
Ane Tendo

MSE 312
TRUSS DESIGN PROJECT

Submitted by: Group 13

Zheng Wang 301188444
Sohail Sangha 301186636
Rame Putris 301047157
Ane Tendo 301186203

Lab Demo Date: June 11th 2015
Report Due Date: June 23rd 2015

1

Contents
1 Introduction .. 2

2 Design approach, objectives and constraints ... 2

3 Quantitative analysis of 3 truss structures .. 3

3.1 Truss structure 1: .. 4

3.2 Truss structure 2 ... 4

3.3 Truss structure 3 ... 5

4 Design alternatives evaluation and justification .. 5

5 Detailed Engineering drawing of final design structure ... 6

6 Analytical analysis for structure stress and deflection .. 6

7 Buckling analysis ... 8

8 Moment of inertia ... 9

9 Appendix .. 10

9.1 Matlab Code for Analytical Calculation .. 10

List of Figures

Figure 1: Truss structure 1 SolidWorks Model ... 4

Figure 2: Truss structure 1 SolidWorks deflection analysis ... 4

Figure 3: Truss structure 2 SolidWorks deflection analysis ... 4

Figure 4: Truss structure 3 SolidWorks Model ... 5

Figure 5: Truss structure 3 SolidWorks deflection analysis ... 5

Figure 6: Detailed Engineering drawing of Design of Choice ... 6

Figure 7: Numerical Assignment to joints .. 7

Figure 8: Member loading of structure ... 7

List of Tables

Table 1: Design Constraints of Truss .. 3

Table 2: Comparison of design options against system parameters of interest 5

Table 3: Buckling analysis data from Matlab program ... 9

file:///C:/Users/atendo/Downloads/Mechanical%20Report%20(Tendo%20Edit).docx%23_Toc422838316
file:///C:/Users/atendo/Downloads/Mechanical%20Report%20(Tendo%20Edit).docx%23_Toc422838317

2

1 Introduction
The mechanical section of the Truss Arm project involves structure design, truss analysis and

construction of a mechanical truss arm. The task for the arm is to pick up a 10g mass object from

location A and transport the object along an arc to location B accurately and with fast speed. In

general, the truss arm needs to have minimum deflection and minimum moment of inertia to have

high operating efficiency and performance. After thorough truss analysis and simulation, the group

designed and built an optimized truss arm to perform the task. This report briefly details the design

process, decision, experimental and theoretical verification.

2 Design approach, objectives and constraints
With all the design specifications outlined, we start our truss arm design in SolidWorks, which

allows us to run bending and deflection simulations easily. Equipped with this tool, we can compare

alternative structures against parameters like bending and deflection during the design process in

order to achieve an optimized design.

Given the brass rods supplied for cantilever beam our design objectives centered around achieving a

design that: minimized beam deflection in the trusses as a measure to improve control accuracy during

operation, and minimize the total moment of inertia to support rapid acceleration or deceleration.

With our objectives now clearly defined our design will have to span a length of 30 cm and support an

additional suspended mass of 10g. Additional design specifications also set structure size limitations

and maximum clearance space between electromagnet surface and object that we need to follow the

table below outlines these

Parameter Constraint

Truss Span From center of motor mount to center of
electromagnet mount is to be 30 cm

Height/Width ≤ 10 cm

Overhang
(Motor/Electromagnet)

≤ 5 cm

Clearance ≤ 2mm

Truss Mounting Plate The truss mounting plate is to be cut as shown
below (dimensions are in mm)

3

Electromagnet Mounting Plate The electromagnet mounting plate is to be cut

as shown in the figure below (dimensions are
in mm)

Brass Rod 12ft x 3/32” Rod

Table 1: Design Constraints of Truss

3 Quantitative analysis of 3 truss structures

4

3.1 Truss structure 1:

Figure 1: Truss structure 1 SolidWorks Model

Figure 2: Truss structure 1 SolidWorks deflection analysis

Based on SolidWorks Mass Properties function, Principal axes of inertia and principal moments of

inertia are (grams*square millimeters):

