
Submitted To: Dr. Mehrdad Moallem

Submitted by:
Juzer Antria 301199594
Refayet Siam 301210102
Sohail Sangha 301186636

Submitted On: 19th , April, 2016

Project Report
MSE 483 – MODERN CONTROL SYSTEMS, SPRING 2016, SFU

MSE 483, Spring 2016, SFU Project Report

PAGE 1

1 Abstract
In modern control problems, state space representation wrapped with ideas from classical frequency

theory are extensively used to design controllers for plants to produce desired outputs. The project

reported in this report aims at taking the concepts from theory out into the world of simulation and

application. Students go through the process of analyzing the kinematics of a two wheeled robot (Segway),

simulating and studying it through concepts of linear state space control, develop and fine tune servo

mechanism controller, and take it further by building a low-cost miniature version of the robot and

attempt to program it with the results obtained from the simulation. The report is sectioned in two parts,

1) simulation: contains the background on the kinematics, analysis of controllability, observability and

other aspects, controller design, and analysis of the results. 2) prototype: contains the ideology and design

behind the hardware prototype, embedded code structure, and the results. While the students were able

to design a controller for the simulation, implementation on the physical prototype fell through due to

time limitations. The work on physical prototype was halted during the controller fine-tuning process, but

the substantial work done to reach that stage is detailed in the report to minimize efforts spent in future

attempts.

MSE 483, Spring 2016, SFU Project Report

PAGE 2

Table of Contents

1 Abstract ... 1

2 System Simulation ... 4

2.1 Simulation Requirements.. 4

2.2 State Space Representation .. 5

2.3 Controllability .. 7

2.4 Observability ... 8

2.5 Stability ... 9

2.6 Controller .. 9

2.6.1 Segway State Space Model ... 10

2.6.2 Servo Controller .. 11

2.7 Analysis ... 13

2.7.1 Small Step Input .. 13

2.7.2 Large Step Input .. 15

2.7.3 Ramp Input .. 16

3 System Implementation .. 18

3.1 Hardware and Electronics ... 18

3.2 Software .. 23

4 Conclusion ... 24

5 References .. 24

List of Tables

Table 1: Requirements for different variables .. 4

Table 2: Parameters used for the Representation .. 6

Table 3:Reference signals for 𝜃 and 𝜙 at different time intervals ... 13

Table 4: Small step reference signal ... 13

Table 5: Comparison (Results for small step input vs Requirements) .. 14

Table 6: Large step reference signal ... 15

Table 7: Ramp Reference Signal.. 16

Table 8: Comparison between Simulation Result Vs Requirements .. 17

MSE 483, Spring 2016, SFU Project Report

PAGE 3

List of Figures

Figure 1: Two-wheeled inverted pendulum.. 4

Figure 2: Side and Plane View of Two-wheeled inverted pendulum .. 5

Figure 3: Simulink Model .. 10

Figure 4: State Space Model ... 11

Figure 5: Servo Controller ... 12

Figure 6: Output showing 𝜃 on left and 𝜓 on right for small step input .. 13

Figure 7: Output showing 𝜙 on left and voltage input to motors on right for small step input 14

Figure 8: Plots showing results for 𝜃 on left and 𝜓 on right for large step input 15

Figure 9: Plots showing results for 𝜙 and Actuator inputs for large step input ... 15

Figure 10: Plots showing results for 𝜃 on left and 𝜓 on right with new reference signal 16

Figure 11: Plots showing results for 𝜙 on left and actuator inputs with new reference signal 17

Figure 12: Microcontroller .. 19

Figure 13: Pololu DC Motors ... 19

Figure 14: DC Motor with Magnetic Encoder ... 19

Figure 15: Magnetic Encoder .. 20

Figure 16: Micro metal gearbox mounting bracket .. 20

Figure 17: Inertial Measurement Unit .. 20

Figure 18: Motor Driver .. 21

Figure 19: Battery.. 21

Figure 20: Physical Model Design and Components used .. 22

Figure 21: Flowchart detailing Software (Overview of Call Hierarchy) ... 24

MSE 483, Spring 2016, SFU Project Report

PAGE 4

2 System Simulation
The process of developing controller for a plant starts with the building of a mathematical model. The

model is used to apply classical concepts such as controllability, observability, and stability to the system,

which give the designer ideas about the applicable controllers. Further work usually needs to be done on

the controller in fine-tuning and producing system behavior meeting certain requirements. The following

sections go through the process step by step.

2.1 Simulation Requirements
The objective is to produce a controller for a two-wheeled inverted pendulum as in the figure below. The

problem is twofold as it involves the control of the motion of the robot (through back and forth, and yaw

motion), while controlling the instability of the system (through converging the body pitch to the upright

position). Thus, the requirements from the system are directly applicable to the performance delivered

across these variables.

