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1 Introduction 
The mechanical section of the Truss Arm project involves structure design, truss analysis and 

construction of a mechanical truss arm. The task for the arm is to pick up a 10g mass object from 

location A and transport the object along an arc to location B accurately and with fast speed. In 

general, the truss arm needs to have minimum deflection and minimum moment of inertia to have 

high operating efficiency and performance. After thorough truss analysis and simulation, the group 

designed and built an optimized truss arm to perform the task. This report briefly details the design 

process, decision, experimental and theoretical verification.  

 

2 Design approach, objectives and constraints 
With all the design specifications outlined, we start our truss arm design in SolidWorks, which 

allows us to run bending and deflection simulations easily.  Equipped with this tool, we can compare 

alternative structures against parameters like bending and deflection during the design process in 

order to achieve an optimized design.  

Given the brass rods supplied for cantilever beam our design objectives centered around achieving a 

design that: minimized beam deflection in the trusses as a measure to improve control accuracy during 

operation, and minimize the total moment of inertia to support rapid acceleration or deceleration. 

With our objectives now clearly defined our design will have to span a length of 30 cm and support an 

additional suspended mass of 10g. Additional design specifications also set structure size limitations 

and maximum clearance space between electromagnet surface and object that we need to follow the 

table below outlines these 

 

Parameter Constraint 

Truss Span From center of motor mount to center of 
electromagnet mount is to be 30 cm 

Height/Width ≤ 10 cm  

Overhang 
(Motor/Electromagnet) 

≤ 5 cm  

Clearance ≤ 2mm  

Truss Mounting Plate The truss mounting plate is to be cut as shown 
below (dimensions are in mm) 
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Electromagnet Mounting Plate The electromagnet mounting plate is to be cut 

as shown in the figure below (dimensions are 
in mm) 

 
Brass Rod 12ft x 3/32” Rod 

Table 1: Design Constraints of Truss 

  

 

3 Quantitative analysis of 3 truss structures  
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3.1 Truss structure 1:  

 
 
 
 

 
Figure 1: Truss structure 1 SolidWorks Model 

 
Figure 2: Truss structure 1 SolidWorks deflection analysis 

 

Based on SolidWorks Mass Properties function, Principal axes of inertia and principal moments of 

inertia are (grams*square millimeters):  

Iz = (0.00, 0.00, 1.00) Pz = 873749.23 

3.2 Truss structure 2  

 
Figure 3: Truss structure 2 SolidWorks deflection analysis 

Based on SolidWorks Mass Properties function, Principal axes of inertia and principal moments of 

inertia are (grams*square millimeters):  

Iz = (0.00, 0.00, 1.00) Pz = 3206753.47 
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3.3 Truss structure 3  

 
 
 
 

 
Figure 4: Truss structure 3 SolidWorks 
Model 

 
Figure 5: Truss structure 3 SolidWorks deflection analysis 

 

Based on SolidWorks Mass Properties function, Principal axes of inertia and principal moments of 

inertia are (grams*square millimeters): 

Iz = (0.00, 0.00, 1.00) Pz = 1030792.05 
 

 

4 Design alternatives evaluation and justification  
Given our principal concerns with every design is to minimize deflection in the direction of travel and 

as a result of the additional 10g mass picked up, and minimize the total moment of inertia of the 

structure for ease in control we compare these parameters for each design in the table below: 

 

 

Design z-axis deflection ( x 10-2 mm) Moment of inertia (g.mm2) 

Truss 1 5.909  873749.23 

Truss 2 41.58  3206753.47 

Truss 3 3.63 1030792.05 
Table 2: Comparison of design options against system parameters of interest 

From the table we found our design of choice was a debate between truss 1 with a lower moment of 

inertia but higher deflection with respect to truss 3. We favored Truss 1 over too as we value simplicity 

and reliability of our control algorithm and the 2mm difference in deflection is not too much of a 

problem. 
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5 Detailed Engineering drawing of final design structure  

 
Figure 6: Detailed Engineering drawing of Design of Choice 

6 Analytical analysis for structure stress and deflection  
The analysis of the truss was not done explicitly by hand, but the equations were derived from 

scratch and fed into a Matlab script, thus reducing the tediousness of having to deal with 3 

dimensional vectors. Following is a brief description of the structural methodology and the 

mathematical equations used to solve for parameters of interest. 

