Computation of atomic fibers

Lunch talk, 01-12-2005

Raymond Hemmecke
raymond@hemmecke.de

Generailzing the relation \quad

For $u, v \in \mathbb{R}^{n}$ let $u \sqsubseteq v$ iff $u^{(i)} v^{(i)} \geq 0$ and $\left|u^{(i)}\right| \leq\left|v^{(i)}\right|$ for $i=1, \ldots, n$.
Let $S, T, U \subseteq \mathbb{R}^{n}$. We say that $S=T \oplus U$ if for every $z \in S$ there are $z_{1} \in T$ and $z_{2} \in U$ with $z=z_{1}+z_{2}$ and $z_{1}, z_{2} \sqsubseteq z$.

We are interested in all indecomposable sets $\left\{z \in \mathbb{Z}^{n}: A z=0\right\}$ or $\left\{z \in \mathbb{Z}^{n}: A z=0, z \geq 0\right\}$.

These indecomposable sets generalize the notions of Graver bases and Hilbert bases.

What are atomic fibers?

$A \in \mathbb{Z}^{d \times n}, b \in \mathbb{Z}^{d}$
$P_{A, b}^{I}:=\left\{z: A z=b, z \in \mathbb{Z}_{+}^{n}\right\}$
$Q_{A, b}^{I}:=\left\{z: A z=b, z \in \mathbb{Z}^{n}\right\}$
We call $P_{A, b}^{I}$ an atomic, if $P_{A, b}^{I}$ cannot be written as $P_{A, b_{1}+b_{2}}^{I}=P_{A, b_{1}}^{I} \oplus P_{A, b_{2}}^{I}$ with two other fibers $P_{A, b_{1}}^{I}$ and $P_{A, b_{2}}^{I}$.
Analogously, we define $Q_{A, b}^{I}$ to be an extended atomic fiber.
By $F(A)$ and by $E(A)$ denote the atomic and the extended atomic fibers of A, respectively.

Twisted cubic $A=\left(\begin{array}{llll}3 & 2 & 1 & 0 \\ 0 & 1 & 2 & 3\end{array}\right)$

```
(0,3) {(0,0,0,1)}
(1,2) {(0,0,1,0)}
(2,1) {(0,1,0,0)}
(3,0) {(1,0,0,0)}
(2,4) {(0,1,0,1),(0,0,2,0)}
(3,3) {(1,0,0,1),(0,1,1,0)}
(4,2) {(0,2,0,0),(1,0,1,0)}
(3,6) {(1,0,0,2),(0,1,1,1),(0,0,3,0)}
(4,5) {(0,2,0,1),(0,1,2,0),(1,0,1,1)}
(5,4) {(1,1,0,1),(0,2,1,0),(1,0,2,0)}
(6,3) {(2,0,0,1),(1,1,1,0),(0,3,0,0)}
(4, 8) {(0,2,0,2),(1,0,1,2),(0,1,2,1),(0,0,4,0)}
(6,6) {(2,0,0,2),(0,3,0,1),(1, 1, 1, 1), (1,0,3,0), (0,2,2,0)}
(8,4) {(2,1,0,1),(0,4,0,0),(1,2,1,0),(2,0,2,0)}
(6,9) {(2,0,0,3),(0,3,0,2),(1,1,1,2),(1,0,3,1),(0,2,2,1),(0,1,4,0)}
(9,6) {(3,0,0,2), (1,3,0,1),(2,1,1,1),(2,0,3,0),(1,2,2,0),(0,4,1,0)}
(6,12) {(2,0,0,4),(0,3,0,3),(1,1,1,3),(1,0,3,2),(0,2,2,2),(0,1,4,1),(0,0,6,0)}
(12,6) {(4,0,0,2), (2,3,0,1),(3,1,1,1),(3,0,3,0),(2,2,2,0), (0,6,0,0),(1,4,1,0)}
```


Why are $F(A)$ and $E(A)$ finite?

Theorem. (Maclagan, 1999) Any infinite family of monomial ideals in $k\left[x_{1}, \ldots, x_{n}\right]$ contains two ideals I, J with $I \subseteq J$.

Corollary. Any family of monomial ideals in $k\left[x_{1}, \ldots, x_{n}\right]$ contains only finitely many inclusion-maximal ideals.

Corollary. Any sequence $\left\{I_{1}, I_{2}, \ldots\right\}$ of monomial ideals in $k\left[x_{1}, \ldots, x_{n}\right]$ with $I_{i} \supsetneq I_{j}$ whenever $i<j$ is finite.

And consequently...?!

$$
\mathcal{I}_{A, b}:=\left\langle x^{u}: u \in P_{A, b}^{I}\right\rangle
$$

Then

$$
P_{A, b_{1}+b_{2}}^{I}=P_{A, b_{1}}^{I} \oplus P_{A, b_{2}}^{I}
$$

if and only if

$$
\mathcal{I}_{A, b_{1}+b_{2}} \subseteq \mathcal{I}_{A, b_{1}} .
$$

Consequently, there are only finitely many inclusion-maximal ideals $\mathcal{I}_{A, b}$ corresponding to the finitely many atomic fibers of A.