Iz = (0.00, 0.00, 1.00) Pz = 873749.23

3.2 Truss structure 2

Figure 3: Truss structure 2 SolidWorks deflection analysis

Based on SolidWorks Mass Properties function, Principal axes of inertia and principal moments of

inertia are (grams*square millimeters):

Iz = (0.00, 0.00, 1.00) Pz = 3206753.47

5

3.3 Truss structure 3

Figure 4: Truss structure 3 SolidWorks
Model

Figure 5: Truss structure 3 SolidWorks deflection analysis

Based on SolidWorks Mass Properties function, Principal axes of inertia and principal moments of

inertia are (grams*square millimeters):

Iz = (0.00, 0.00, 1.00) Pz = 1030792.05

4 Design alternatives evaluation and justification
Given our principal concerns with every design is to minimize deflection in the direction of travel and

as a result of the additional 10g mass picked up, and minimize the total moment of inertia of the

structure for ease in control we compare these parameters for each design in the table below:

Design z-axis deflection (x 10-2 mm) Moment of inertia (g.mm2)

Truss 1 5.909 873749.23

Truss 2 41.58 3206753.47

Truss 3 3.63 1030792.05
Table 2: Comparison of design options against system parameters of interest

From the table we found our design of choice was a debate between truss 1 with a lower moment of

inertia but higher deflection with respect to truss 3. We favored Truss 1 over too as we value simplicity

and reliability of our control algorithm and the 2mm difference in deflection is not too much of a

problem.

6

5 Detailed Engineering drawing of final design structure

Figure 6: Detailed Engineering drawing of Design of Choice

6 Analytical analysis for structure stress and deflection
The analysis of the truss was not done explicitly by hand, but the equations were derived from

scratch and fed into a Matlab script, thus reducing the tediousness of having to deal with 3

dimensional vectors. Following is a brief description of the structural methodology and the

mathematical equations used to solve for parameters of interest.

In the real-life structure, steps were taken to reduce the complexity as well to increase the robustness

by reducing the net number of joints. This was achieved by bending some of the elements in order to

replace multiple independent members with a composite piece. For structural analysis purpose the

mathematical analysis of the system will be too complex and redundant. To simplify the analysis we

choose to go with the conservative method of replacing all joints (including bending) into rotatable

ones. By taking this step we can insure that the final design will be by far stronger and reliable than

the analytically design. Figure 7 is a diagrammatical representation of the simplified structure with

details implying the constraint and loading positions.

7

In the real structure, the three joints 8, 9, and 10 (as given in figure above) are attached to the square

plate sitting on the motor thus are modeled as fully constrained. On the front end, the structure has

been simplified by replacing the electromagnet plate with a simple member. As such joint 1 does not

indicate two members and joint 2-3 is a single member with three members attached to it at joint 1,

2, and 3.

Following is a diagrammatical representation of the loadings experienced by member 2-3.

As shown in the figure above, solving the forces for joint 2-3 requires to find 3 unknowns which can

be easily achieved by composing the 3-dimensional static equation along x, y, and z axis. The equations

are composed in the following manner.

𝐽𝑛 = [

𝑥𝑛

𝑦𝑛

𝑧𝑛

]

1

𝑊ℎ𝑒𝑟𝑒: 𝑥𝑛, 𝑦𝑛, 𝑧𝑛𝑑𝑒𝑓𝑖𝑛𝑒 𝑡ℎ𝑒 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑗𝑜𝑖𝑛𝑡 𝑛 𝑖𝑛 3 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛

