter estimates which in turn allows us to calculate the

discrepancy measures given by equation (3). The discrepancy measures allow us to compare

the playing styles between player zero and player j, j = 1, . . . , N .

3.3 Specification of the Hyperparameters in Section 3.2

We now consider the specification of the hyperparameters V and v introduced in the prior

distribution (4).

A property of the inverse Wishart distribution is that E(Σ(j)) = V/(v − n − 1) for

j = 0, . . . , N . Therefore, we let V = (v − n− 1)S where S is the sample covariance matrix

based on data from all players. It follows that E(Σ(j)) = S such that all players have a

common expected covariance matrix. This specification may be considered empirical Bayes

since the hyperparameter V is a function of the data (Carlin and Louis 2000).

To complete the hyperparameter specification, we need to set the degrees of freedom

parameter v. We prefer a prior distribution that is diffuse such that it does not overinfluence

the data. With this in mind, it is a property of the inverse Wishart distribution that

Var(Σ(j)) is finite and decreasing for v > n + 3. We therefore set v = n + 4 since this is

the integer that leads to minimum but finite variance. Larger values of v would lead to

posterior estimates of Σ(j) that are increasingly similar.

4 EXAMPLES

We first consider Marouane Fellaini of Shandong Luneng Taishan as a player of interest

(i.e., player zero). Although the CSL is not one of the top leagues in the world, Fellaini is

well-known as a former Belgium international, and he is also known for his seven seasons

(2013-2019) playing with Manchester United of the English Premier League. He is a visible

player on the pitch, standing 6’ 5”. His physical characteristics suggest that he may have

an unusual playing style.

As the CSL allows only a fixed numbers of internationals, players such as Fellaini have

commanded high salaries which adds to their notoriety. Should a player like Fellaini leave

Shandong Luneng, there would be considerable interest in his replacement. Note that

Fellaini has a playing style that contributes to his uniqueness; for example, it is believed

that Fellaini is aggressive (see https://theexecutionersbong.wordpress.com/2012/03/01/is-

marouane-fellaini-the-top-flights-most-aggressive-midfielder/).
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In seeking potential replacements for Fellaini, we consider the N = 28 midfielders in the

CSL who each played at least 1500 minutes and 20 matches during the 2019 season.

4.1 Consideration of the Features in Table 1

The discrepancy measures introduced in Section 3.1 and Section 3.2 are omnibus statistics

that take into account the totality of the features listed in Table 1.

It may also be interesting to investigate the features on an individual basis. We therefore

refer to Fellaini as the foundational player (player zero) with average feature vector x̄(0) =

(x̄
(0)
1 , . . . , x̄

(0)
n )′ averaged over Fellaini’s matches. Likewise, the average feature vector for

player j is given by x̄(j) = (x̄
(j)
1 , . . . , x̄

(j)
n )′, j = 1, . . . , N . To get a sense of the degree to

which Fellaini differs from the other players with respect to feature l, l = 1, . . . , n, we define

bl =
N∑
j=1

(x̄
(0)
l − x̄

(j)
l )2 . (5)

We identify the five largest values bl in (5), and for feature l, we calculate the extent

x̄
(0)
l − x̄

(j)
l (6)

to which player j differs from Fellaini with respect to feature l.

In Figure 1, we provide boxplots using the statistics given in (6) for the five features of

interest. The five features with largest bl values are x2 and y coordinates of x18, x26, x8, and

x1. Fellaini played most of his matches as a central midfielder who operates in the middle

of the field, focusing on both defense and attack. Among the five features, x2 and the y

coordinate of x1 characterize a midfielder’s offensive style, while x18, x26, and x8 relate more

closely to defensive positioning. The most prominent statistic x2 is the average EPV when

the ball is in the offensive third when the team is in possession. Fellaini’s x2 statistic is much

larger than almost all other midfielders; this suggests that he gets himself into dangerous

positions more often. Therefore, Fellaini makes great contributtions to his team’s offensive

dynamics. The only player who has a larger average x2 is Paulinho, another well-known

player in the CSL. This indicates a similarity in Fellaini and Paulinho’s aggressive midfield

roles. We note that all prominent positional features are expressed via the y coordinates,

the extent to which players move downfield. Fellaini played most matches as a central

midfielder, and therefore, his y coordinates shown in Figure 1 are smaller than those of
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most players.

