disc <- function(xx, u=rep(0.5, 1, length(xx)), a=rep(5, 1, length(xx)))
{
  ##########################################################################
  #
  # DISCONTINUOUS INTEGRAND FAMILY
  #
  # Authors: Sonja Surjanovic, Simon Fraser University
  #          Derek Bingham, Simon Fraser University
  # Questions/Comments: Please email Derek Bingham at dbingham@stat.sfu.ca.
  #
  # Copyright 2013. Derek Bingham, Simon Fraser University.
  #
  # THERE IS NO WARRANTY, EXPRESS OR IMPLIED. WE DO NOT ASSUME ANY LIABILITY
  # FOR THE USE OF THIS SOFTWARE.  If software is modified to produce
  # derivative works, such modified software should be clearly marked.
  # Additionally, this program is free software; you can redistribute it 
  # and/or modify it under the terms of the GNU General Public License as 
  # published by the Free Software Foundation; version 2.0 of the License. 
  # Accordingly, this program is distributed in the hope that it will be 
  # useful, but WITHOUT ANY WARRANTY; without even the implied warranty 
  # of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 
  # General Public License for more details.
  #
  # For function details and reference information, see:
  # http://www.sfu.ca/~ssurjano/
  #
  ##########################################################################
  #
  # INPUTS:
  #
  # xx = c(x1, x2, ..., xd)
  # u = c(u1, u2, ..., ud) (optional), with default value
  #     c(0.5, 0.5, ..., 0.5)
  # a = c(a1, a2, ..., ad) (optional), with default value c(5, 5, ..., 5)
  #
  #########################################################################
	
  x1 <- xx[1]
  x2 <- xx[2]
  u1 <- u[1]
  u2 <- u[2]
	
  if (x1 > u1 | x2 > u2)
  {
  	y <- 0
  }
  else
  {
	sum <- sum(a*xx)
	y <- exp(sum)
  }

  return(y)
}