Introduction to Artificial Intelligence (AI)¶
What is AI?¶
AI is the study of intelligence, particularly intelligent machines
AI is mainly interested in understanding and creating things that think, or act, rationally (or intelligently)
e.g. we want self-driving cars to “do the right thing” in all situations, and this seems to require acting and thinking rationally
humans are a special case: so far, they are the only know things that are capable of general rational thought and action
so AI is often compared to human performance, and we will often take humans as inspiration for how computers might solve similar problems
The Turing Test¶
determining if something is truly intelligent is a tricky problem
famously, in the 1950s computer scientist Alan Turing proposed what is now called the Turing Test
the Turing Test is a thought experiment: a computer and a human questioner have a conversation through a computer terminal, such that the questioner has no idea if they are conversing with a computer or a real human; the computers goal is to make the questioner think they are human
the Turing Test is open-ended: the questioner can ask anything they like, and may judge the computers response however they like
of course, some questions are human-centric, e.g. the questioner might ask “What was your mother’s name?”, which would seem to require that the computer lie
but such details aside, it is interesting to think about the sorts of things a program that could pass the Turing Test would need to be able to do; it would have to:
- understand, and generate, natural language (natural language processing, NLP)
- store and retrieve the things it knows and hears (knowledge representation, KR)
- used its stored information to infer new, and maybe novel, conclusions (automated reasoning)
- learn about new circumstances, or find new patterns (machine learning, ML)
all of these are significant and challenging parts of AI research today, and the general consensus is that we are nowhere near being able to make a program that could pass the Turing Test
in practice, the Turing Test has had little direct impact on AI research, since it is too complex, and researchers have preferred to focus on the underlying principles of AI
yet you will often hear mention of the Turing Test in movies, books, and the popular press; it is certainly useful for inspiring people, but it has not been a direct topic of much AI research — it’s just too much to ask (yet!)
Thinking Humanly: Cognitive Science¶
cognitive science is its own discipline, although it is closely related to AI
cognitive science is essentially interested in how humans think, and often comes up with models of cognition, intelligence, rational behaviour, etc. that models how humans might do that
the goal of cognitive science is to explain how humans think, and if that helps further the cause of AI in general, then that’s a bonus
in contrast, the “computer science” approach to AI that we will be taking is more engineering-oriented: depending upon the problem we are trying to solve, mimicking how humans solve that problem may, or may not, be a good idea
- we will use any idea or approach that gives good results!
- it won’t matter to us if a good approach to solving a problem is not the way a human would do it
Rational Agents¶
a useful perspective on AI is that it is interested in creating and understanding rational agents
an agent is something that “acts” in the world, and by rational we mean “doing the right thing”
e.g. we want self-driving cars to be rational agents; we also Alexa and Siri and other such “intelligent assistants” to be rational agents
a human is a rational agent, and a major question in AI is if anything other than a human is a rational agent
- many AI researchers think the answer to this question is obviously “yes”, although we don’t yet have any examples of rational agents yet other than humans
- in principle, most researchers believe there is nothing magical about human brains: they are just “meat that thinks”, and in principle a computer simulation of a brain would also think, and thus be a rational agent
- some people argue that computers don’t have emotions, but emotions don’t seem to be a requirement for rational thought; however, some researchers have certainly studied them in depth, and they can be simulated if necessary!
- some people (passionately!) argue that consciousness is important, and
suggest that while maybe computers may one day be truly intelligent, they
will never be truly conscious
- e.g. as an analogy, if you made a computer simulation of water, it will never truly be wet, no matter how good the simulation is
- but a major problem with consciousness is that it is not clearly defined, and different scientists take it to mean different things
- it is just not clear how consciousness helps with intelligence, and so we will have little to say about it in this course
Major Approaches and Inspirations in AI¶
- logic: encode rationality as logical rules
- mathematics: use ideas and techniques from math, like probability theory, to model rationality
- computer science: computer science is the study of algorithms, and most people believe that rational agents use algorithms
- economics: use notions like utility, and maximizing payoffs; in
particular, the fields of decision theory and game theory are precisely
about making rational decisions in the face of real-world complexities
(which mathematics and logic often abstract away)
- some of the most well-known early work in AI was done by researchers coming from economics: Herbert Simon and Allen Newell
- neuroscience: study the human brain as a biological object, and try to simulate it
- psychology: how do humans (and animals) act? this is at a higher-level than neuroscience, and is where ideas like “belief”, “intention”, and “perception”; even the term “rational” is a psychological term
- hardware engineering: design a computer to be intelligent by carefully
studying the actual components used to make computers; robotics is part of
this — some researchers believe that intelligence needs to be embodied
in something like a robot to truly rational
- it’s interesting to note that a significant impact in the recent success in “deep” neural networks was figuring out ways to increase the performance of basic neural network algorithms using things like GPUs, and other special-purpose hardware
- linguistics: how are language and thought related? human language is a very important part of their rationality, and the careful study of language has brought a lot of insight into understanding
we can’t cover all these areas of influence, and so we will focus on the areas closest to computer science
A Brief History of AI¶
- 1943: Pitts and McCullock propose first “artificial neuron”
- 1956: Dartmouth 2-month summer workshop, where many of the early pioneers of AI met; their ideas approaches came to dominate AI for decades afterwards
- 1958: John McCarthy developed the LISP programming language, to help implement AI-related programs that needed to do symbolic processing (which was very difficult to do in other languages of the day)
- 1960s: some success in microworlds, i.e. problem-solving in carefully limited domains
- 1966 - 1973 (“a dose of reality”) initial optimism about the pace of AI
decreased, when, for example, the intractability of many of the problems
they were trying to solve was understood (thanks to computer science!); many
early AI programs were doing simple syntactic manipulations, and clearly had
no real understanding of their domains
- also, in 1969 Marvin Minsky and Seymour Papert published the book Perceptrons, and they famously proved that the simple neural-network learning algorithms that were popular at the were not powerful enough to learn many simple functions
- 1970s (“knowledge-based systems”): many interesting approaches to storing and processing “knowledge” were explored, including expert systems (which were once thought to be the crowning success of AI)
- 1986 onwards: neural networks regained popularity thanks to new, and better, methods for learning with them; work has progressed since this time until now, where so-called “deep neural nets” are considered by many to be the pinnacle of AI achievement, able to solve useful hard problems like image recognition
- 2000 onwards: large data sets started to become available (thanks to the computerization of most data, including the web), and so this inspired a lot more interest in machine-learning techniques