𝐹2−4

𝐹1−6

𝐹5−3

z

x

y

L

1

2

3

4

5

6

7

8

9

1

z

x

y

Figure 7: Numerical Assignment to joints

Figure 8: Member loading of structure

8

𝐹𝑛−𝑚̃ = 𝐹𝑛−𝑚 ∗
𝐽𝑚 − 𝐽𝑛

|𝐽𝑚 − 𝐽𝑛|
= 𝐹𝑛−𝑚 ∗ 𝑈𝑚−𝑛

2

𝑊ℎ𝑒𝑟𝑒: 𝐹𝑛−𝑚 𝑖𝑠 𝑎 𝑠𝑐𝑎𝑙𝑎𝑟 𝑎𝑛𝑑 𝑖𝑠 𝑑𝑒𝑓𝑖𝑛𝑒𝑑 𝑎𝑠 𝑡𝑒𝑛𝑠𝑖𝑙𝑒 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡ℎ𝑒 𝑚𝑒𝑚𝑏𝑒𝑟𝑠

 𝑈𝑛−𝑚 𝑖𝑠 𝑡ℎ𝑒 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 𝑣𝑒𝑐𝑡𝑜𝑟 𝑔𝑖𝑣𝑒𝑛 𝑏𝑦 𝑡ℎ𝑒 𝑒𝑛𝑑 𝑝𝑜𝑖𝑛𝑡𝑠 𝑜𝑓 𝑚𝑒𝑚𝑏𝑒𝑟

𝐹𝑜𝑟 𝑎𝑛𝑦 𝑔𝑖𝑣𝑒𝑛 𝑗𝑜𝑖𝑛𝑡 𝑛 𝑤𝑖𝑡ℎ 𝑜𝑛𝑒 𝑘𝑛𝑜𝑤𝑛 𝑓𝑜𝑟𝑐𝑒 [𝐹𝑛−𝑘] 𝑎𝑛𝑑 𝑡ℎ𝑟𝑒𝑒 𝑢𝑛𝑘𝑜𝑤𝑛𝑠:

𝐹𝑛−𝑘̃ + 𝐹𝑛−𝑚1
̃ + 𝐹𝑛−𝑚2

̃ + 𝐹𝑛−𝑚3
̃ = [

0
0
0

]

3

𝐹𝑛−𝑚1
̃ + 𝐹𝑛−𝑚2

̃ + 𝐹𝑛−𝑚3
̃ = −𝐹𝑛−𝑘̃

4

[𝑈𝑛−𝑚1 𝑈𝑛−𝑚2 𝑈𝑛−𝑚3] ∗ [

𝐹𝑛−𝑚1

𝐹𝑛−𝑚2

𝐹𝑛−𝑚3

] = −𝐹𝑛−𝑘 ∗ 𝑈𝑛−𝑘

5

𝐴 ∗ 𝑥 = 𝑏 6

𝑊ℎ𝑒𝑟𝑒: 𝐴 𝑖𝑠 𝑎 3 × 3 𝑚𝑎𝑡𝑟𝑖𝑥 𝑤𝑖𝑡ℎ 𝑈𝑛−𝑚 𝑎𝑠 𝑐𝑜𝑙𝑢𝑚𝑛 𝑣𝑒𝑡𝑜𝑟𝑠

 𝑥 𝑖𝑠 𝑎 𝑐𝑜𝑙𝑢𝑚 𝑣𝑒𝑐𝑡𝑜𝑟 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑔𝑖𝑛𝑔 𝑡ℎ𝑒 𝑢𝑛𝑘𝑜𝑤𝑛𝑠

 𝑏 = −𝐹𝑛−𝑘̃ 𝑖𝑠 𝑡ℎ𝑒 𝑘𝑛𝑜𝑤𝑛 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑡𝑜 𝑡ℎ𝑒 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛𝑠

∴ 𝑥 = 𝐴−1𝑏 7

The above set of equations were used on joints 4, 5, 6, and 7 to find the loadings in all members of

the truss once 𝐹1−6, 𝐹2−4, 𝑎𝑛𝑑 𝐹5−3 were known. This was possible due to the fact that given the

design of the truss all these joints have exactly four members joining each other. Coincidently, the

same approach was used on member 2-3, owing to the three unknowns and depiction of the loading

as being delivered from a member aligned with the z axis. Further computation of the stress, force,

and buckling criteria, net deflection and net inertia was a simple iterative task on the data computed

for the loadings and thus easily automated in the Matlab script.

