Computation of atomic fibers

Lunch talk, 01-12-2005

Raymond Hemmecke

Generalizing the relation \sqsubseteq

For $u, v \in \mathbb{R}^n$ let $u \sqsubseteq v$ iff $u^{(i)}v^{(i)} \ge 0$ and $|u^{(i)}| \le |v^{(i)}|$ for $i = 1, \ldots, n$.

Let $S, T, U \subseteq \mathbb{R}^n$. We say that $S = T \oplus U$ if for every $z \in S$ there are $z_1 \in T$ and $z_2 \in U$ with $z = z_1 + z_2$ and $z_1, z_2 \sqsubseteq z$.

We are interested in all indecomposable sets $\{z \in \mathbb{Z}^n : Az = 0\}$ or $\{z \in \mathbb{Z}^n : Az = 0, z \ge 0\}.$

These indecomposable sets generalize the notions of Graver bases and Hilbert bases.

What are atomic fibers?

$$\begin{split} &A \in \mathbb{Z}^{d \times n}, \ b \in \mathbb{Z}^d \\ &P_{A,b}^I := \{z : Az = b, z \in \mathbb{Z}_+^n\} \\ & \qquad b\text{-fiber of } A \\ &Q_{A,b}^I := \{z : Az = b, z \in \mathbb{Z}^n\} \\ & \qquad \text{extended b-fiber of } A \end{split}$$

We call $P_{A,b}^{I}$ an atomic, if $P_{A,b}^{I}$ cannot be written as $P_{A,b_1+b_2}^{I} = P_{A,b_1}^{I} \oplus P_{A,b_2}^{I}$ with two other fibers P_{A,b_1}^{I} and P_{A,b_2}^{I} .

Analogously, we define $Q_{A,b}^{I}$ to be an extended atomic fiber.

By F(A) and by E(A) denote the atomic and the extended atomic fibers of A, respectively.

raymond@hemmecke.de

Twisted cubic $A = \begin{pmatrix} 3 & 2 & 1 & 0 \\ 0 & 1 & 2 & 3 \end{pmatrix}$

- $(0,3) \qquad \{(0,0,0,1)\}$
- $(1,2) \qquad \{(0,0,1,0)\}$
- $(2,1) \qquad \{(0,1,0,0)\}$
- $(3,0) \qquad \{(1,0,0,0)\}$
- $(2,4) \qquad \{(0,1,0,1),(0,0,2,0)\}\$
- $(3,3) \qquad \{(1,0,0,1),(0,1,1,0)\}$
- $(4,2) \qquad \{(0,2,0,0),(1,0,1,0)\}\$
- $(3,6) \qquad \{(1,0,0,2), (0,1,1,1), (0,0,3,0)\}\$
- $(4,5) \qquad \{(0,2,0,1), (0,1,2,0), (1,0,1,1)\}\$
- $(5,4) \qquad \{(1,1,0,1), (0,2,1,0), (1,0,2,0)\}$
- $(6,3) \qquad \{(2,0,0,1), (1,1,1,0), (0,3,0,0)\}\$
- $(4,8) \qquad \{(0,2,0,2), (1,0,1,2), (0,1,2,1), (0,0,4,0)\}\$
- $(6,6) \qquad \{(2,0,0,2), (0,3,0,1), (1,1,1,1), (1,0,3,0), (0,2,2,0)\}\$
- $(8,4) \qquad \{(2,1,0,1), (0,4,0,0), (1,2,1,0), (2,0,2,0)\}\$
- $(6,9) \qquad \{(2,0,0,3), (0,3,0,2), (1,1,1,2), (1,0,3,1), (0,2,2,1), (0,1,4,0)\}\$
- $(9,6) \qquad \{(3,0,0,2), (1,3,0,1), (2,1,1,1), (2,0,3,0), (1,2,2,0), (0,4,1,0)\}\$
- $(6,12) \quad \{(2,0,0,4), (0,3,0,3), (1,1,1,3), (1,0,3,2), (0,2,2,2), (0,1,4,1), (0,0,6,0)\}$
- (12,6) {(4,0,0,2), (2,3,0,1), (3,1,1,1), (3,0,3,0), (2,2,2,0), (0,6,0,0), (1,4,1,0)}

raymond@hemmecke.de

Why are F(A) and E(A) finite?

Theorem. (Maclagan, 1999) Any infinite family of monomial ideals in $k[x_1, \ldots, x_n]$ contains two ideals I, J with $I \subseteq J$.

Corollary. Any family of monomial ideals in $k[x_1, \ldots, x_n]$ contains only finitely many inclusion-maximal ideals.

Corollary. Any sequence $\{I_1, I_2, \ldots\}$ of monomial ideals in $k[x_1, \ldots, x_n]$ with $I_i \supseteq I_j$ whenever i < j is finite.