Figure 1: Two-wheeled inverted pendulum

The state space model of the system will be detailed in the following section, which will introduce readers

to: wheel angle 𝜃, body pitch 𝜓, and body yaw 𝜙. The body pitch directly indicates the stability of the

system, further, linearization of the model dictates the bounds on the value. The wheel angle and body

pitch are linked to motion, thus the requirements deal with concepts such as speed of motion, and

overshoot.

Table 1: Requirements for different variables

Variable Property Requirement

Body Pitch Range −150 < 𝜓 < 150
Wheel Angle Movement Speed 𝑊ℎ𝑒𝑒𝑙 𝑅𝑎𝑑𝑖𝑢𝑠 ∗ |𝜃|̇ ≥ 2 𝑐𝑚/𝑠
 Overshoot 𝑊ℎ𝑒𝑒𝑙 𝑅𝑎𝑑𝑖𝑢𝑠 ∗ 𝜃𝑜𝑠 ≤ 5 𝑐𝑚
Body Yaw Movement Speed |𝜙̇| ≥ 45 𝑑𝑒𝑔𝑟𝑒𝑒𝑠/𝑠

 Overshoot 𝜙𝑜𝑠 ≤ 10 𝑑𝑒𝑔𝑟𝑒𝑒𝑠

MSE 483, Spring 2016, SFU Project Report

PAGE 5

2.2 State Space Representation
The major variables defining the motion of the robot are as follows:

1. 𝜃𝑙, rotational position of left wheel

2. 𝜃𝑟, rotational position of right wheel

3. 𝜃, wheel position, 𝜃 = (𝜃𝑟 + 𝜃𝑙)/2

4. 𝜙, wheel axle yaw, 𝜙 = (𝜃𝑟 − 𝜃𝑙)/2

5. 𝜓, body pitch, zeroing at upright position of inverted pendulum

Figure 2: Side and Plane View of Two-wheeled inverted pendulum

The state space model was derived using equations of motions of a two-wheeled inverted pendulum [1].

Linearizing the motion equations about the balance point gives the following state space equation for the

system:

𝐴1 = [

0 0 1 0
0 0 0 1
0 𝐴(3,2) 𝐴(3,3) 𝐴(3,4)
0 𝐴(4,2) 𝐴(4,3) 𝐴(4,4)

] , 𝐵1 = [

0 0
0 0

𝐵1(3) 𝐵1(3)
𝐵1(4) 𝐵1(4)

]

𝒙𝟏 = [𝜽,𝚿, 𝜽̇, 𝚿̇]
𝑇

, 𝒖 = [𝒗𝟏, 𝒗𝒓]
𝑻

𝐶 = [1 0 0 0] , 𝐷 = [0]

The final state space model looks like:

𝒙̇ = 𝐴1𝒙𝟏 + 𝐵1𝒖

Output equation looks like:
𝑦 = 𝐶𝒙𝟏 + 𝐷𝒖

Where:

MSE 483, Spring 2016, SFU Project Report

PAGE 6

𝐴1(3,2) = −
𝑀𝑔𝐿𝐸(1,2)

det(𝐸)

𝐴1(4,2) =
𝑀𝑔𝐿𝐸(1,1)

det(𝐸)

𝐴1(3,3) = −
[(𝛽 + 𝑓𝑤)𝐸(2,2) + 2𝛽𝐸(1,2)]

det(𝐸)

𝐴1(4,3) =
[(𝛽 + 𝑓𝑤)𝐸(1,2) + 2𝛽𝐸(1,1)]

det(𝐸)

𝐴1(3,4) =
𝛽(𝐸(2,2)) + 2𝐸(1,2)

det(𝐸)

𝐴1(4,4) = −
𝛽(𝐸(1,2)) + 2𝐸(1,1)

det(𝐸)

𝐵1(3) =
𝛼(

𝐸(2,2)
2) + 𝐸(1,2)

det(𝐸)

𝐵1(4) = −
𝛼(

𝐸(1,2)
2) + 𝐸(1,1)

det(𝐸)

𝐸 = [
(2𝑚 + 𝑀)𝑅2 + 2𝐽𝑤 + 2𝑛2𝐽𝑚 𝑀𝐿𝑅 − 2𝑛2𝐽𝑚

𝑀𝐿𝑅 − 2𝑛2𝐽𝑚 𝑀𝐿2 + 𝐽𝚿 + 2𝑛2𝐽𝑚
]

det(𝐸) = 𝐸(1,1)𝐸(2,2) − 𝐸(1,2)2

𝛼 =
𝑛𝐾𝑡

𝑅𝑀
, 𝛽 =

𝑛𝐾𝑡𝐾𝑏

𝑅𝑚
+ 𝑓𝑚

Table 2: Parameters used for the Representation

Parameters Units

Gravity acceleration : 𝑔 = 9.81 [
𝑚

𝑠𝑒𝑐2
]

Wheel weight : 𝑚 = 0.0113 [𝑘𝑔]

Wheel radius : 𝑅 = 0.03 [𝑚]