7 Buckling analysis
Buckling analysis was carried out by comparing the compressive force carried by the member against

the minimum force required to cause buckling in the member. This task was carried out in matlab

script as well.

𝐹 =
𝜋2𝐸𝐼

(𝐾𝐿)2

8

𝑊ℎ𝑒𝑟𝑒: 𝐹 𝑖𝑠 𝑡ℎ𝑒 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 𝑓𝑜𝑟𝑐𝑒 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝑓𝑜𝑟 𝑏𝑢𝑐𝑘𝑙𝑖𝑛𝑔

 𝐸, 𝐼, 𝐿 𝑎𝑟𝑒 𝑡ℎ𝑒 𝑒𝑙𝑒𝑎𝑠𝑡𝑖𝑐 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡, 𝐴𝑟𝑒𝑎 𝑀𝑜𝑚𝑒𝑛𝑡 𝑜𝑓 𝐼𝑛𝑒𝑟𝑡𝑖𝑎, 𝑎𝑛𝑑 𝐿𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑚𝑒𝑚𝑏𝑒𝑟

 𝐾 𝑖𝑠 𝑡ℎ𝑒 𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 𝑙𝑒𝑛𝑔𝑡ℎ 𝑓𝑎𝑐𝑡𝑜𝑟, 1.0 𝑓𝑜𝑟 𝑏𝑜𝑡ℎ 𝑒𝑛𝑑𝑠 𝑝𝑖𝑛𝑛𝑒𝑑

9

Member of arm Loading
[N]

Stress
[N/m^2]

Factor of safety
[Stress/Y.S.]

Buckle Likeness
[Yes|No]/ Safe

Limit[N]

1-6 3.85 784850.82 305.39 NA

2-4 -1.90 -386593.78 NA No/270.69

3-5 -1.90 -386593.78 NA No/270.69

4-6 -0.02 -3986.03 NA No/2764.29

5-6 -0.02 -3986.03 NA No/2764.29

6-7 3.86 785790.94 305.03 NA

4-5 0.04 8616.06 27818.87 NA

4-9 -1.90 -388039.93 NA No/182.96

5-8 -1.90 -388039.93 NA No/182.96

7-8 -3.25 -662856.99 NA No/604.40

7-9 -3.25 -662856.99 NA No/604.40

7-10 5.73 1166644.48 205.45 NA
Table 3: Buckling analysis data from Matlab program

8 Moment of inertia
The moment of inertia for the truss was computed about the rotational axis adjunct with the motor.

This task was automated in the matlab script as well by using the following formulation:

𝐵𝑜𝑟𝑟𝑤𝑖𝑛𝑔 𝑛𝑜𝑡𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝐽𝑛 𝑓𝑟𝑜𝑚 𝑒𝑎𝑟𝑙𝑖𝑒𝑟 𝑡𝑒𝑥𝑡

𝐿 = √𝐽𝑚 − 𝐽𝑛 9

𝑊ℎ𝑒𝑟𝑒: 𝐿 𝑖𝑠 𝑡ℎ𝑒 𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑡ℎ𝑒 𝑚𝑒𝑚𝑏𝑒𝑟 𝑚 − 𝑛

