Representing And Measuring Networks

Rogayeh Dastranj Tabrizi email: rda180sfu ca

Office: WMC 3607

Office Hours: Thursdays 12pm-2pm

Department of Economics Simon Fraser University

Thanks to Matthew Jackson for access to his teaching resources.

10. Februar 2015

Simplifying The Complexity

- Global patterns of networks:
 - Degree distributions
 - Path lengths
- Segregation Patterns: node types and homophily
- Local Patterns
 - Clustering
 - Support
- Positions in networks
 - Neighbourhoods
 - Centrality, influence, ...

Representing Networks

- $N = \{1, 2, ..., n\}$ is the set of nodes, or vertices, players, agents.
- Connection between nodes is called links, or edges, ties:
 - 1 They may have intensity (weighted network):
 - Hoe many hours do people spend together per week?
 - How much of one country's GDP is traded with another?
 - 2 They may just be 0 or 1 (unweighted network):
 - Have two researchers written an article together?
 - Are two people "friends" on some social platform?
 - 3 They may be Directed or Undirected:
 - coauthors, friends,..., relatives, spouses,, are mutual relationships
 - link from on web page to another, citations, following on social media..., one way

Graphs and Networks

- $N = \{1, 2, ..., n\}$ is the set of nodes,
- $g_{n \times n}$ is a real-valued $n \times n$ matrix, where g_{ij} represent the relationship between i and j.
- In an unweighted network:

$$g_{ij} = \begin{cases} 1 & \text{if } ij \in g \\ 0 & \text{otherwise} \end{cases}$$

- Notation: $ij \in g$ indicates a link between i and j.
- Self-links or loops often do not have any real consequences or meaning. Unless otherwise is indicated, assume $g_{ii} = 0$.

Unweighted Undirected Networks

$$g = \begin{pmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{pmatrix}$$

Or list the links:

- $g = \{\{1, 2\}, \{1, 4\}, \{2, 4\}, \{3, 4\}\}$

Unweighted Directed Networks

$$g = \begin{pmatrix} 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 \end{pmatrix}$$

Notice that the order of nodes matter in a directed network

$$g = \{12, 14, 41, 24, 34\}$$

Weighted Directed Networks

Graphs and Networks

- A network is directed if it is possible that $g_{ij} \neq g_{ji}$.
- A network is undirected if $g_{ij} = g_{ji}$ for all nodes i, j.
- $g' \subset g$ indicates that:

$$g' \subset g \quad \Leftrightarrow \quad \{ij : ij \in g'\} \subset \{ij : ij \in g\}$$

- g+ij indicates that a new network that is obtained by adding link ij from network g.
- \bullet g-ij indicates that a new network that is obtained by deleting link ij from network g.

Basic Definitions

- Walk from i_1 to i_K : A sequence of links $\{i_1i_2, i_2i_3, ..., i_{K-1}i_K\}$ such that $i_{k-1}i_k \in g$ for all k in this walk.
- Often it is convenient simply to represent a walk as the corresponding sequence of nodes $(i_1, i_2, ..., i_K)$ such that $i_{k-1}i_k \in g$ for each k.
- Path from i_1 to i_K : is a walk where all the nodes are distinct.

In other words, a **walk** may come back to a given node more than once, whereas a path is a walk that never hits the same node twice.

- A cycle is a walk where $i_i = i_k$.
- Geodesic: a shortest path between two nodes.

Walks, Paths, Cycles

Path (and a walk) from 1 to 7: 1, 2, 3, 4, 5, 6, 7

Simple Cycle (and a walk) from 1 to 1: 1, 2, 3, 1

Walk from 1 to 7 that is not a path: 1, 2, 3, 4, 5, 3, 7

Cycle (and a walk) from 1 to 1: 1, 2, 3, 4, 5, 3, 1

Counting Walks

$$g^2 = \begin{pmatrix} 2 & 1 & 1 & 1 \\ 1 & 2 & 1 & 1 \\ 1 & 1 & 1 & 0 \\ 1 & 1 & 0 & 3 \end{pmatrix}$$

number of walks of length 2 from i to j

Counting Walks

$$g^3 = \begin{pmatrix} 2 & 3 & 1 & 4 \\ 3 & 2 & 1 & 4 \\ 1 & 1 & 0 & 3 \\ 4 & 4 & 3 & 2 \end{pmatrix}$$