Wheel inertia moment :
𝐽𝑤 =

𝑚𝑅2

2

[𝑘𝑔𝑚2]

Body weight : 𝑀 = 0.2 [𝑘𝑔]

Body width : 𝑊 = 0.075 [𝑚]

Body depth : 𝐷 = 0.04 [𝑚]

Body height : 𝐻 = 0.15 [𝑚]

Distance of the center of mass from the wheel axle :
𝐿 =

𝐻

2

[𝑚]

Body pitch inertia moment :
𝐽𝚿 =

𝑀𝐿2

3

[𝑘𝑔𝑚2]

MSE 483, Spring 2016, SFU Project Report

PAGE 7

DC motor inertia moment : 𝐽𝑚 = 0.00001 [𝑘𝑔𝑚2]
DC motor resistance : 𝑅𝑚 = 3.75 [Ω]

DC motor back EMF constant : 𝐾𝑏 =0.573 [𝑉
𝑠𝑒𝑐

𝑟𝑎𝑑
]

DC motor torque constant : 𝐾𝑡=0.309 [𝑁𝑚/𝐴]

Gear ratio : 𝑛 = 1

Friction coefficient between body and DC motor : 𝑓𝑚 = 0.0022

Friction coefficient between wheel and floor :
𝑓𝑊 = 0

2.3 Controllability
The interaction of the inputs to the state space can be observed by deriving conditions under which the

state trajectory is driven to the origin. This can be used to determine if a system can be controlled or not

by comparing the controllability matrix of the system with the system's rank. A system's said to be

controllable if the row rank of the controllability matrix is equal to the number of rows of the nonsingular

A matrix of the state space model. The controllability matrix for the given state space model is:

𝑃 = [𝐵1(: ,1) 𝐵1(: ,2) | 𝐴1𝐵1(: ,1) 𝐴1𝐵1(: ,2) | 𝐴1
2𝐵1(: ,1) 𝐴1

2𝐵1(: ,2) | 𝐴1
3𝐵1(: ,1) 𝐴1

3𝐵1(: ,2)]

Using MATLAB

A_1 =

0 0 1 0

0 0 0 1

0 -382.38 -730.94 710.73

0 204.98 271.80 -266.08

B_1 =

0 0

0 0

592.57 592.57

-221.85 -221.85

C_1 =

1 0 0 0

P = 1.0e+11 *

0 0 0 0 -0 -0 0.0059 0.0059

0 0 -0 -0 0 0 -0.0022 -0.0022

0 0 -0 -0 0.0059 0.0059 -5.86 -5.86

-0 -0 0 0 -0.0022 -0.0022 2.18 2.18
Rank(P) = n = 4

This confirms the system is controllable. But we are also interested in the controllability of the system

for servo mechanism purposes. Thus we want to assess the controllability of the following pair:

MSE 483, Spring 2016, SFU Project Report

PAGE 8

([
𝐴 0

−𝐶 0
] , [

𝐵
0
])

For controller design purpose matrix B can be converted into a column vector as both columns of the

matrix are similar and outputs for both 𝜃𝑙 , 𝜃𝑟 are the same. For above pair

P = 1.0e+14 *

0 0 -0 0 -0.0059

0 -0 0 -0 0.0022

0 -0 0 -0.0059 5.83

-0 0 -0 0.0022 -2.17

0 0 0 0 -0

Rank(P) = n = 4

This shows that a servomechanism design for the system is not controllable and the stabilizability of the

system will need to be investigated, which will be discussed in later sections.

2.4 Observability
The behavior of the entire state space model can be observed by using the system's output. Observability

and controllability of the system are mathematical duals, however, a system can be entirely controllable

but only be observable for certain outputs and not others. A system's said to be observable if the row rank

of the observability matrix is equal to the number of rows of the nonsingular A matrix of the state space

model.

𝑄 =

[

𝐶
𝐶𝐴1

𝐶𝐴1
2

𝐶𝐴1
3]

For output as 𝜃1 in 𝑥1,

Q = 1.0e+05 *

0 0 0 0

0 0 0 -

0 -0.0038 -0.0073 0.0071

0 4.2518 7.2745 -7.0899

Rank(Q) = 4, meaning that system is observable. For any other variable in 𝑥1 selected as output, the rank

of Q matrix comes as 3 meaning that we can build observers for the system by just using the theta as

output, although this may prove useful in some situations, for a robotic system could be problematic as

the unstable system could suffer from degradation very quickly, further as the system has been linearized

for study in simulation, the model only holds true for assumed condition. To combat any unknown

scenarios, and given the limited type of variables needed to define the system, the system is assumed to

have sensors for all state variables. Further details on how this can be accomplished are given in the

System Implementation section.