−4

−2

0

2

x2 y coordinate of x18 y coordinate of x26 y coordinate of x8 y coordinate of x1

 

 

Figure 1: Boxplots of the five most prominent features where players differ from Fellaini.

4.2 The Multivariate Normal Framework

In Section 3.1, we proposed a statistic to assess the similarity of playing style between a

player of interest and candidate players. The idea was extended in Section 3.2 where a

Bayesian model was proposed that recognized similarity in the covariance matrices Σ(j)

across players.

An assumption in both approaches is that match vectors follow multivariate normal dis-

tributions. The multivariate normal distribution is appealing as we expect the distribution

of features to have a concave shape; i.e., as we move away from the mean value of a feature,

fewer players will exhibit extreme values of the feature. Also, the multivariate normal is a

tractable distribution which leads to a closed form expression (3) for the Kullback-Leibler

discrepancy measure. In addition, the multivariate normal distribution has a covariance

structure which leads to interpretability when comparing features.

We use the Henze–Zirkler test (Henze and Zirkler 1990) to justify the validity of the mul-

tivariate normality assumptions for Fellaini (player 0) and the 28 comparison midfielders.

The Henze-Zirkler test statistic is dependent on the sample covariance matrix. However,
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when the sample size is small or close to the variable dimension (m(j) ≤ n), the sample

covariance matrix tends to singularity, and hence, the Henze–Zirkler test cannot be directly

used. In the case of Fellaini, the sample size is 20 ≤ m(j) ≤ 30 and the variable dimension

is n = 39. One possible approach to solving this issue is to divide matches into halves.

This results in 7 players having at least 40 complete halves of data (see Section 4.3 for more

details). The Henze–Zirkler test yields p-values that are greater than 0.12 for each of these

7 players, which implies that the normality assumption for match vectors is reasonable.

As a further check on the adequacy of normality, we have produced histograms to inves-

tigate modality and skewness of the underlying features. Recall that normal distributions

are unimodal and symmetric. In Figure 2, we provide histograms for a sample of standard-

ized features taken from Table 1. Figure 2 provides no evidence of such violations from

normality.
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Figure 2: Histograms for a subset of five standardized features corresponding to midfielders.

4.3 Analysis using the Basic Approach

We first consider the approach presented in Section 3.1 which does not specify any rela-

tionship between the covariance matrices Σ(j). Recall, we have matrices Σ(j) that are n

by n (where n = 39) corresponding to the style statistics presented in Table 1. In this

application, the midfielders of interest played a minimum of m(j) = 20 matches. Now, it

is a fact of linear algebra that the estimated matrix Σ(j) is not full rank (i.e., not positive

definite) if m(j) ≤ n. This is problematic for the methods of Section 3.1 since this leads
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to a zero determinant for Σ(j) in equation (3). Consequently, the style statistic KL(j | 0)

is undefined. A potential solution to this difficulty is to divide the matches into halves

and collect data for each half. This effectively doubles the number of observations for each

player such that m(j) ≤ n is avoided.

Although the “fix” that divides matches into halves is appealing, we have a remaining

problem regarding the estimation of Σ(j). Some players have incomplete data, which can

also result in covariance matrices that are not positive-definite. For example, Zhongguo

Chi is a midfielder from the Beijing Sinobo Guoan Football Club. He played 23 matches

as a midfielder. For two matches, he didn’t play during the first half. Also, in 8 halves, he

didn’t have any successful passes in the offensive third, which led to NAs for the variables

x3 and x4. As a result, Zhongguo Chi had at most m = 2(23)− 2− 8 = 36 complete halves

of data, and since m = 36 ≤ n = 39, Chi’s covariance matrix is not positive-definite. In

fact, among the 28 midfielders, only 7 players had at least n = 40 complete halves of data.

The results for these 7 players are provided in Table 3.