[

𝑥𝑚−𝑛

𝑦𝑚−𝑛

𝑧𝑚−𝑛

] =
𝐽𝑚 − 𝐽𝑛

𝐿

10

sin(𝜃) =
√𝑥𝑚−𝑛 + 𝑦𝑚−𝑛

𝐿

11

𝑟 = √(𝑥0 − 𝑥𝑚−𝑛)2 + (𝑦0 − 𝑦𝑚−𝑛)2

12

𝐼𝑥0𝑦0
=

1

12
(𝐴𝐿𝜌) × 𝐿2 × sin(𝜃)2 + (𝐴𝐿𝜌) × 𝑟2

13

𝑊ℎ𝑒𝑟𝑒: 𝑥0, 𝑦0𝑎𝑟𝑒 𝑝𝑜𝑖𝑛𝑡 𝑖𝑛 𝑥 − 𝑦 𝑝𝑙𝑎𝑛𝑒 𝑐𝑜𝑖𝑛𝑐𝑒𝑑𝑒𝑛𝑡 𝑤𝑖𝑡ℎ 𝑙𝑖𝑛𝑒 𝑜𝑓 𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛

𝜌 𝑖𝑠 𝑡ℎ𝑒 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 𝑜𝑓 𝑚𝑒𝑚𝑏𝑒𝑟 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙

Net I = 11562.830156 gm.cm^2

10

9 Appendix

9.1 Matlab Code for Analytical Calculation

function truss_solver()

 clc

 clear all;

 %setting up joint locations, (x, y, z)

 joints{1} = [31.25 0 1.99];

 joints{2} = [31.25 1.5 1.99];

 joints{3} = [31.25 -1.5 1.99];

 joints{4} = [19.405 2.05 1.158];

 joints{5} = [19.405 -2.05 1.158];

 joints{6} = [20.409 0 4.095];

 joints{7} = [3.092 0 7.307];

 joints{8} = [5.0 -2.5 0];

 joints{9} = [5.0 2.5 0];

 joints{10} = [0 0 0];

 %setting initial parameters

 Load = 1; %external load [N]

 Diameter = 0.25; %beam diamter [cm]

 YieldStrength = 2.39689*10^8; %N/m^2

 ElasticModulus = 1019710*9.91; %N/cm^2

 Density = 8.5; %gm/cm^2

 rotational_x = 2.5; %cm

 rotational_y = 0; %cm

 %auto configured vars

 Area = pi*(Diameter/2)^2;

 AreaMoment = (pi/2)*(Diameter/2)^4;

 %solving front side

 A = getA(1, 6, 2, 4, 3, 5);

 b = -[0; 0; -Load];

 output = A\b;

 field1 = 'val';

 field2 = 'name';

 forces(1) = struct(field1, output(1), field2, '1-6');

 forces(end + 1) = struct(field1, output(2), field2, '2-4');

 forces(end + 1) = struct(field1, output(3), field2, '3-5');

 %solving joint 6

 output = solveJoint(forces(1).val, 6, 1, 4, 5, 7);

 forces(end + 1) = struct(field1, output(1), field2, '4-6');

 forces(end + 1) = struct(field1, output(2), field2, '5-6');

 forces(end + 1) = struct(field1, output(3), field2, '6-7');

 %solving joint 4

 output = solveJoint(forces(2).val, 4, 2, 5, 6, 9);

 forces(end + 1) = struct(field1, output(1), field2, '4-5');

 forces(end + 1) = struct(field1, output(3), field2, '4-9');

 %solving joint 5

 output = solveJoint(forces(3).val, 5, 3, 4, 6, 8);

 forces(end + 1) = struct(field1, output(3), field2, '5-8');

 %solving joint 7

 output = solveJoint(forces(6).val, 7, 6, 8, 9, 10);

11

 forces(end + 1) = struct(field1, output(1), field2, '7-8');

 forces(end + 1) = struct(field1, output(2), field2, '7-9');

 forces(end + 1) = struct(field1, output(3), field2, '7-10');

 %running loop on all joints to calculate paramters of interest

 netI = 0;

 deflection = 0;

 buffer = '';

 numMembers = size(forces);

 for i = 1:numMembers(2)

 jointNums = textscan(forces(i).name, '%d-%d');

 mLength = norm(joints{jointNums{1}} - joints{jointNums{2}});

 stress = forces(i).val*10000/Area; %calculate stress in member

 fos = sprintf('%.2f', YieldStrength/abs(stress)); %calculate factor of safety

 buckle = 'No';