MSE 483, Spring 2016, SFU Project Report

PAGE 9

2.5 Stability
The stability of the system was determined by using the poles of the transfer function. The transfer

function of the state space model is:

𝐻(𝑠) =
168.2𝑠2 − 1.434𝑒−11𝑠 − 1.04𝑒4

𝑠4 + 329.6𝑠3 + 245.5𝑠2 − 1.303𝑒4𝑠

The poles found for the transfer function are:

𝑠1 = 0 𝑠2 = −328.7531 𝑠3 = −6.7445 𝑠4 = 5.8771

From the poles, it can be determined that the system is unstable (𝑠4 = 5.8771).

2.6 Controller
The system to be controlled has multi-input multi-output aspects, because of which it is imperative to

outline the state variable of interest to be controlled. Among the six state variables we are mainly in two

𝜃, 𝑐𝑢𝑙𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒 𝑤ℎ𝑒𝑒𝑙 𝑎𝑛𝑔𝑙𝑒

𝜙, 𝑏𝑜𝑑𝑦 𝑦𝑎𝑤 𝑎𝑛𝑔𝑙𝑒

Two variables which represent the velocities of the above two components will not be controlled directly

as following the ideology of an actual system, the differentiated values will be highly error prone and

would contribute towards the instability of the system thus it pays off to minimize their contribution

towards stability.

The last two variables deal with 𝜓 (𝑏𝑜𝑑𝑦 𝑝𝑖𝑡𝑐ℎ 𝑎𝑛𝑔𝑙𝑒) and its differential, but we are interested in

converging the value to zero regardless of the condition of other state variables.

The above requirements outline the need for a servo controller which acts as an inner loop state space

feedback controller responsible for driving the reference signal equivalent to [𝜃𝑟𝑒𝑓 , 0, 0, 0]
𝑇

.

While an outer loop ties together the 𝜙 through differential feed to the two wheels. The reason for

excluding 𝜙 from state space equation is to simplify the requirements from the state controller. The state

controller is primarily used for pitch control, whereas including 𝜙 to it can result in the voltages to the

motors oversaturating and resulting in instability.

MSE 483, Spring 2016, SFU Project Report

PAGE 10

Figure 3: Simulink Model

As seen in the Simulink model above, the servo controller produces the required signals for the motors,

which are fed through a differential controlling the feedback from 𝜙 loop. The feedback from 𝜙 loop is

maintained by a gain controller to have insignificant effect on the stability of the system; the gain value is

selected through trial and error.

2.6.1 Segway State Space Model
The Segway state space model is a numerical representation of the mathematical state space equations

discussed above. The two major blocks represent the computation of 𝑥1⃗⃗⃗⃗ and𝑥2⃗⃗⃗⃗ . Initial conditions are

provided but mostly set to vectors of zeros to denote a standing Segway. Numerical integration of state

vector velocity is used to feed the system, as such, using variable step capability and proper solver in

Simulink is important to achieve reasonable results.

MSE 483, Spring 2016, SFU Project Report

PAGE 11

Figure 4: State Space Model

The state space model above is fully replaceable by hardware elements on the Segway, where data from

motor encoders and gyroscope pitch form 𝑥1⃗⃗⃗⃗ , while gyroscope yaw form𝑥2⃗⃗⃗⃗ . Further, as the gyroscope is

synchronized with an accelerometer and magnetometer using a complementary filter, it reduces the need

of an observer for sanity checking.

2.6.2 Servo Controller
The design of the servo controller is borrowed directly from [1] with certain changes to the reference

input. The servo controller is a state space feedback controller with the dominant gain acting on the

vehicle pitch. As such, the integrator loop contributes towards making the 𝜃 controllable but adds the

possibility of instability. The servo controller is augments the defining matrices as follows:

[
𝐴 − 𝐵𝐾 𝐵𝑘1

−𝐶 0
]

As discussed in previous sections, the new matrix formed by the control law is not controllable, thus we

use the Linear-Quadratic Regulator designer in the MATLAB Control toolbox. The lqr function [2] is fed the

system and the weights to influence the augmented matrix defined under the servo controller. Following

the strategy from [1] the gain matrix is defined as follows:

Q =

MSE 483, Spring 2016, SFU Project Report

PAGE 12

0 0 0 0 0

0 600000 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 400

As it can be seen, the heaviest emphasis is to control the body pitch, while the second largest weight is

being used for the integral part of the servo controller. The resulting gain matrix is defined as follows:

K =

-0.98 -28.45 -0.84 -2.28 0.45

-0.98 -28.45 -0.84 -2.28 0.45

The two rows in the gain matrix are similar because of the nature of B matrix of the system. The resulted

augmented A matrix for the system is as follows:

A = 1.0e+04 *

0 0 0.0001 0 0

0 0 0 0.0001 0

0.12 3.33 0.0264 0.3414 -0.053

-0.04 -1.24 -0.0101 -0.1278 0.0198

-0.0001 0 0 0 0

With eigenvalues:

Eig(A) = 1.0e+02 *

-9.9623 + 0000i -0.1115 + 0000i -0.0052 + 0.0052i -0.0052 – 0.0052i -0.0537 + 0.0000i

As it can be seen above, all the eigenvalues of the augmented matrix lie in the negative real plane thus

the system has been stabilized. The weights supplied to lqr function can be changed to impact the location

of dominant poles to achieve a faster or sluggish system as per need.