Algorithm to compute $E(A)$

Input: $F:=\left\{ \pm A e_{1}, \ldots, \pm A e_{n}\right\}$
$G:=F$
while $C \neq \emptyset$ do

$$
s:=\text { an element in } C
$$

$$
C:=C \backslash\{s\}
$$

$f:=$ normalForm (s, G)
if $f \neq 0$ then

$$
G:=G \cup\{f\}
$$

$$
C:=C \cup \bigcup_{g \in G}\{f+g\}
$$

return $G \cup\{0\}$.

Normal form algorithm

Input: s, G
Output: a normal form of s with respect to G
while there is some $g \in G$ such that $Q_{A, s}^{I}=Q_{A, g}^{I} \oplus Q_{A, s-g}^{I}$ do

$$
s:=s-g
$$

return s

Idea of proof

$M_{A, \bar{b}}^{I}=\left\{z_{1}, \ldots, z_{k}\right\} \quad \sqsubseteq$-minimal elements in $Q_{A, \bar{b}}^{I}$
From all representations

$$
Q_{A, \bar{b}}^{I}=\sum_{j \in J} Q_{A, b_{j}}^{I} \quad \text { with } Q_{A, b_{j}}^{I} \in G
$$

choose one such that the sum

$$
\sum_{i=1}^{k} \sum_{j \in J}\left\|v_{i, j}\right\|_{1}
$$

where $z_{i}=\sum_{j \in J} v_{i, j}$ and $v_{i, j} \in Q_{A, b_{j}}^{I}, i=1, \ldots, k$, is minimal.

$$
Q_{A, s}^{I}=Q_{A, g}^{I} \oplus Q_{A, s-q}^{I} ?
$$

Theorem. Let P be a polyhedron. Then there exist a polytope Q and a cone C such that

$$
\begin{aligned}
& P \cap \mathbb{Z}^{n}=Q \cap \mathbb{Z}^{n}+C \cap \mathbb{Z}^{n} \\
& Q_{A, s}^{I}=Q_{A, g}^{I} \oplus Q_{A, s-g}^{I} \\
& M_{A, s}^{I}+M_{A, 0}^{I}=M_{A, g}^{I}+M_{A, 0}^{I} \oplus M_{A, s-g}^{I}+M_{A, 0}^{I}
\end{aligned}
$$

Thus, we only need to test whether for all $u \in M_{A, s}^{I}$ there exists a $v \in M_{A, g}^{I}$ with $v \sqsubseteq u$.

Let's talk about applications

Atomic integer programs

$\min \left\{c^{\top} z: A z=b, z \in \mathbb{Z}_{+}^{n}\right\} \quad$ atomic integer program associated to $P_{A, b}^{I}$.
If

$$
P_{A, b}^{I}=\bigoplus_{i=1}^{k} \alpha_{i} P_{A, b_{i}}^{I}, \quad \alpha_{i} \in \mathbb{Z}_{+}
$$

then

$$
\bar{z}:=\sum_{i=1}^{k} \alpha_{i} z_{i}^{\mathrm{opt}}
$$

is an optimal solution to

$$
\min \left\{c^{\top} z: A z=b, z \in \mathbb{Z}^{n}\right\}
$$

Stochastic programming

\rightarrow optimization under uncertainty
\rightarrow optimization of immediate plus expected costs

$$
A_{N}=\left(\begin{array}{cccc}
T & W & & \\
\vdots & & \ddots & \\
T & & & W
\end{array}\right)
$$

Graver basis of A_{N}

Question: Does the Graver basis of A_{N} become arbitrarily complicated as N increases?

$$
\begin{aligned}
A_{N} & =\left(\begin{array}{cccc}
T & W & & \\
\vdots & & \ddots & \\
T & & & W
\end{array}\right) \\
\left(u, v_{1}, \ldots, v_{N}\right) & \in \operatorname{ker}\left(A_{N}\right) \Leftrightarrow\left(u, v_{i}\right) \in \operatorname{ker}(T \mid W) \quad \forall i
\end{aligned}
$$

Refined question: Is there a N_{0} such that there are no new "building blocks" u or v_{i} in the Graver bases of $A_{N}, N \geq N_{0}$?

Answer: Yes! (H. \& Schultz, 2003)
Aschenbrenner \& H. (2004): The same holds true also in the multi-stage situation.

Computation of building blocks

Extended atomic fibers of

$$
A=\left(\begin{array}{cc}
I & 0 \\
T & W
\end{array}\right)
$$

encode exactly all necessary building blocks.

Open Problem

$$
b=\left(b_{1}, \ldots, b_{N}\right)^{\top} \in E\left(A_{N}\right)
$$

The b_{i} are building blocks of extended atomic fibers.
Question: Do the extended atomic fibers of A_{N} become arbitrarily complicated as N increases?

Refined question: Is there a N_{0} such that there are no new "building blocks" b_{i} in the right-hand side vectors defining extended atomic fibers of $A_{N}, N \geq N_{0}$?

Conjecture: Yes.

Conjecture: The same holds true also in the multi-stage situation.