 F_max = 0;

 if(forces(i).val < 0) %the force is compressive, check for buckling

 fos = 'NA';

 F_max = ((pi^2) * ElasticModulus * AreaMoment)/(mLength)^2;

 if(abs(forces(i).val) > F_max)

 buckle = 'Yes';

 end

 end

 buffer = sprintf('M: % 4s F: % 4.2f N stress: % 11.2f N/m^2 fos: % 9s buckle: % 9.2f/%s', forces(i).name, forces(i).val, stress, fos, F_max,

buckle);

 disp(buffer);

 %calculate inertia of member

 netI = netI + getI(jointNums{1}, jointNums{2}, rotational_x, rotational_y);

 %addition for net deflection

 deflection = deflection + (forces(i).val^2)*mLength/(Area*ElasticModulus*Load);

 end

 disp('-------');

 buffer = sprintf('Net I = %f gm.cm^2', netI);

 disp(buffer);

 disp('-------');

 buffer = sprintf('Net deflection = %f cm', deflection);

 disp(buffer);

 disp('-------');

 disp('Done');

 %----- FUNCTIONS -----%

 %grab the component of member along certain axis

 %start - starting joint number of member

 %final - ending joint number of member

 %cNum - 1=x 2=y 3=z

 function [comp] = getComp(start, final, cNum)

 vec = joints{final} - joints{start};

 length = norm(vec);

 comp = vec(cNum)/length;

 end

 %A.F = b

12

 %get the linear equation matrix (A) for joints:1,2,3

 %j<n>_s - starting joint number of member <n>

 %j<n>_s - ending joint number of member <n>

 function [A] = getA(j1_s, j1_e, j2_s, j2_e, j3_s, j3_e)

 A = [getComp(j1_s, j1_e, 1), getComp(j2_s, j2_e, 1), getComp(j3_s, j3_e, 1);

 getComp(j1_s, j1_e, 2), getComp(j2_s, j2_e, 2), getComp(j3_s, j3_e, 2);

 getComp(j1_s, j1_e, 3), getComp(j2_s, j2_e, 3), getComp(j3_s, j3_e, 3);];

 end

 %get the output vector (b) for linear equations above

 %j1_s - starting joint number for external force direction

 %j1_s - ending joint number for external force direction

 function [b] = getb(j1_s, j1_e)

 b = [getComp(j1_s, j1_e, 1); getComp(j1_s, j1_e, 2); getComp(j1_s, j1_e, 3)];

 end

 %given a member with known force, solve the forces in other members

 %sharing a joint

 %knownF - force in the member

 %jk_s - starting joint for known member/shared joint between members

 %jk_e - ending joint for known member

 %j<n>_e - ending joint for unknown member <n>

 function [outputxyz] = solveJoint(knownF, jk_s, jk_e, j1_e, j2_e, j3_e)

 xyzA = getA(jk_s, j1_e, jk_s, j2_e, jk_s, j3_e);

 xyzb = -knownF.*getb(jk_s, jk_e);

 outputxyz = xyzA\xyzb;

 end

 %get Inertia of member about z axis

 %j_s - starting joint

 %j_e - ending joint

 %x,y - Inertia about point in x,y

 function [netI] = getI(j_s, j_e, x, y)

 vec = joints{j_s} - joints{j_e};

 length = norm(vec);

 comp = sqrt(vec(1)^2 + vec(2)^2)/length;

 mass = Area*length*Density;

 I = mass*(length^2)*(comp^2)/12;

 cg = (joints{j_s} + joints{j_e})./2;

 r = sqrt((cg(1) - x)^2 + (cg(2) - y)^2);

 netI = mass*r^2 + I;

 end

end