Figure 5: Servo Controller

MSE 483, Spring 2016, SFU Project Report

PAGE 13

2.7 Analysis
The controller discussed above was supplied with various reference signals and the outputs were

observed. The objective was to confirm that the system remains reasonably within the assumptions of

the linearized system. As no collisions detection was implemented in the system, any fall of the Segway

was characterized by exponential instability of any output. Any such behavior led to outright rejection of

the results of the model and further tweaking was done to clamp the outputs within reasonable bounds.

All the systems are fed with signal of different levels or behavior but each one evokes a different response

at specific time intervals, which can be summarized as such:

Table 3:Reference signals for 𝜃 and 𝜙 at different time intervals

Time [seconds] 𝜽𝒓𝒆𝒇 [radians] 𝝓𝒓𝒆𝒇 [radians]

0 - 5 Step/Move Forward 0

5 - 10 Hold position Step to 𝜋

10 - 15 Step/Move Backward 𝜋

15 - ∞ Hold position 𝜋

2.7.1 Small Step Input

Table 4: Small step reference signal

Time [seconds] 𝜽𝒓𝒆𝒇 [radians] 𝝓𝒓𝒆𝒇 [radians]

0 - 5 Step to 5 0

5 - 10 5 Step to 𝜋

10 - 15 Step to 0 𝜋

15 - ∞ 0 𝜋

Figure 6: Output showing 𝜃 on left and 𝜓 on right for small step input

MSE 483, Spring 2016, SFU Project Report

PAGE 14

In the plot above, it can be seen that the system suffers from overshoot which is direct consequence of

the integrator loop being used for 𝜃, but the benefit is seen in the next plot which shows that the highly

stable with respect to the pitch angle.

The yaw of the system suffers no adverse effects and contribute little towards the saturation of the

actuators, while the response time of the system with respect to yaw is slow, it is kept so as to avoid

making the actuators saturated. As the simulated system does not suffer from miss-alignment between

the wheels no correction factor is needed, but experimental system would need a gain factor comparing

the differential between the wheels and synchronizing them while moving.

Figure 7: Output showing 𝜙 on left and voltage input to motors on right for small step input

Comparing the data to the requirements:

Table 5: Comparison (Results for small step input vs Requirements)

Variable Requirement Value

𝜓 |𝑟𝑎𝑛𝑔𝑒| ≤ 15 𝑑𝑒𝑔𝑟𝑒𝑒𝑠 |𝑟𝑎𝑛𝑔𝑒| = 11.45 𝑑𝑒𝑔𝑟𝑒𝑒𝑠
𝜃 𝑤ℎ𝑒𝑒𝑙 𝑟𝑎𝑑𝑖𝑢𝑠 ∗ |𝑜𝑣𝑒𝑟𝑠ℎ𝑜𝑜𝑡| ≤ 5 𝑐𝑚 𝑤ℎ𝑒𝑒𝑙 𝑟𝑎𝑑𝑖𝑢𝑠 ∗ |𝑜𝑣𝑒𝑟𝑠ℎ𝑜𝑜𝑡| = 4.5 𝑐𝑚

𝜃̇ 𝑤ℎ𝑒𝑒𝑙 𝑟𝑎𝑑𝑖𝑢𝑠 ∗ 𝑎𝑣𝑒𝑟𝑎𝑔𝑒(𝜃̇) ≥ 2𝑐𝑚/𝑠 𝑤ℎ𝑒𝑒𝑙 𝑟𝑎𝑑𝑖𝑢𝑠 ∗ 𝑎𝑣𝑒𝑟𝑎𝑔𝑒(𝜃̇) ≈ 9 𝑐𝑚/𝑠

𝜙 |𝑜𝑣𝑒𝑟𝑠ℎ𝑜𝑜𝑡| ≤ 10 𝑑𝑒𝑔𝑟𝑒𝑒𝑠 |𝑜𝑣𝑒𝑟𝑠ℎ𝑜𝑜𝑡| ≈ 0 𝑑𝑒𝑔𝑟𝑒𝑒𝑠

𝜙̇ 𝑎𝑣𝑒𝑟𝑎𝑔𝑒(𝜙̇) ≥ 45 𝑑𝑒𝑔𝑟𝑒𝑒𝑠/𝑠 𝑎𝑣𝑒𝑟𝑎𝑔𝑒(𝜙̇) ≈ 45 𝑑𝑒𝑔𝑟𝑒𝑒𝑠/𝑠

Although the results from the small step input look reasonable, the large overshoot contributed by the

integrator on 𝜃 illuminates the possibility of instability which is analyzed in the next section.