Player Team KL(j | 0)

Augusto Renato Beijing Sinobo Guoan 1.75

Paulinho Guangzhou Evergrande Taobao 2.11

Marek Hamš́ık Dalian Yifang 3.11

Xi Wu Jiangsu Suning 4.24

Javier Mascherano Hebei China Fortune 5.36

Hang Li Wuhan Zall 6.60

Dingyang Zhou Henan Construction 6.81

Table 3: CSL midfielders and the discrepancy measure KL(j | 0) with respect to Marouane
Fellaini of Shandong Luneng. The methods are based on the approach described in Section
3.1 where we have effectively doubled the number of observations by dividing matches into
halves. For ease of presentation, the KL(j | 0) entries in the table ought to be multiplied
by 103.

Although the approach described in Section 3.1 is simple and is a good starting point,

we recognize the limitation of dividing matches into halves to effectively double the number

of observations. First, there is less data in halves than in full matches, and this introduces

added variability in the Kullback-Leibler statistic. Second, it is possible that second half

tactics and style may differ from the first half. Of course, with larger datasets (e.g. multiple
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years worth of player data), there may be no need to divide matches into halves, and

therefore the methods of Section 3.1 can be easily implemented.

4.4 Analysis using the Bayesian Model

4.4.1 Marouane Fellaini

We now consider the preferred approach described in Section 3.2 which introduces similarity

between the covariance matrices Σ(j). Table 4 provides a ranked order of the Kullback-

Leibler statistic (3) which compares CSL midfielders to Fellaini. The table includes the 7

players out of the 28 midfielders who are most similar to Fellaini. We observe that Paulinho

from Guangzhou Evergrande Taobao is most similar in style to Fellaini. Given Fellaini’s

notoriety and excellence, it might be assumed that he does a lot of things “correctly” on

the field in terms of style. One might therefore draw the connection that Paulinho also does

good things on the field, and this is supported by his selection over many years (2011-2018)

to the Brazilian National Team. Like Fellaini, Paulinho is also a marquee foreign player in

the CSL. Paulinho has been described as “bringing energy and power” to football (del Rio

2017) which is also reminiscent of Fellaini’s aggressive off-the-ball style (Wu and Swartz

2023). Among the 22 matches that Fellaini played during the season, he was characterized

as a central midfielder for 18 matches, and a holding central midfielder for 4 matches. As

expected, the majority of the 7 players who are most similar to Fellaini in Table 4 often

played as central midfielders. For example, Paulinho, Zheng, Hamš́ık, Wang, and Wu played

as central midfielders for 88.46%, 85.71%, 78.26%, 80.00%, and 92.31% of their matches,

respectively.

It is interesting to compare Table 3 with Table 4. Three of the top four players who

are most similar to Fellaini in Table 3 also appear in the Table 4 list. However, there are

some troubling aspects concerning the comparison of Table 3 and Table 4. For example,

the most similar player to Fellaini in Table 3 (Renato) does not appear in Table 4. Also,

the scale of the KL(j | 0) values in Table 3 are roughly two magnitudes larger than those

in Table 4. We suggest that the Table 3 values are less trustworthy. The greater variability

of dividing game data into halves is one reason for the inflated discrepancy measures. The

other reason is that the estimated covariance matrices from Table 3 are much too variable

and cause great differences in style statistics between players and Fellaini. In Section 4.5,

we demonstrate that the methods of Section 3.2 leading to Table 4 are reliable.
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Player Team KL(j | 0)
Paulinho Guangzhou Evergrande Taobao 32.37
Xiaogang Zhu Dalian Yifang 38.69
Kaimu Zheng Tianjin Teda 39.06
Marek Hamš́ık Dalian Yifang 39.38
Qiuming Wang Hebei China Fortune 39.64
Xi Wu Jiangsu Suning 40.71
Bowen Huang Guangzhou Evergrande Taobao 43.73

Table 4: CSL midfielders and the discrepancy measure KL(j | 0) for the 7 most similar
players to Marouane Fellaini. The methods are based on the Bayesian approach described
in Section 3.2 where similarity between the covariance matrices Σ(j) is implemented based
on the chosen hyperparameters of Section 3.3.

4.4.2 Graziano Pellè

As a second example, we consider an analysis involving Graziano Pellè of Shandong Luneng.

Unlike Fellaini who is a midfielder, Pellè is a forward. Pellè is also well-known, having played

internationally for Italy and also for Southampton of the English Premier League during

the years 2014-2016.