In the real-life structure, steps were taken to reduce the complexity as well to increase the robustness 

by reducing the net number of joints. This was achieved by bending some of the elements in order to 

replace multiple independent members with a composite piece. For structural analysis purpose the 

mathematical analysis of the system will be too complex and redundant. To simplify the analysis we 

choose to go with the conservative method of replacing all joints (including bending) into rotatable 

ones. By taking this step we can insure that the final design will be by far stronger and reliable than 

the analytically design. Figure 7 is a diagrammatical representation of the simplified structure with 

details implying the constraint and loading positions. 
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In the real structure, the three joints 8, 9, and 10 (as given in figure above) are attached to the square 

plate sitting on the motor thus are modeled as fully constrained. On the front end, the structure has 

been simplified by replacing the electromagnet plate with a simple member. As such joint 1 does not 

indicate two members and joint 2-3 is a single member with three members attached to it at joint 1, 

2, and 3. 

Following is a diagrammatical representation of the loadings experienced by member 2-3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

As shown in the figure above, solving the forces for joint 2-3 requires to find 3 unknowns which can 

be easily achieved by composing the 3-dimensional static equation along x, y, and z axis. The equations 

are composed in the following manner. 

𝐽𝑛 = [

𝑥𝑛

𝑦𝑛

𝑧𝑛

] 
 

1 

 

𝑊ℎ𝑒𝑟𝑒: 𝑥𝑛, 𝑦𝑛, 𝑧𝑛𝑑𝑒𝑓𝑖𝑛𝑒 𝑡ℎ𝑒 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑗𝑜𝑖𝑛𝑡 𝑛 𝑖𝑛 3 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛 
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Figure 7: Numerical Assignment to joints 

Figure 8: Member loading of structure 
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𝐹𝑛−𝑚̃ = 𝐹𝑛−𝑚 ∗
𝐽𝑚 − 𝐽𝑛

|𝐽𝑚 − 𝐽𝑛|
= 𝐹𝑛−𝑚 ∗ 𝑈𝑚−𝑛 

 

2 

𝑊ℎ𝑒𝑟𝑒: 𝐹𝑛−𝑚 𝑖𝑠 𝑎 𝑠𝑐𝑎𝑙𝑎𝑟 𝑎𝑛𝑑 𝑖𝑠 𝑑𝑒𝑓𝑖𝑛𝑒𝑑 𝑎𝑠 𝑡𝑒𝑛𝑠𝑖𝑙𝑒 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡ℎ𝑒 𝑚𝑒𝑚𝑏𝑒𝑟𝑠 

               𝑈𝑛−𝑚 𝑖𝑠 𝑡ℎ𝑒 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 𝑣𝑒𝑐𝑡𝑜𝑟 𝑔𝑖𝑣𝑒𝑛 𝑏𝑦 𝑡ℎ𝑒 𝑒𝑛𝑑 𝑝𝑜𝑖𝑛𝑡𝑠 𝑜𝑓 𝑚𝑒𝑚𝑏𝑒𝑟 

 

𝐹𝑜𝑟 𝑎𝑛𝑦 𝑔𝑖𝑣𝑒𝑛 𝑗𝑜𝑖𝑛𝑡 𝑛 𝑤𝑖𝑡ℎ 𝑜𝑛𝑒 𝑘𝑛𝑜𝑤𝑛 𝑓𝑜𝑟𝑐𝑒 [𝐹𝑛−𝑘] 𝑎𝑛𝑑 𝑡ℎ𝑟𝑒𝑒 𝑢𝑛𝑘𝑜𝑤𝑛𝑠: 

𝐹𝑛−𝑘̃ +  𝐹𝑛−𝑚1
̃ +  𝐹𝑛−𝑚2

̃ +  𝐹𝑛−𝑚3
̃ = [

0
0
0

] 
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𝐹𝑛−𝑚1
̃ +  𝐹𝑛−𝑚2

̃ +  𝐹𝑛−𝑚3
̃ =  −𝐹𝑛−𝑘̃ 
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[𝑈𝑛−𝑚1 𝑈𝑛−𝑚2 𝑈𝑛−𝑚3] ∗ [

𝐹𝑛−𝑚1

𝐹𝑛−𝑚2

𝐹𝑛−𝑚3

] =  −𝐹𝑛−𝑘 ∗ 𝑈𝑛−𝑘 
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𝐴 ∗ 𝑥 = 𝑏 6 
 