MSE 483, Spring 2016, SFU Project Report

PAGE 15

2.7.2 Large Step Input

Table 6: Large step reference signal

Time [seconds] 𝜽𝒓𝒆𝒇 [radians] 𝝓𝒓𝒆𝒇 [radians]

0 - 5 Step to 10 0

5 - 10 10 Step to 𝜋

10 - 15 Step to 0 𝜋

15 - ∞ 0 𝜋

As it can be seen in the plots below, 𝜃 and 𝜓 go out of bounds towards infinity indicating the Segway has

fallen, for the integrator loop for 𝜃 information can be obtained by looking at the actuator signals.

Figure 8: Plots showing results for 𝜃 on left and 𝜓 on right for large step input

Figure 9: Plots showing results for 𝜙 and Actuator inputs for large step input

As it can be seen from the actuator signals, both the motors are saturated and hence cannot counteract

the effect of initial dominance of 𝜃 on the input signal. The spikes seen in the middle are the effect of the

𝜙 feedback loop but are unreasonable as well as the system reached saturation long ago.

MSE 483, Spring 2016, SFU Project Report

PAGE 16

2.7.3 Ramp Input
To make the system reasonably stable for large movements, we have to realize that the integrator terms

leads to saturation of actuators, the effect can be minimized by generating reference signal as ramps

rather than steps. As such, 𝜃 error would stay minimal while effect from 𝜓 stays dominant leading to

system stability.

Table 7: Ramp Reference Signal

Time [seconds] 𝜽𝒓𝒆𝒇 [radians] 𝝓𝒓𝒆𝒇 [radians]

0 - 5 Ramp to 10 with slope of 2 0

5 - 10 10 Step to 𝜋

10 - 15 Ramp to 0 with slope of -2 𝜋

15 - ∞ 0 𝜋

As it can be in the 𝜃 and 𝜓 signals below that the system stays stable with the new reference signal. The

𝜙 behaves similar to the small step signal input and is not impacted by the behavior of pitch and forward

and backward movement.

Figure 10: Plots showing results for 𝜃 on left and 𝜓 on right with new reference signal

MSE 483, Spring 2016, SFU Project Report

PAGE 17

Figure 11: Plots showing results for 𝜙 on left and actuator inputs with new reference signal

The results from the above simulation are shown in the table below and compared against the earlier

requirements.

Table 8: Comparison between Simulation Result Vs Requirements

Variable Requirement Value

𝜓 |𝑟𝑎𝑛𝑔𝑒| ≤ 15 𝑑𝑒𝑔𝑟𝑒𝑒𝑠 |𝑟𝑎𝑛𝑔𝑒| = 4.58 𝑑𝑒𝑔𝑟𝑒𝑒𝑠
𝜃 𝑤ℎ𝑒𝑒𝑙 𝑟𝑎𝑑𝑖𝑢𝑠 ∗ |𝑜𝑣𝑒𝑟𝑠ℎ𝑜𝑜𝑡| ≤ 5 𝑐𝑚 𝑤ℎ𝑒𝑒𝑙 𝑟𝑎𝑑𝑖𝑢𝑠 ∗ |𝑜𝑣𝑒𝑟𝑠ℎ𝑜𝑜𝑡| = 4.5 𝑐𝑚

𝜃̇ 𝑤ℎ𝑒𝑒𝑙 𝑟𝑎𝑑𝑖𝑢𝑠 ∗ 𝑎𝑣𝑒𝑟𝑎𝑔𝑒(𝜃̇) ≥ 2𝑐𝑚/𝑠 𝑤ℎ𝑒𝑒𝑙 𝑟𝑎𝑑𝑖𝑢𝑠 ∗ 𝑎𝑣𝑒𝑟𝑎𝑔𝑒(𝜃̇) ≈ 6 𝑐𝑚/𝑠

𝜙 |𝑜𝑣𝑒𝑟𝑠ℎ𝑜𝑜𝑡| ≤ 10 𝑑𝑒𝑔𝑟𝑒𝑒𝑠 |𝑜𝑣𝑒𝑟𝑠ℎ𝑜𝑜𝑡| ≈ 0 𝑑𝑒𝑔𝑟𝑒𝑒𝑠

𝜙̇ 𝑎𝑣𝑒𝑟𝑎𝑔𝑒(𝜙̇) ≥ 45 𝑑𝑒𝑔𝑟𝑒𝑒𝑠/𝑠 𝑎𝑣𝑒𝑟𝑎𝑔𝑒(𝜙̇) ≈ 45 𝑑𝑒𝑔𝑟𝑒𝑒𝑠/𝑠

By comparing the values in above table to the ones obtained for small step input, it is seen that the ramp

input increases the controllability of body pitch considerably even when the distance traversed is much

larger. Second change is to the speed which can be seen has been reduced. The reference signal is able to

control the contributing factor to the instability of the system earlier, the second benefit is that the

controller can manage the slope of the supplied reference signal to control the system, this provides the

added benefit of selection between slow and controlled pace or even finding the speed after which the

system will become unstable. For the above simulation the value was found to be closer to 2

radians/second. The other significant effect of changing the signal to a ramp is seen in the actuators

signals. As it can be seen that the actuator signals do not saturate.