For this analysis, Pellè is now the foundational player zero. We consider the preferred

Bayesian analysis using the methods described in Section 3.2. To obtain a pool of com-

parison players for Pellè, we consider forwards in the CSL who each played at least 1500

minutes during the 2019 season. This yields a subset of N = 21 players against whom we

can compare Pellè.

In Table 5, we provide the results involving the 7 players out of the 21 forwards who are

most similar to Pellè. Zahavi from Guangzhou R&F is most similar in style to Pellè. They

shared similarities in many aspects. For example, they both excelled at goal scoring and

creating spaces for teamates. During the 2019 season, Pellè scored 17 goals, sixth in the

league, while Zahavi was the top scorer in the league with a total of 29 goals. Other players

in Table 5 also had exceptional scoring ability. Elkeson, Kardec, and Wagner scored 18, 14,

and 13 goals, and they ranked third, eighth, and ninth in goalscoring, respectively. Pellè

played as a central forward in all his matches. Similarly, every player in Table 5 played at

least 90% of their matches as a central forward. Elkeson is listed with two teams due to a

transfer during the season.
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Player Team KL(j | 0)
Eran Zahavi Guangzhou R&F 37.86
Yang Xu Tianjin Tianhai 38.72
Elkeson Shanghai SIPG/Guangzhou Evergrande Taobao 43.32
Kardec Chongqing SWM 44.90
Yuning Zhang Beijing Sino Guoan 50.34
Makhete Diop Beijing Renhe 54.36
Dandro Wagner Tianjin Teda 56.46

Table 5: CSL forwards and the discrepancy measure KL(j | 0) for the 7 most similar
players to Graziano Pellè. The methods are based on the Bayesian approach described in
Section 3.2 where similarity between the covariance matrices Σ(j) is implemented based on
the chosen hyperparameters of Section 3.3.

4.5 Reliability Analysis

Reliability is a critical component of analyses. When introducing new methods, it is impor-

tant to demonstrate that similar results are obtained when data are collected on different

occasions.

To investigate the reliability of the discrepancy statistic (3) using the Bayesian methods

of Section 3.2, we divide Fellaini’s season (22 matches) into 10 home matches and 12 road

matches. We then introduce a Fellaini statistic x(F1) based on five randomly selected home

matches and six randomly selected road matches. A complementary Fellaini statistic x(F2)

is then obtained based on the remaining matches.

In Table 6, we calculate KL(j | F1) for j = F2 and for the four midfielders who are most

similar to F1. We observe that KL(F2 | F1) is the smallest entry which demonstrates the

reliability of the approach. Note that Fellaini’s style should be more similar across his own

matches than when he is compared to other players. Note also that the three of the four

non-Fellaini players in Table 6 also appear in Table 4.
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Player Team KL(j | F1)

x(F2) Shandong Luneng 24.29

Paulinho Guangzhou Evergrande Taobao 29.81

Qiuming Wang Hebei China Fortune 30.30

Xi Wu Jiangsu Suning 33.42

Huikang Cai Shanghai SIPG 33.67

Table 6: CSL midfielders and the discrepancy measure KL(j | F1) corresponding to the
reliability analysis of Section 4.5. The players listed are Fellaini F2 and the four other
players who are most similar to Fellaini F1.

Besides Fellaini, we also conducted a reliability check for the 28 midfielders. For each

player, we treated him as player 0 and then divided his season into home and road matches.

We then randomly selected half of the home and away matches to produce the statistic x(F1)

with the other half of the matches providing the statistic x(F2). We calculated the Kullback-

Leibler divergence to rank the players. Our results show that in 82.76% of the cases, the

player’s style is most similar to his own. Decroos and Davis (2020) and Decroos, Van Roy

and Davis (2021) did similar experiments. Whereas we split the matches in one season for

the reliability check, they compared a player’s style across two seasons in the top European

soccer leagues. In Decroos and Davis (2020), they found that a player’s style matched

his own 38.2% of the time. The subsequent study by Decroos, Van Roy and Davis (2021)

increased the percentage to 48.2%.