𝑊ℎ𝑒𝑟𝑒: 𝐴 𝑖𝑠 𝑎 3 × 3 𝑚𝑎𝑡𝑟𝑖𝑥 𝑤𝑖𝑡ℎ 𝑈𝑛−𝑚 𝑎𝑠 𝑐𝑜𝑙𝑢𝑚𝑛 𝑣𝑒𝑡𝑜𝑟𝑠 

               𝑥 𝑖𝑠 𝑎 𝑐𝑜𝑙𝑢𝑚 𝑣𝑒𝑐𝑡𝑜𝑟 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑔𝑖𝑛𝑔 𝑡ℎ𝑒 𝑢𝑛𝑘𝑜𝑤𝑛𝑠 

               𝑏 =  −𝐹𝑛−𝑘̃ 𝑖𝑠 𝑡ℎ𝑒 𝑘𝑛𝑜𝑤𝑛 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑡𝑜 𝑡ℎ𝑒 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛𝑠 

∴ 𝑥 = 𝐴−1𝑏 7 
 

The above set of equations were used on joints 4, 5, 6, and 7 to find the loadings in all members of 

the truss once 𝐹1−6, 𝐹2−4, 𝑎𝑛𝑑 𝐹5−3 were known. This was possible due to the fact that given the 

design of the truss all these joints have exactly four members joining each other. Coincidently, the 

same approach was used on member 2-3, owing to the three unknowns and depiction of the loading 

as being delivered from a member aligned with the z axis. Further computation of the stress, force, 

and buckling criteria, net deflection and net inertia was a simple iterative task on the data computed 

for the loadings and thus easily automated in the Matlab script. 

 

7 Buckling analysis  
Buckling analysis was carried out by comparing the compressive force carried by the member against 

the minimum force required to cause buckling in the member. This task was carried out in matlab 

script as well. 

𝐹 =
𝜋2𝐸𝐼

(𝐾𝐿)2
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𝑊ℎ𝑒𝑟𝑒: 𝐹 𝑖𝑠 𝑡ℎ𝑒 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 𝑓𝑜𝑟𝑐𝑒 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝑓𝑜𝑟 𝑏𝑢𝑐𝑘𝑙𝑖𝑛𝑔 

               𝐸, 𝐼, 𝐿 𝑎𝑟𝑒 𝑡ℎ𝑒 𝑒𝑙𝑒𝑎𝑠𝑡𝑖𝑐 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡, 𝐴𝑟𝑒𝑎 𝑀𝑜𝑚𝑒𝑛𝑡 𝑜𝑓 𝐼𝑛𝑒𝑟𝑡𝑖𝑎, 𝑎𝑛𝑑 𝐿𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑚𝑒𝑚𝑏𝑒𝑟  

               𝐾 𝑖𝑠 𝑡ℎ𝑒 𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 𝑙𝑒𝑛𝑔𝑡ℎ 𝑓𝑎𝑐𝑡𝑜𝑟, 1.0 𝑓𝑜𝑟 𝑏𝑜𝑡ℎ 𝑒𝑛𝑑𝑠 𝑝𝑖𝑛𝑛𝑒𝑑 
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Member of arm Loading 
[N] 

Stress  
[N/m^2] 

Factor of safety 
[Stress/Y.S.] 

Buckle Likeness 
[Yes|No]/ Safe 

Limit[N]  

1-6 3.85 784850.82 305.39 NA 

2-4 -1.90 -386593.78 NA No/270.69 

3-5 -1.90 -386593.78 NA No/270.69 

4-6 -0.02 -3986.03 NA No/2764.29 

5-6 -0.02 -3986.03 NA No/2764.29 

6-7 3.86 785790.94 305.03 NA 

4-5 0.04 8616.06 27818.87 NA 

4-9 -1.90 -388039.93 NA No/182.96 

5-8 -1.90 -388039.93 NA No/182.96 

7-8 -3.25 -662856.99 NA No/604.40 

7-9 -3.25 -662856.99 NA No/604.40 

7-10 5.73 1166644.48 205.45 NA 
Table 3: Buckling analysis data from Matlab program 

 

8 Moment of inertia  
The moment of inertia for the truss was computed about the rotational axis adjunct with the motor. 

This task was automated in the matlab script as well by using the following formulation: 

 

𝐵𝑜𝑟𝑟𝑤𝑖𝑛𝑔 𝑛𝑜𝑡𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝐽𝑛 𝑓𝑟𝑜𝑚 𝑒𝑎𝑟𝑙𝑖𝑒𝑟 𝑡𝑒𝑥𝑡 

𝐿 =  √𝐽𝑚 − 𝐽𝑛 9 

 