Although the impact of the 𝜙 is significant and has to considered during the coding of the experimental

system. Software checks can make sure that the feedback from the 𝜙 does not saturate the motor signals

and is clamped down if so.

MSE 483, Spring 2016, SFU Project Report

PAGE 18

3 System Implementation
The students attempted to take the project from simulation to implementation using a prototype robot.

The robot was constructed using rudimentary parts available. An onboard microcontroller acted as the

brain, sensors such as incremental encoders, gyroscope acted as the sensory backbone, and a battery

pack provided modularity. Software was developed to process the data from the gyroscope and other

sensors to eliminate the need of observers, and to implement a faithful representation of controller

developed in simulation earlier. The challenge taken by the students was in addition to the requirements

of the project, further limitation with time meant that while a hardware prototype and complete software

backbone was developed, work had to be halted during the fine-tuning process of the controller from

taking it from a simulation to real world.

3.1 Hardware and Electronics
The uniqueness of the inverted pendulum has drawn interest for many researchers due to the unstable

nature of the system. We decided to build a two wheeled inverted pendulum model, using the following

mechanical components:

 Arduino board (Microcontroller)

 Pololu DC motors

 Battery

 Two wheels

 Piece of cardboard

 And a Styrofoam piece for safety

As the model is mechanically unstable, it becomes necessary to implement a control system to keep the

system in equilibrium. As the robot will be moving about on a surface, a PID controller is implemented to

control the trajectory of the robot. A gyroscope is used to measure the tilt of the robot and the encoders

on the motors, to measure wheel’s rotation. A linear state space controller utilizing sensory information

from a gyroscope and motor encoders is used to stabilize this system.

The robot’s body was designed based on a piece of cardboard attaching Arduino and the circuit chip on
one side and battery pack at the back. The motors were fitted on the same side as the Arduino board and
the circuit chip, using a micro metal gearmotor mounting bracket to avoid misalignment of the motors.

Trajectory Control
Differential drive robots have proven to be one of the least complicated locomotion systems. The

differential scheme consists of two wheels on a common axis, each wheel driving independently. This

arrangement gives the ability to drive straight by applying equal amount of power to the motors, but if

the system is ideal. Otherwise, these robots cannot drive straight without a proper control system because

of the errors like difference in wheel sizes and friction, rough paths; these errors will cause the robot to

lose its balance.

Majority of the hardware components were resourced by the students themselves, due to limitation of

time, minimum effort was invested to produce the prototype. Previous experience with various

components was critical in reducing the time needed to interface the parts on hardware as well as

software level.

MSE 483, Spring 2016, SFU Project Report

PAGE 19

1. Microcontroller (web link)

Specification Value

Figure 12: Microcontroller

Memory 512 KB

Clock Speed 84 MHz

PWM Outputs 12

Digital Inputs 42

Weight 36 grams

Input Voltage 7-12 V

Actuators:

Figure 13: Pololu DC Motors

The gearmotor is a miniature high-power brushed DC motor with a 297.92:1 metal gearbox. It has a

cross section of 10 x 12mm, and the D-shaped gearbox output shaft is 9mm long and 3mm in diameter.

These tiny brushed DC geramotors are intended for use at 6 V, having the capability of running at

voltages above and below this nominal voltage, so they can comfortable operate in the 3 – 9 V range

(rotation can start at voltages as low at 0.5 V.

𝐺𝑒𝑎𝑟 𝑟𝑎𝑡𝑖𝑜:
25 × 34 × 37 × 35 × 38

12 × 9 × 10 × 13 × 10
 ≈ 297.92: 1

2. Motors (web link)

Specification Value

Figure 14: DC Motor with Magnetic Encoder

Free Run Speed 100 RPM

Stall Torque 0.4 Nm

Stall Current 1.6 A

Encoder Pulses 3576 per rev

Input Voltage 3-9 V

https://www.arduino.cc/en/Main/ArduinoBoardDue
https://www.pololu.com/product/2218/specs

MSE 483, Spring 2016, SFU Project Report

PAGE 20

3. Magnetic Encoder

The encoders we used, uses a magnetic disc and hall effect sensors to provide 12 count per revolution of

the motor shaft. The sensors operate from 2.7 V to 18 V and provide digital outputs that can be connected

directly to a microcontroller or other digital circuit.

Figure 15: Magnetic Encoder

The sensors are powered through the 𝑉𝑐𝑐 and GND pins. 𝑉𝑐𝑐 can be 2.7 V to 18 V, and the quadrature

outputs A and B are digital signals that are either driven low (0 V) by the sensors or pulled to 𝑉𝑐𝑐 through

the 10 kΩ pull-up resistors, depending on the applied magnetic field. The sensors’ comparators have built-

in hysteresis, which prevents spurious signals in cases where the motor stops near a transition point.