4.6 Prior Sensitivity Analysis

It is interesting to investigate the degree to which the discrepancy measure developed in

Section 3.2 depends on the choice of the hyperparameters selected in Section 3.3. Recall

that the hyperparameters V and v in (4) were chosen with the intention that the data

impact the posterior more than the prior.

In Table 7, we expand the results from Section 4.4.1 based on the preferred prior de-

veloped in Section 3.3. The expansion now includes the 10 players out of the 28 CSL

midfielders who are most similar to Fellaini based on the preferred prior. The results are

given in the first data column of Table 7. We concentrate on the ranks of the players (in

terms of similarity to Fellaini) as we recognize that the Kullback Liebler statistic (3) is

19



based on samples from the posterior, and is therefore sensitive to the prior specification.

For comparison with the preferred prior, we first consider the alternative prior Σ(j) ∼
Wishart−1(I, n+2) for j = 0, . . . , N where the covariance matrices are assumed statistically

independent. Unlike the prior specification in Section 3.3, this prior does not depend on

the data and therefore the resultant procedure is not empirical Bayes. This prior may be

viewed as a default prior which is even more diffuse. The results of the Fellaini similarity

study based on the diffuse prior are given in the second data column of Table 7.

When comparing the more diffuse prior to the preferred prior, we observe that there is

rough agreement in the ranks. That is, players that are deemed similar to Fellaini using

the preferred prior are also similar to Fellaini using the more diffuse prior. The agreement

in the two analyses is reassuring since both frameworks are intended to rely strongly on the

data.

As a contrast, we now consider the use of a more informative prior. Accordingly, we

remove the variability associated with the prior Σ(j) and instead set Σ(j) = S for j =

1, . . . , N where S is the sample covariance matrix based on data from all players. This

strict specification may be reasonable as it simply states that the stylistic variables from

Table 1 have the same covariance structure for all players. In this case, only µ(0), . . . , µ(N)

are generated from the posterior, and the discrepancy statistic (3) reduces to

KL(j | 0) =
1

2

[
(µ(0) − µ(j))′S−1(µ(0) − µ(j))

]
.

The third data column of Table 7 provides the results associated with the more infor-

mative prior. Again, we see that the top few players deemed similar to Fellaini using the

preferred prior are also similar to Fellaini using the more informative prior. As we look

beyond the top-ranked players, variations in the rankings in the lists become evident, which

can be attributed to the influence of the prior. The greates discrepancy in the analyses

concerns Qiuming Wang; he is ranked 5th, 7th and 14th in similarity to Fellaini using the

preferred prior, the more diffuse prior and the more informative prior, respectively.

Therefore, the sensitivity analysis provides comparisons to the preferred prior using both

a diffuse and an informative prior. The comparisons show that while the top few players’

rankings are robust to changes in the prior, the rankings of other players are more sensitive

to these assumptions. The general agreement in the ranks for the top few players provides

us with confidence in the approach. It is these players (the most similar ones) who are the

primary focus of our investigation.
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Again, we believe that the prior suggested in Section 3.3 is the preferred prior as it

imposes greater similarity in the covariance matrices than the diffuse prior and assumes

less than the informative prior.

Player Preferred Prior More Diffuse Prior More Informative Prior

Rank (KL stat) Rank (KL stat) Rank (KL stat)

Paulinho 1 (32.4) 1 (82.8) 2 (5.5)

Xiaogang Zhu 2 (38.7) 4 (99.5) 3 (5.6)

Kaimu Zheng 3 (39.1) 3 (97.2) 1 (4.5)

Marek Hamš́ık 4 (39.4) 2 (96.0) 5 (5.8)

Qiuming Wang 5 (39.6) 7 (103.4) 14 (6.9)

Xi Wu 6 (40.7) 5 (102.2) 8 (6.2)

Bowen Huang 7 (43.7) 6 (102.6) 9 (6.4)

Huikang Cai 8 (44.6) 9 (112.1) 12 (6.7)

Zhuoyi Feng 9 (47.5) 14 (122.3) 6 (5.9)

Xinli Peng 10 (47.9) 10 (113.5) 15 (7.2)

Table 7: The first data column provides the ranks and the Kullback-Leibler statistics
corresponding to the 10 CSL midfielders who are most similar to Fellaini based on the
preferred prior of Section 3.3. The second and third data columns provide the corresponding
entries based on the more diffuse prior and the more informative prior, respectively, as
discussed in Section 4.6.

