
MSE 310

Introduction to Electromechanical

Sensors and Actuators

DUNCAN ENSING 301147103

SOHAIL SANGHA 301186636

MATT HARRON 301211346

December 1st 2014

1

Contents
Introduction 1

Goals 1

System Overview 1

Sensors 2

Inductive 2

Capacitive 2

Photoelectric 3

Fibre-optic 3

Actuators 3

Linear Actuator 3

Rotary Actuator 4

Electric Motor 4

Algorithms & Flowcharts 5

Program Execution 5

Troubleshooting 8

Summary & Conclusion 9

Recommendations 9

Appendix 10

1

Introduction

 The purpose of this project was to setup a robust automation system using LabVIEW and

a National Instruments Data Acquisition Device (DAQ), specifically model USB-6501. What we

controlled through the DAQ was a Bytronic ICT3 (Industrial Control Technology) that was

designed to simulate a typical industrial automation system. The ICT demonstrates component

sorting, part assembly and inspection processes using various sensors and actuators. The

general concept for our LabVIEW program is to sort aluminum pegs and plastic hoops that are

placed in the system randomly, then assemble the hoop on top of the peg and finally determine

whether the assembly is complete. If the assembly is correct, let it pass through and if not, eject

the part or assembly.

 Over the course of the project, students are expected to build an automated program

using LabVIEW that can achieve all the goals listed below. Additionally, they are expected to gain

an understanding of the automation and controls business, relevant challenges , and the

hardware and software currently being used in the automation industry.

Goals

The tasks students must perform are:

 Develop a graphical user interface (GUI)

 Display the number of assemblies hoops and pegs handled by the system

 Reject incomplete assemblies

 Display real time sensor signal states

 Show the efficiency of the system

 Implement a stop\pause button

 Design a system recovery feature in case of a power loss

System Overview

 There are 4 types of sensors and 3 types of actuators used in the ICT. They include

inductive, capacitive, photoelectric and fiber-optic sensors, as well as linear solenoids, electric

motors, and a rotary solenoid.

2

Sensors

 Inductive

 The inductive sensors are used to detect the presence of an aluminum peg. This sensor

is a self-induction transducer that consists of a single coil and detects metallic objects via a

changing high frequency electromagnetic field. One of the main challenges with this type of

sensor is its non-linearity, meaning it has a high sensitivity for close distances and low sensitivity

for far distances. As you can see in Figure 1 below, the inductive sensor has to be extremely

close to the target object. This aspect of the sensor is even more important when dealing with

non-ferrous materials like the aluminum pegs. This sensor is used for 2 main reasons in the ICT.

First, to detect the presence of an aluminum peg; second, to confirm the operation of the linear

solenoids in the sorting and reject areas.

 Capacitive

 The capacitive sensor is used to detect the presence of a plastic ring at the sensing

station. This sensor detects the change in an electric field between two objects. If the capacitive

sensor detects a component and the inductive sensor does not, the systems knows the object is

a plastic ring once is has passed thought the fiber-optic sensor and is later rejected by the linear

solenoid. This sensor can be seen in Figure 2.

 Figure 1 - Inductive and Photoelectric in the ICT sorting area Figure 2 - Capacitive Sensor in the Sensing area of the ICT

3

 Photoelectric

 There are three spots on the ICT where the photoelectric sensors are used; the sorting

area, assembly chute, and the reject area. These sensors are set up in a reflective type

configuration, meaning the emitter and receiver are in one unit and require the light signal to

bounce back from target object. This sensor is used as a double check in various stages of the

ICT. For example, if the photoelectric switch detects an object without the inductive sensor

detecting an item in the sorting area, the system can determine that there is a plastic ring in the

assembly.

 Fibre-optic

 There is only one fibre-optic sensor used on the ICT, and it is used in the sensing station

as shown in Figure 3. This sensors helps to determine if there is a part or an assembly going

through the sensing area. This sensor works on the premise of a solid beam, and if that beam is

disrupted, it then detects an object. These sensors are excellent to have on many systems as

they are immune to electric, magnetic and light interference.

Figure 3 - Fibre-Optic Sensor in the Sensing Area of the ICT

Actuators

 Linear Actuator

 There are 2 linear actuators used in the ICT. One of the linear actuators is shown in

Figure 4, and is part of the sensing area and the other is in the sorting area of the ICT. This linear

4

actuator pushes objects determined to be parts into the reject area/bin. These linear solenoids

are used in closed loop operating in conjunction with the inductive sensor over the rear portion

of the solenoid. The inductive sensor simply verifies the proper function of the actuator.

 Rotary Actuator

 There is one rotary actuator used in the ICT, located in the assembly chute seen in Figure

5. This rotary solenoid restricts how many plastic pegs are in the hopper to be assembled by a

passing aluminum peg. Our program was set up to actuate the rotary solenoid when the

photoelectric sensor did not detect a plastic ring in the hopper.

 Figure 4 - Linear Actuator in the Sensing Area of the ICT Figure 5 - Rotary Solenoid in the Assembly Chute of the ICT

 Electric Motor

 Electric motors are used extensively in automation and controls environments and this

one is no different. There are two DC motors in the ICT. One of the motors drives the conveyor

chain that feeds the sorting area on the top of the ICT with aluminum pegs and plastic rings.

The other motor drives the belt on the lower side of the ICT, transferring parts and\or peg and

ring assemblies to the sensing area before either being rejects or continuing on the assembled

area and end of the ICT.