4. Micro metal gearmotor Mounting bracket

Figure 16: Micro metal gearbox mounting bracket

Mounting bracket used in our design are specifically designed to securely mount the gearmotor while

enclosing the exposed gears.

5. Inertial Measurement Unit (web link)

Specification Value

Figure 17: Inertial Measurement Unit

Gyroscope 3 axis

Accelerometer 3 axis

Magnetometer 3 axis

Input Voltage 2.5 – 5.5 V

http://www.robotshop.com/ca/en/minimu-9-v3-gyro-accelerometer-magnometer-imu.html

MSE 483, Spring 2016, SFU Project Report

PAGE 21

6. Motor Driver (web link)

Specification Value

Figure 18: Motor Driver

Motors Supported 2

Average Current 1.2 A per channel

Peak Current 2 A per channel

Input Voltage 2.7 – 10.2 V

7. Battery (web link)

Specification Value

Figure 19: Battery

Nominal Voltage 7.4 V

Capacity 1000 mAh

Weight 85 grams

The electronic components were permanently connected together on a perforated circuit board to

eliminate broken connection which could otherwise result from sudden motion or falls. The parts were

secured to a compressed cardboard chassis using brackets and zip ties to realize a cost effective chassis.

The electronics backbone and competed robot can be seen in the following pictures.

https://www.pololu.com/product/2130
https://www.sparkfun.com/products/11855

MSE 483, Spring 2016, SFU Project Report

PAGE 22

Figure 20: Physical Model Design and Components used

Figure 21 Assembled Protoype

MSE 483, Spring 2016, SFU Project Report

PAGE 23

3.2 Software
The embedded software was programmed using Arduino framework to aid effortless development, but
still required significant patching and development for the various components. The system was
developed as a state machine managed using asynchronous software timers. Only the major sections of
the code and their functionality is discussed here:

1. Sensors

An onboard 9 degrees of freedom sensors provided body pitch and yaw information. A complimentary

filter [3] is used to fuse the data from the gyroscope with data from accelerometer and magnetometer.

As such, the robot is sensitive to sudden movements, while not suffering from drifting problems seen in

MEMES gyroscopes. Other sensors included incremental encoders for the motors, which were serviced

using digital pin interrupts. In future, the robot could be mounted with a proximity sensor to provide it

with depth perception.

2. Motors

A software section interacts directly with the motor driver board using four PWM channels, the sequence

and the on state of the line dictate the voltage supplied to the two motors.

3. Controller

The controller was coded so as to faithfully mirror the one designed in simulation but with additional

checks in place which monitor the motors for oversaturation and provide compensation by measuring the

battery voltage, which drops over the runtime of robot, to provide equal performance throughout the run

of the robot.

4. Utilities

Various software utilities were coded, such as software timers, UART logging, etc, to facilitate easier

development and debugging of problems. The system lacked any remote debugging capability as the

students did not have a wireless module at hand, but it could be easily achieved by using modules such as

UART-to-Bluetooth chipsets.

MSE 483, Spring 2016, SFU Project Report

PAGE 24

Figure 22: Flowchart detailing Software (Overview of Call Hierarchy)

The timer’s library manages all the asynchronous timers, where all the underlying components are running
at various frequencies. The Kalman filter used for computing attitude information is attached to timer
managing data read for the gyroscope. While the motors are set at the very moment the controller is run.
At latest, the inertial measurement unit was serviced at 95 Hz, while the controller ran at 100 Hz. Due to
the microcontroller used, the execution speed could be much faster but was limited largely due to the
slow nature of the I2C protocol used with the various sensors comprising the IMU.

4 Conclusion
The implementation of the balance control algorithm was based on the detailed theory and simulation as
discussed above. Controller gains were obtained from simulation results and applied to the system. Since
the dynamic model of a system can never be accurate, the gains found usually acts as foundation for
further fine tuning of the controller to achieve the desired response.

This project was on the verge of being successful but unfortunately our main programming laptop’s hard
drive got burnt and we lost all data and therefore, we couldn’t do some final touch ups. But still I would
put it as our project was successful in achieving its aims to balance a two-wheeled robot based on the
inverted pendulum model.

5 References

MSE 483, Spring 2016, SFU Project Report

PAGE 25

[1] Y. Yamamoto, "NXTWay," [Online]. Available:

http://www.pages.drexel.edu/~dml46/Tutorials/BalancingBot/files/NXTway-GS%20Model-

Based_Design.pdf.

[2] mathworks, "lqr," [Online]. Available: http://www.mathworks.com/help/control/ref/lqr.html.

[3] T. Corinne, "razor IMU," [Online]. Available: https://github.com/sparkfun/9DOF_Razor_IMU.