5 DISCUSSION

This paper develops methods that identify players who have styles that are similar to a

specified player of interest. We utilize tracking data to construct player style statistics.

These style statistics are assumed to follow multivariate normal distributions. To assess

the similarity between players, we utilize the Kullback-Leibler divergence measure. The

parameters of multivariate normal distributions are estimated by MCMC methods in a

Bayesian framework.

Identifying players who have similar playing style to a specific player is an important

problem for teams that are attempting to fill their rosters. Admittedly, the development
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of the methods proposed in this paper are demanding. However, given the software, teams

and data providers (who have access to tracking data) can make stylistic comparisons

between players nearly an automatic procedure. The programs can sift through many

players in various leagues and develop a pool of players who have similar styles to a player

of interest. Consequently, this saves time compared to watching videos or live matches

involving potential players.

Our work not only is useful in searching for a player’s replacement but may be utilized

by clubs who are financially judicious in the transfer market. Professional football clubs

in Europe are now constrained by the Financial Fair Play (FFP) rule of the Union of Eu-

ropean Football Associations (UEFA), which imposes a cap on a club’s spending where

the cap is determined by the club’s revenues. This regulation requires the clubs to spend

judiciously, and consequently, the clubs should seek value for money in the transfer mar-

ket while recruiting players. Estimating value for money in player transfers, McHale and

Holmes (2023) demonstrate that major clubs like FC Barcelona and Manchester United

FC performed poorly in the transfer market. To estimate the value for money, they used

player ratings like the plus-minus ratings (Kharrat, McHale, and Pena, 2020), and the ac-

tion value ratings (Liu, Luo, Schulte, and Kharrat, 2020) to capture the contribution of a

player to on-the-pitch performances. There have also been attempts to directly estimate

transfer fees using basic performance statistics like goals scored and minutes played (e.g.,

Muller, Simons and Weinmann, 2017; Coates and Parshakov, 2021). Clustering techniques

on player performance have been applied (e.g., D’Urso et al., 2022; Carpita et al., 2023).

However, none of these papers account for the synergy of a player to a team considering

the player’s playing style. Given the playing style of a player, she or he may be valued

differently by different clubs. In 2009, Barcelona recruited Zlatan Ibrahimović in exchange

for Samuel Eto’o and a transfer fee of 70 million Euros. In retrospect, it was considered

a bad transfer as Eto’o’s performance in Barcelona was superior to that of Ibrahimović.

Such imprudent transfers may be avoided if transfer fees are determined after considering

the player’s playing style by applying the methods described in this paper.

There is an important limitation to our work. In some cases, playing style may not be

an intrinsic property of a player. A player may have a particular style that is dictated by

the manager. For example, Alphonso Davies plays full-back for Bayern Munich. However,

he plays as a forward when competing for the Canadian National Team. Davies will have

different characteristics according to Table 1 under the two positional scenarios. Another

limitation is that we have only one season of tracking data from the CSL. With additional
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seasons, playing style may be estimated more reliably.

Having identified a pool of players who are similar to a player of interest, an important

future research question is: who are the best players from the pool? A data-based solution

is not straightforward since player performance statistics (e.g. goals, passes, etc) are highly

dependent on teammates and opponents. For the time being, these assessments are left to

the subjective evaluations of subject matter experts (e.g. managers, assistants, scouts, etc).

Another direction of future work is the consideration of alternative discrepancy measures

to assess similarity. For example, one could use the Bhattacharyya distance and the Jensen-

Shannon divergence measure.
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Feature Description

x1 avg player position when ball is in offensive third and team in possession
x2 avg EPV of player’s position when ball is in offensive third and team in possession
x3 avg vertical distance (downfield distance) and horizontal distance of player’s successful passes when ball

