Empirical background on Social and Economic Networks

Rogayeh Dastranj Tabrizi email: rda18@sfu.ca Office: WMC 3607 Office Hours: Thursdays 12pm-2pm

> Department of Economics Simon Fraser University

16. Februar 2015

Before we start studying some stylized facts from literature about social network, note that:

- Much of information we have about the structure of networks come from limited measurements of links that describes a static and discrete view of something that is inherently dynamic and volatile.
- How to define and measure links and relationships matter.
- Also, it might be impossible to find or contact all nodes in the network.
- Even when contacted, the may have reasons to hide relationships.
- There are biases and idiosyncrasies associated with each dataset.

Diameter And Small Worlds

The term Small Worlds embodies the idea that large networks tend to have small diameter and small average path length. Some example:

- Milgram's clever experiment in which people had to route a letter to another person who was not directly known to them.
 - Roughly 25% of letters reached their targets. Median length of the path was 5, with maximum path length of 12.
- Watts and Strogatz report a mean distance of 3.7 in a network of actors in which a link indicates that two actors have been in a movie together.
- Erdos Number: Shortest path from mathematicians to Erdos!

Clustering

Social networks tend to have high clustering coefficients relative to what would emerge if the links were simply determined by an **independent** random process.

- Consider physics coauthor network with 52909 nodes, average degree of 9.3 and Clustering Value 0.45.
- A purely random network with this average degree would have a probability of link formation of $\frac{9.3}{52908} = 0.00018$.
- For a pure random network, the chance that link *ik* is present given that *ij* and *jk* are already present is simply the probability that *ik* is present : 0.00018.
- Thus value of clustering, 0.45, is 2500 times greater than what we would expect from a random network.

Degree Distribution

Average degree of a network provides a rough feel for **network connectivity**, but we get a much richer feel for the structure of the network by examining the full distribution of degrees.

- There are more high and low degree nodes than predicted at random.
- Citation Networks: too many with 0 citations, too many with high numbers of citations to have citations drawn at random.
- Fat tails compared to random network.
- Next figure is the distribution of in-degree from the network of links among webpages on the Notre Dame domain in late 1990s (Albert, Jeong, Barabasi).

Degree Distribution

Correlations And Assortativity

- Positive Assortativity: The tendency for high-degree nodes to be connected to other high-degree nodes (positive correlation)
- But sometimes there is negative correlation between degrees of nodes:
 - Serrano & Boguna find negative correlation among degrees of countries that trade with one another.
 - This describes the network as hub-and-spoke, with small countries (spokes- with small # partners) trade with bigger countries (hubs) who have more partners.
- Core-periphery pattern: A core of highly connected and interconnected nodes and a periphery of less connected nodes.

The Strength of Weak Ties

The role of social networks in finding jobs was at the heart of some of the most influential research in Social networks: Conducted by Granovetter.

- He interviewed people in Amherst, MA across a variety of professions to learn how they found their jobs.
- He measured the strength of social relationships by frequency of interactions.
- He found that a surprising proportion of jobs were found through weak links.
- Individuals with weak ties were less likely to have overlap in their neighbourhoods.
- Weak ties are more likely to form bridges across groups that have fewer connections to one another, thus play a critical role in dissemination of information.

Dastranj (SFU)

Another important concept regarding the structure of the network is due to **Burt**:

- Structural Hole is a void in a social structure and refers to an absence of connections between groups.
- This absence doesn't mean that the groups are unaware of each other, but lack of links between groups can lead to failure of diffusion.
- Individuals who fill structural holes end up with power and control over flow of information and favours between groups.