number of walks of length 3 from i to j

Components

- In many applications it is important to track which nodes can reach which other nodes through a path.
 - Contagion, Learning, Diffusion of various behaviours, etc.
- ullet Network (N,g) is Connected if every two nodes are connected by some path.
- Component: Maximal connected subgraph, i.e. (N',g') is a component of (N,g) such that:
 - $N' \neq \emptyset$, $N' \subset N$, $g' \subset g$,
 - (N', g') is connected,
 - ullet if $i\in N'$, and $ij\in g$, then $j\in N'$ and $ij\in g'$.
- A link ij is a bridge in a network g if g-ij has more components than g.

Components

Diameter

- Diameter: largest geodesic in the network. If the network is unconnected, then the largest geodesic of the largest component.
- Another measure is average path length, which is less prone to outliers.

Diameter is either n/2 or (n-1)/2.

Diameter is on the order of $2 \log 2(n+1)$.

Trees and Stars

There are a few particular network structures that are commonly referred to:

- Tree: A connected network that has no cycles.
- Forest: A network such that each component is a tree. Any network that has no cycle is a forest.
- Star: There exist a node such that every link in the network involves *i*. *i* is the center of the star.

Facts about Trees:

- ullet A connected network is a tree if and only if there has n-1 links.
- In a tree, there is unique path between any two links.

Circles and Complete Networks

- Complete Network is one in which all possible links are present, so that $g_{ij} = 1$ for all $i \neq j$.
- Circle is a network that has a single cycle and is such that each node has exactly two neighbours.

Neighbourhood

• Neighbourhood of node i is a set of nodes that i is linked to.

$$N_i(g) = \{j : g_{ij} = 1\}$$

 Given some nodes S, the neighbourhood of S is the union of the neighbourhoods of its members:

$$N_S(g) = \bigcup_{i \in S} N_i(g) = \{j : \exists i \in S, g_{ij} = 1\}$$

• k-neighbourhood of i: All nodes that can be reached from i by walks of length no more than k:

$$N_i^k(g) = N_i(g) \cup \left(\bigcup_{j \in N_i(g)} N_j^{k-1}(g)\right)$$

Degree and Network Density

• Degree: of a node is the number of links that involves that node:

$$d_j(g) = \#N_i(g) = \#\{j : g_{ij} = 1\}$$

- In terms of directed networks:
 - In-degree: $d_i(g) = \#\{j : g_{ii} = 1\}$
 - Out-degree: $d_j(g) = \#\{j : g_{ij} = 1\}$
- Network Density: keeps track of the relative fraction of links present in the network and is equal to average degree divided by n-1.

Degree Distribution

- How is degree distributed in the network?
- Average degree only tells us part of the story:

Degree Distribution

- Degree Distribution of a network is description of the relative frequency of nodes that have different degrees.
- \bullet P(d) is the fraction of nodes that have degree d under distribution p.
 - A **regular network** is one in which all nodes have the same degree.
 - A network is a **regular of degree** k if P(k) = 1 and $P(d) = 0 \ \forall d \neq k$.
- Another example is the scale-free or **power** degree distribution:

$$P(d) = cd^{-\gamma}$$

 The relative probabilities of degrees of a fixed relative ratio are the same independent of the scale of those degrees.

$$\frac{P(2)}{P(1)} = \frac{P(20)}{p(10)}$$

Overall Clustering

- What fraction of my friends are friends with each other?
- Overall Clustering:

$$Cl(g) = \frac{\sum_{i} \#\{jk \in g | k \neq j, j \in N_{i}(g), k \in N_{i}(g)\}}{\sum_{i} \#\{jk | k \neq j, j \in N_{i}(g), k \in N_{i}(g)\}}$$
$$= \frac{\sum_{i} g_{ij} g_{ik} g_{jk}}{\sum_{i} g_{ij} g_{ik}}$$

 This is in fact the fraction of fully connected triples out of the potential triples in which at least two links are present.