is in offensive third and team in possession
x4 avg EPV increase in player’s successful passes when ball is in offensive third and team in possession
x5 pct of time player has the ball when ball is in offensive third and team in possession
x6 pct of the team’s passes by player when ball is in offensive third and team in possession
x7 pct of the team’s shots by player when ball is in offensive third and team in possession
x8 avg player position when ball is in offensive third and opponent in possession
x9 avg distance from nearest opponent when ball is in offensive third and opponent in possession
x10 pct of the team’s interceptions by player when ball is in offensive third and opponent in possession
x11 pct of the team’s tackles by player when ball is in offensive third and opponent in possession
x12 avg player position when ball is in middle third and team in possession
x13 avg EPV of player’s position when ball is in middle third and team in possession
x14 avg vertical distance (downfield distance) and horizontal distance of player’s successful passes when ball

is in middle third and team in possession
x15 avg EPV increase in player’s successful passes when ball is in middle third and team in possession
x16 pct of time player has the ball when ball is in middle third and team in possession
x17 pct of the team’s passes by player when ball is in middle third and team in possession
x18 avg player position when ball is in middle third and opponent in possession
x19 avg distance from nearest opponent when ball is in middle third and opponent in possession
x20 pct of the team’s interceptions by player when ball is in middle third and opponent in possession
x21 pct of the team’s tackles by player when ball is in middle third and opponent in possession
x22 avg player position when ball is in defensive third and team in possession
x23 avg vertical distance (downfield distance) and horizontal distance of player’s successful passes when ball

is in defensive third and team in possession
x24 pct of time player has the ball when ball is in defensive third and team in possession
x25 pct of the team’s passes by player when ball is in defensive third and team in possession
x26 avg player position when ball is in defensive third and opponent in possession
x27 avg distance from nearest opponent when ball is in defensive third and opponent in possession
x28 pct of the team’s interceptions by player when ball is in penalty box and opponent in possession
x29 pct of the team’s interceptions by player when ball is in defensive third outside penalty box and opponent

in possession
x30 pct of the team’s tackles by player when ball is in defensive third and opponent in possession

Table 1: Player features obtained from tracking data that reflect playing style. The statis-
tics are collected on a per-match basis where the three table categories correspond to the
position of the ball on the pitch. Within each category, statistics are defined according to
whether the team of interest or the opponent has possession of the ball.
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Feature Mean Min Max StdDev
x1 (16.60, 11.87) (-42.31, 0.37) (45.12, 32.02) (17.53, 5.18)
x2 0.04 0.01 0.17 0.02
x3 (0.34, 10.28) (-43.30, 0) (29.90, 57.10) (5.97, 5.37)
x4 0.01 -0.25 0.43 0.03
x5 0.07 0 0.65 0.09
x6 0.07 0 0.38 0.07
x7 0.07 0 1 0.11
x8 (7.40, 11.27) (-42.63, 0.43) (49.46, 31.26) (16.27, 4.67)
x9 8.40 0.45 44.65 7.33
x10 0.07 0 1 0.16
x11 0.07 0 1 0.17
x12 (-1.16, 13.54) (-44.69, 0.63) (28.46, 32.80) (14.70, 5.80)
x13 0.02 0.01 0.05 5.25× 10−3

x14 (2.11, 10.89) (-43.20, 0.10) (49.50, 45.10) (6.04, 4.09)
x15 1.88× 10−3 -0.01 0.09 3.67× 10−3

x16 0.07 0 0.39 0.06
x17 0.07 0 0.29 0.05
x18 (-10.26, 11.91) (-47.24, 0.73) (21.70, 28.83) (13.08, 4.51)
x19 7.62 1.64 34.07 5.44
x20 0.07 0 0.45 0.08
x21 0.07 0 0.67 0.10
x22 (-18.50, 12.48) (-49.36, 0.24) (22.49, 36.82) (13.13, 5.12)
x23 (6.71, 10.68) (-25.90, 0) (59.10, 54.00) (9.78, 5.12)
x24 0.07 0 0.86 0.11
x25 0.07 0 0.58 0.07
x26 (-28.21, 10.70) (-50.66, 0.51) (27.83, 36.23) (11.15, 4.10)
x27 5.89 0.49 25.52 2.61
x28 0.07 0 1 0.14
x29 0.07 0 0.52 0.09
x30 0.07 0 0.60 0.09

Table 2: Summary statistics for the features presented in Table 1 calculated across all
players and matches. The statistics are provided for the raw data prior to standardization.
Note that the bivariate statistics correspond to features that have (x, y) coordinates.
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