Homework \#5 • MATH 462• More Potential Flow

- submit your write-up Wednesday 20 February.
- thank you for acknowledging collaborations \& assistance from colleagues.
- midterm reminder: Wednesday 27 February.
*) Memory Sheet ($1 / 2$ pages, pts on midterm) For reference during the midterm, Acheson appendices A1-A6 will be attached to the exam. You will also be allowed to prepare a memory sheet of formulas on the $1 / 2$-page of beige paper handed out in lecture. Rules:
- no microfilm (reasonable size writing please), $1 / 2$-page single-sided.
- no derivations, only basic formulas \& ideas.
- memory sheets to be submitted with midterm.
A) Flow over the Wall (3 pages, 10pts) Consider the potential flow as defined by the complex potential $\Phi(z)=\sqrt{z^{2}+1}$ in the upper-half z-plane. Manipulate the complex-valued relation

$$
\phi+i \psi=\Phi(z)=\sqrt{z^{2}+1}=\sqrt{(x+i y)^{2}+1}
$$

to obtain a (real-valued) function for $y(x, \psi)$. Explain how this calculation determines the flow streamlines (Matlab's contourplot will fail here unless you know how to deal with the multi-valuedness). Give a formula for the velocity potential (make sure it always gives the proper sign).
Produce a Matlab plot showing equi-spaced contours of streamfunction and velocity potential. Indicate areas of fast/slow flow and high/low pressure. This flow hints at the basic principles that explain how an atomizer works.
B) Outflow (2 pages, 10pts) Consider the potential flow as defined by the complex potential

$$
\Phi(z)=\frac{M}{2 \pi} \ln z
$$

for $z \neq 0$. Describe this flow and calculate, in two different ways, the mass flux emanating from the origin.
Then, find the streamlines for the superposition flow $(M>0)$

$$
\Phi(z)=U^{\infty} z+\frac{M}{2 \pi} \ln z
$$

beginning from a polar coordinate version of the method used in part A). Which values of your streamfunction define the separating streamline? What is the limiting gap between the separating streamlines as $x \rightarrow+\infty$? Why might this distance have been guessed without knowing the exact formula for the streamlines? Does the flow case $M<0$ make sense here?