𝑊ℎ𝑒𝑟𝑒: 𝐿 𝑖𝑠 𝑡ℎ𝑒 𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑡ℎ𝑒 𝑚𝑒𝑚𝑏𝑒𝑟 𝑚 − 𝑛 

[

𝑥𝑚−𝑛

𝑦𝑚−𝑛

𝑧𝑚−𝑛

] =  
𝐽𝑚 − 𝐽𝑛

𝐿
 

 

10 

sin(𝜃) =
√𝑥𝑚−𝑛 + 𝑦𝑚−𝑛

𝐿
 

 

11 

𝑟 =  √(𝑥0 − 𝑥𝑚−𝑛)2 + (𝑦0 − 𝑦𝑚−𝑛)2 
 

12 

𝐼𝑥0𝑦0
=

1

12
(𝐴𝐿𝜌) × 𝐿2 × sin(𝜃)2 + (𝐴𝐿𝜌) × 𝑟2 
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𝑊ℎ𝑒𝑟𝑒: 𝑥0, 𝑦0𝑎𝑟𝑒 𝑝𝑜𝑖𝑛𝑡 𝑖𝑛 𝑥 − 𝑦 𝑝𝑙𝑎𝑛𝑒 𝑐𝑜𝑖𝑛𝑐𝑒𝑑𝑒𝑛𝑡 𝑤𝑖𝑡ℎ 𝑙𝑖𝑛𝑒 𝑜𝑓 𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛 

𝜌 𝑖𝑠 𝑡ℎ𝑒 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 𝑜𝑓 𝑚𝑒𝑚𝑏𝑒𝑟 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙 

 

Net I = 11562.830156 gm.cm^2 
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9 Appendix 

9.1 Matlab Code for Analytical Calculation 

 
function truss_solver() 

    clc 

    clear all; 

 

    %setting up joint locations, (x, y, z) 

    joints{1} = [31.25 0 1.99]; 

    joints{2} = [31.25 1.5 1.99]; 

    joints{3} = [31.25 -1.5 1.99]; 

    joints{4} = [19.405 2.05 1.158]; 

    joints{5} = [19.405 -2.05 1.158]; 

    joints{6} = [20.409 0 4.095]; 

    joints{7} = [3.092 0 7.307]; 

    joints{8} = [5.0 -2.5 0]; 

    joints{9} = [5.0 2.5 0]; 

    joints{10} = [0 0 0]; 

 

    %setting initial parameters 

    Load = 1;                       %external load [N] 

    Diameter = 0.25;                %beam diamter [cm] 

    YieldStrength = 2.39689*10^8;   %N/m^2 

    ElasticModulus = 1019710*9.91;  %N/cm^2 

    Density = 8.5;                  %gm/cm^2 

    rotational_x = 2.5;             %cm 

    rotational_y = 0;               %cm 

     

    %auto configured vars 

    Area = pi*(Diameter/2)^2; 

    AreaMoment = (pi/2)*(Diameter/2)^4; 

     

    %solving front side 

    A = getA(1, 6, 2, 4, 3, 5); 

    b = -[0; 0; -Load]; 

    output = A\b; 

    field1 = 'val'; 

    field2 = 'name'; 

    forces(1) = struct(field1, output(1), field2, '1-6'); 

    forces(end + 1) = struct(field1, output(2), field2, '2-4'); 

    forces(end + 1) = struct(field1, output(3), field2, '3-5'); 

     

    %solving joint 6 

    output = solveJoint(forces(1).val, 6, 1, 4, 5, 7); 

    forces(end + 1) = struct(field1, output(1), field2, '4-6'); 

    forces(end + 1) = struct(field1, output(2), field2, '5-6'); 

    forces(end + 1) = struct(field1, output(3), field2, '6-7'); 

     

    %solving joint 4 

    output = solveJoint(forces(2).val, 4, 2, 5, 6, 9); 

    forces(end + 1) = struct(field1, output(1), field2, '4-5'); 

    forces(end + 1) = struct(field1, output(3), field2, '4-9'); 

     

    %solving joint 5 

    output = solveJoint(forces(3).val, 5, 3, 4, 6, 8); 

    forces(end + 1) = struct(field1, output(3), field2, '5-8'); 

     

    %solving joint 7 

    output = solveJoint(forces(6).val, 7, 6, 8, 9, 10); 
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    forces(end + 1) = struct(field1, output(1), field2, '7-8'); 

    forces(end + 1) = struct(field1, output(2), field2, '7-9'); 

    forces(end + 1) = struct(field1, output(3), field2, '7-10'); 

     