Individual Clustering

 This measure is computed on node-by-node basis and then averaged across nodes. Individual Clustering:

$$Cl_{i}(g) = \frac{\#\{jk \in g | k \neq j, j \in N_{i}(g), k \in N_{i}(g)\}}{\#\{jk | k \neq j, j \in N_{i}(g), k \in N_{i}(g)\}}$$
$$= \frac{\sum_{j,k} g_{ij} g_{ik} g_{jk}}{\sum_{j,k} g_{ij} g_{ik}}$$

- This looks at all the pairs of nodes that are linked to *i* and then asks how many of them are connected to each other.
- Average Clustering:

$$Cl^{Avg}(g) = \sum_{i} Cl_{i}(g)/n$$

Difference In Clustering

- Under average clustering, one computes clustering for each node and then averages over all nodes.
- Whereas with **overall clustering**, the average is taken over all triplets.
- Average clustering gives more weight to low-degree nodes than does the clustering coefficient method.
- The average clustering for the Florentine marriage network is 3/20, where as the overall clustering coefficient is 9/47.

Difference In Clustering

Position In The Network

How to describe individual characteristics?

- Degree
- Clustering
- Distance to other nodes
- Centrality and Influence

Centrality Meausres

- Degree: Measure of connectedness.
- Closeness, Decay: Ease of reaching other nodes.
- Betweenness: Importance as an intermediary, connector.
- Influence, Prestige, Eigenvectors: "not what you know, but who you know!"

How "connected" is a node?

- Degree Centrality captures connectedness.
- ullet Normalize by n-1 Which the most possible number of connections in a network of size n.

Degree Centrality - Examples

Degree Centrality - Examples

• Failure of degree centrality to capture reach of a node:

• More reach if connected to a 6 and 7 than a 2 and 2?

Eigenvalue Centrality

 Eigenvalue Centrality is proportional to the sum of neighbours' centralities:

$$C_i \propto \sum_{j \ inN_i(g)} C_j$$

More connections matter, but also accounts for how central they are!

$$\alpha C_i = \sum_{j \ inN_i(g)} C_j = \sum_j g_{ij} C_j$$
$$\Rightarrow \alpha \mathbf{C} = \mathbf{g} \mathbf{C}$$

 Google page rank: score of a page is proportional to the sum of the scores of pages linked to it.

Eigenvalue Centrality - Example

Closeness Centrality

- How close a given node is to any other node?
- Closeness Centrality: The inverse of the average distance between i
 and any other node j:

$$\frac{n-1}{\sum_{i\neq j}l(i,j)}$$

- l(i,j) is the number of links in the shortest path between i and j.
- Scales directly with distance: twice as far is half as central.

Closeness Centrality

Decay Centrality

- A richer way of measuring centrality based on closeness is considering a decay parameter $0 < \delta < 1$, and consider the proximity between a given node and every other node wighted by this parameter.
- Decay Centrality:

$$C_i^d(g) = \sum_{i \neq j} \delta^{l(i,j)}$$

- When $\delta \to 1$, then $C_i^d(g)$ measures component size.
- When $\delta \to 0$, then the decay centrality gives infinitely more weights to the closers nodes than farther ones, i.e. becomes proportional to **Degree Centrality**.
- ullet For intermediate values of δ , closer nodes have higher weights than less close nodes.

Betweenness Centrality

- Betweenness Centrality gives a measure of how well situated a node is in terms of the paths that it lies on.
- Let P(i, j) be the number of geodesics between i and j,
- Let $P_k(i,j)$ be the number of geodesics between i and j that goes through k,
- Estimate how important k is in terms of connecting i and j, by looking at the ratio:

$$C_i^B(g) = \sum_{i \neq j, k \notin \{i, j\}} \frac{P_k(ij)/P(ij)}{(n-1)(n-2)/2}$$

Betweenness Centrality

Centrality Measures - Example

	Node 1	Node 3	Node 4
Degree	.33	.50	.33
Closeness	.40	.55	.60
N. Decay $\delta = .5$.50	.67	.67
N. Decay $\delta = .75$.69	.82	.84
N. Decay δ= .25	.39	.56	.50
Betweenness	.00	.53	.60
Eigenvector	.47	.63	.54

Centrality Measures

- Degree Centrality: Measures connectedness.
- Closeness and Decay centrality: Measures ease of reaching others.
- Betweenness Centrality: Measures importance as an intermediary and a connector.
- Influence, Prestige, Eigenvectors Centrality: "not what you know, but who you know...".