And consequently...?!

$$\mathcal{I}_{A,b} := \langle x^u : u \in P_{A,b}^I \rangle$$

Then

$$P^I_{A,b_1+b_2} = P^I_{A,b_1} \oplus P^I_{A,b_2}$$

if and only if

$$\mathcal{I}_{A,b_1+b_2} \subseteq \mathcal{I}_{A,b_1}.$$

Consequently, there are only finitely many inclusion-maximal ideals $\mathcal{I}_{A,b}$ corresponding to the finitely many atomic fibers of A.

raymond@hemmecke.de

Lunch talk, 01-12-2005

Normal form algorithm

Input: s, G

Output: a normal form of \boldsymbol{s} with respect to \boldsymbol{G}

while there is some $g \in G$ such that $Q_{A,s}^I = Q_{A,g}^I \oplus Q_{A,s-g}^I \underline{do}$

s := s - g

 $\underline{\mathsf{return}} \ s$

raymond@hemmecke.de

From all representations

$$Q^{I}_{A,\overline{b}} = \sum_{j \in J} Q^{I}_{A,b_{j}}$$
 with $Q^{I}_{A,b_{j}} \in G$

choose one such that the sum

$$\sum_{i=1}^{k} \sum_{j \in J} \|v_{i,j}\|_1,$$

where $z_i = \sum_{j \in J} v_{i,j}$ and $v_{i,j} \in Q_{A,b_j}^I$, $i = 1, \ldots, k$, is minimal.

raymond@hemmecke.de

$$Q_{A,s}^I = Q_{A,g}^I \oplus Q_{A,s-g}^I ?$$

Theorem. Let P be a polyhedron. Then there exist a polytope Q and a cone C such that

 $P \cap \mathbb{Z}^n = Q \cap \mathbb{Z}^n + C \cap \mathbb{Z}^n.$

$$Q_{A,s}^{I} = Q_{A,g}^{I} \oplus Q_{A,s-g}^{I}$$
$$M_{A,s}^{I} + M_{A,0}^{I} = M_{A,g}^{I} + M_{A,0}^{I} \oplus M_{A,s-g}^{I} + M_{A,0}^{I}$$

Thus, we only need to test whether for all $u \in M_{A,s}^I$ there exists a $v \in M_{A,g}^I$ with $v \sqsubseteq u$.

raymond@hemmecke.de

Let's talk about applications

raymond@hemmecke.de

Atomic integer programs

 $\min\{c^{\mathsf{T}}z: Az = b, z \in \mathbb{Z}^n_+\}$ atomic integer program associated to $P^I_{A,b}$.

lf

$$P_{A,b}^{I} = \bigoplus_{i=1}^{k} \alpha_{i} P_{A,b_{i}}^{I}, \quad \alpha_{i} \in \mathbb{Z}_{+},$$

then

$$\bar{z} := \sum_{i=1}^k \alpha_i z_i^{\mathsf{opt}}$$

is an optimal solution to

 $\min\{c^{\mathsf{T}}z: Az = b, z \in \mathbb{Z}^n\}.$

raymond@hemmecke.de

Stochastic programming

 \rightarrow optimization under uncertainty

 \rightarrow optimization of immediate plus expected costs

$$A_N = \left(\begin{array}{ccc} T & W & & \\ \vdots & & \ddots & \\ T & & & W \end{array}\right)$$

raymond@hemmecke.de

Graver basis of A_N

Question: Does the Graver basis of A_N become arbitrarily complicated as N increases?

$$A_N = \begin{pmatrix} T & W \\ \vdots & \ddots \\ T & W \end{pmatrix}$$
$$(u, v_1, \dots, v_N) \in \ker(A_N) \Leftrightarrow (u, v_i) \in \ker(T|W) \quad \forall i$$

Refined question: Is there a N_0 such that there are no new "building blocks" u or v_i in the Graver bases of A_N , $N \ge N_0$?

Answer: Yes! (H. & Schultz, 2003)

Aschenbrenner & H. (2004): The same holds true also in the multi-stage situation.

raymond@hemmecke.de

Computation of building blocks

Extended atomic fibers of

$$A = \left(\begin{array}{cc} I & 0\\ T & W \end{array}\right)$$

encode exactly all necessary building blocks.

raymond@hemmecke.de

Open Problem

 $b = (b_1, \ldots, b_N)^{\mathsf{T}} \in E(A_N)$

The b_i are building blocks of extended atomic fibers.

Question: Do the extended atomic fibers of A_N become arbitrarily complicated as N increases?

Refined question: Is there a N_0 such that there are no new "building blocks" b_i in the right-hand side vectors defining extended atomic fibers of A_N , $N \ge N_0$?

Conjecture: Yes.

Conjecture: The same holds true also in the multi-stage situation.