5

Algorithms & Flowcharts

Program Execution

 Figure 6 below is a top-level representation of how our code executes. The program's

first task after starting is to establish communication with the ICT system's inputs and outputs.

As a safety precaution, all the outputs are immediately given an appropriate value to turn them

off, regardless of their previous state.

 The next step is to try recovering the program's memory from its previous run. All the

necessary sensor and actuator values are stored in a text file which can be read out of before

the program executes. One useful feature of the text recovery method used here is that users

can manually enter their own data into the file to force outputs to a certain state or to account

for unforeseen operating situations. This stage also presents the user with the option of

resetting the system and starting fresh.

 Once the memory recovery portion is complete, the main body of the program runs.

This part is responsible for reading from sensors, writing to actuators, and logging the recovery

data in a text file. It runs continuously until interrupted by the kill switch in the user interface or

until the program is aborted. Pressing the stop button on the machine will only stop the belts

but continue to poll the sensors.

 Once the kill switch is pressed, the program writes to the recovery file a final time and

exits the main loop. It finishes up by turning off all the actuators, closing Labview's links to the

NIDAQ, and exiting the program. Refer to the appendix for more detailed flowcharts of each

portion of our program.

 There are a few parts of the program worth examining in greater detail; the sensor

triggering, assembly tracking, and efficiency calculation. Labview is unable to use data from the

NIDAQ in its raw state, so it must write the sensor value into a boolean variable first. This

boolean is passed on to a shift register so that on the program's next iteration it can compare

the sensor's previous value with its current value to detect rising or falling edges. Only once an

edge is detected will the program execute the appropriate code.

6

Figure 6 - Flowchart the code's top-level operation.

7

 Figure 7 - Overall Sensor Handling

8

 The program makes use of queues to track which widgets have been processed and how

many assemblies have been created. Depending on the various sensor inputs, the program will

write either a 1 or a 0 to the parts tracking queue to determine whether a hoop or a peg was

processed. Another queue was established to track if the reject area was detecting a lone part

or a complete assembly. Depending on the contents of these two queues, the program will

choose to accept or reject the part and will modify the UI counters accordingly.

 The efficiency calculation was straightforward with one small stumbling block. A full

assembly consists of two widgets, so a factor of two must be inserted. The equation used was:

Troubleshooting

 A number of bugs were encountered while writing the program for the ICT system.

These were mostly simple to fix, such as actuators firing too early or late, but a few more

significant issues presented themselves too. We will discuss only a few of the bugs we dealt

with; selected to demonstrate a variety of problem types and their fixes.

 The first issue was related to actuators firing at inappropriate times. The rotary solenoid

in the hoop feeder is a good example of this behavior. It was originally set up such that it would

open immediately once the first hoop was pushed into the feeder, but this caused the hoop to

become stuck when the solenoid closed soon afterwards. To correct this problem, a software

stopwatch was implemented. It is worth noting that we did not use a delay or wait function for

the timer, which allows the main program to keep running while the timer counts in the

background. The program was rewritten such that once the hoop was pushed into the feeder,

the timer would give it enough time to settle in place before opening. The timer was also used

to hold the solenoid open for a preset period before closing it again. A similar system was

implemented for every solenoid in the system; a small, single iteration loop would contain all

the code needed to activate, time, and deactivate the corresponding output.

 The next problem was related to dealing with unwanted data from the sensors. This

problem exposed itself most clearly at the top sorting area. Once the hoop feeder contained 5

hoops, any additional hoops would be allowed to pass by. Due to their donut shape, the

9

proximity sensor in the sorting area would be triggered twice, making the system think two

widgets had passed by when there was only one. Software timers were used again to solve this

problem. When the proximity sensor was triggered the first time, it would check a stopwatch

that tracks the elapsed time since its last trigger. If the elapsed time was below a threshold it

would ignore the input; if it was above the threshold it would accept the input and continue as

normal. This feature was used on multiple sensors through the program to prevent false signals.

 The final problem we will discuss is related to queues. This is not a problem that would

ever be encountered in regular operation, but its consequences are serious enough that it

should at least be addressed. Due to a mechanical problem, two assemblies would occasionally

travel along the lower belt right next to each other. If they were close enough, the fibre optic

sensor would only sense them as a single assembly and write a single element to the tracking

queue. Then, when the assembles reach the rejection area the proximity sensor would still be

able to detect two assemblies. This resulted in the program attempting to dequeue two

elements from the tracking queue and causing a memory leak which completely locked up the

program. We never ended up developing a solution to this issue because it was due to a

hardware malfunction and was outside of the project's scope.

Summary & Conclusion

 Overall, the ICT sensor system proved to be a useful and effective tool for teaching

students how to implement event based programs in Labview. It provided valuable experience

in both graphical programming and managing program flow. By the end of the project period we

had achieved all that we set out to do, we: developed a robust and efficient program for

assembling widgets, provided an effective means of program backup, and implemented a

clutter free GUI which presented the end user with all the information they need.

Recommendations

 Our only recommendation to improve the ICT is to raise the friction between the lower

conveyor belt and pegs. Our biggest problem in the program was caused by pegs being too

weak to pull a hoop out of the hopper and resulted in software issues and efficiency loss.

10

Appendix

Figure 8 - Sort Area Handling

11

Figure 9 - Assembly Area Handling

12

Figure 10 - Assembly Detect Handling

13

Figure 11 - Reject Area Handling

14

Figure 12 - Memory Recovery