    %running loop on all joints to calculate paramters of interest 

    netI = 0; 

    deflection = 0; 

    buffer = ''; 

    numMembers = size(forces); 

    for i = 1:numMembers(2) 

        jointNums = textscan(forces(i).name, '%d-%d'); 

        mLength = norm(joints{jointNums{1}} - joints{jointNums{2}}); 

         

        stress = forces(i).val*10000/Area; %calculate stress in member 

        fos = sprintf('%.2f', YieldStrength/abs(stress)); %calculate factor of safety 

        buckle = 'No'; 

        F_max = 0; 

         

        if(forces(i).val < 0) %the force is compressive, check for buckling 

            fos = 'NA'; 

            F_max = ((pi^2) * ElasticModulus * AreaMoment)/(mLength)^2; 

            if(abs(forces(i).val) > F_max) 

                buckle = 'Yes'; 

            end 

        end 

        buffer = sprintf('M: % 4s F: % 4.2f N stress: % 11.2f N/m^2 fos: % 9s buckle: % 9.2f/%s', forces(i).name, forces(i).val, stress, fos, F_max, 

buckle); 

        disp(buffer); 

         

        %calculate inertia of member 

        netI = netI + getI(jointNums{1}, jointNums{2}, rotational_x, rotational_y); 

         

        %addition for net deflection 

        deflection  = deflection + (forces(i).val^2)*mLength/(Area*ElasticModulus*Load); 

    end 

    disp('-------'); 

     

    buffer = sprintf('Net I = %f gm.cm^2', netI); 

    disp(buffer); 

     

    disp('-------'); 

     

    buffer = sprintf('Net deflection = %f cm', deflection); 

    disp(buffer); 

     

    disp('-------'); 

     

    disp('Done'); 

 

    %----- FUNCTIONS -----% 

     

    %grab the component of member along certain axis 

    %start - starting joint number of member 

    %final - ending joint number of member 

    %cNum - 1=x 2=y 3=z 

    function [comp] = getComp(start, final, cNum) 

        vec = joints{final} - joints{start}; 

        length = norm(vec); 

        comp = vec(cNum)/length; 

    end 

 

    %A.F = b 
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    %get the linear equation matrix (A) for joints:1,2,3 

    %j<n>_s - starting joint number of member <n> 

    %j<n>_s - ending joint number of member <n> 

    function [A] = getA(j1_s, j1_e, j2_s, j2_e, j3_s, j3_e) 

        A = [getComp(j1_s, j1_e, 1), getComp(j2_s, j2_e, 1), getComp(j3_s, j3_e, 1); 

        getComp(j1_s, j1_e, 2), getComp(j2_s, j2_e, 2), getComp(j3_s, j3_e, 2); 

        getComp(j1_s, j1_e, 3), getComp(j2_s, j2_e, 3), getComp(j3_s, j3_e, 3);]; 

    end 

 

    %get the output vector (b) for linear equations above 

    %j1_s - starting joint number for external force direction 

    %j1_s - ending joint number for external force direction 

    function [b] = getb(j1_s, j1_e) 

        b = [getComp(j1_s, j1_e, 1); getComp(j1_s, j1_e, 2); getComp(j1_s, j1_e, 3)]; 

    end 

 

    %given a member with known force, solve the forces in other members 

    %sharing a joint 

    %knownF - force in the member 

    %jk_s - starting joint for known member/shared joint between members 

    %jk_e - ending joint for known member 

    %j<n>_e - ending joint for unknown member <n> 

    function [outputxyz] = solveJoint(knownF, jk_s, jk_e, j1_e, j2_e, j3_e) 

        xyzA = getA(jk_s, j1_e, jk_s, j2_e, jk_s, j3_e); 

        xyzb = -knownF.*getb(jk_s, jk_e); 

        outputxyz = xyzA\xyzb; 

    end 

 

    %get Inertia of member about z axis 

    %j_s - starting joint 

    %j_e - ending joint 

    %x,y - Inertia about point in x,y 

    function [netI] = getI(j_s, j_e, x, y) 

        vec = joints{j_s} - joints{j_e}; 

        length = norm(vec); 

        comp = sqrt(vec(1)^2 + vec(2)^2)/length; 

        mass = Area*length*Density; 

        I = mass*(length^2)*(comp^2)/12; 

        cg = (joints{j_s} + joints{j_e})./2; 

        r = sqrt((cg(1) - x)^2 + (cg(2) - y)^2); 

        netI = mass*r^2 + I; 

    end 

end 

 

 


