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Purposes of Today's Lecture

Describe Brownian motion as a limit of random walks.
Define Brownian motion.

Describe properties of Brownian motion.

Use refelection principle to deduce law of maximum.

Define martingales.

¢ © 6 ¢ ¢ ¢

Derive Black-Scholes formula.
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Brownian Motion
@ For fair random walk Y,, = number of heads minus number of tails,
Yn: U1+"'+Un

where the U; are independent and

1
PUi=1)=PU;=-1)= 5
@ Notice:
E(U)=0
Var(U;) =1
@ Recall central limit theorem:
Ui+---+ U,
Vn

@ Now: rescale time axis so that n steps take 1 time unit and vertical

axis so step size is 1//n. =

Richard Lockhart (Simon Fraser University) Brownian Motion STAT 870 — Summer 2011

= N(0,1)

3/33



Brownian Motion Graph

n=16 n=64
n=256 n=1024

W

=
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Limit of Random Walks

o We now turn these pictures into a stochastic process:
o For & <t < XL \e define
Up + -+ Uk
Xn(t) =
Vn

@ Notice:
E(Xn(t)) =0

and

Var(Xy(t)) = —

@ As n — oo with t fixed we see k/n — t. Moreover:

U+ -+ Uk \/F
T e O X(t
K Kol

converges to N(0,1) by the central limit theorem. Thus
Xn(t) = N(O, t)
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Limit of Random Walks

@ Also: X,(t+s) — Xp(t) is independent of X,(t) because the 2 rvs
involve sums of different U;.

@ Conclusions: As n — oo the processes X, converge to a process X
with the properties:

@ X(t) has a N(0, t) distribution.
@ X has independent increments: if

O=th<ti <th<-- <ty

then
X(t1) — X(to), .-, X(tx) — X(tk—1)
are independent.
© The increments are stationary: for all s

X(t +5) — X(s) ~ N(0, t)

Q X(0)=o.
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Definition of Brownian Motion
Def’'n: Any process satisfying 1-4 above is a Brownian motion.

Properties of Brownian motion

® Suppose t >s. Then

E(X(8)[X(s)) = E{X(t) = X(s) + X(s)|X(s)}
= E{X(t) = X(s)[X(s)} + E{X(s)|X(s)}
=0+ X(s) = X(s)
Notice the use of independent increments and of E(Y|Y) =Y.
® Again if t > s:
Var {X(t)|X(s)} = Var {X(t) — X(s) + X(s)|X(s)}

= Var {X(t) — X(s)|X(s)}
= Var {X(t) — X(s)}
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Conditional Distributions

@ Suppose t < s. Then X(s) = X(t) + {X(s) — X(t)} is a sum of two
independent normal variables. Do following calculation:

® X ~ N(0,02), and Y ~ N(0,72) independent. Z =X+ Y.
@ Compute conditional distribution of X given Z:

fx,y(x,z —x)
fz(2)
~ x(x)fy(z —x)
a fz(z)
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Conditional Distributions

e Now Z is N(0,~2) where 72 = 02 + 72 so

1 o—x*/(20%) _1_ —(z—x)*/(27?)

oV 2m TV 21
leZ(X’z) = 1_.—22/(27)
YV 21

- TO"Yzﬂ‘ exp{—(x — a)*/(2p%)}

for suitable choices of a and b. To find them compare coefficients of

x2, x and 1.

=
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Conditional Distributions

o Coefficient of x2:

1 1 1
B2 72
sob=rT0/y.
@ Coefficient of x: ,
B
so that
2 2 o?
a=bz/T° = P

@ Finally you should check that

N
N
N

z z
b2 12 42
to make sure the coefficients of 1 work out as well.
@ So given Z = z conditional distribution of X is N(a, b?).

Richard Lockhart (Simon Fraser University) Brownian Motion STAT 870 — Summer 2011



Application to Brownian motion

@ For t < slet X be X(t) and Y be X(s) — X(t) so
Z=X+Y =X(s).

o Thena2:t,7'2:s—tand’yz:s.

@ Thus

b2 (s —S t)t
and
a= £X(s)
@ So: ,
E(X()IX(s)) = - X(s)
and

(s —t)t

Var(X(£)|X(s)) =
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The Reflection Principle

@ Tossing a fair coin:

HTHHHTHTHHTHHHTTHTH © more heads than

tails

5 more tails than
heads
@ Both sequences have the same probability.

THTTTHTHTTHTTTHHTHT

@ So: for random walk starting at stopping time:

@ Any sequence with k more heads than tails in next m tosses is
matched to sequence with k more tails than heads. Both sequences
have same prob.

@ Suppose Y, is a fair (p = 1/2) random walk. Define

M, = max{Yx,0 < k < n}

=
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Compute P(M, > x)?

@ Trick: Compute
P(Mn qu Yn:)/)

o First: if y > x then
{Mn > x, Y=y} ={Yo=y}
@ Second: if M,, > x then
T=min{lk: Ye=x}<n

@ Fix y < x. Consider a sequence of H's and T's which leads to say
T=kand Y,=y.

@ Switch the results of tosses k + 1 to n to get a sequence of H's and
T's which has T = k and Y, = x4+ (x —y) = 2x—y > x. This proves

P(T=k,Y,=y)=P(T=k,Y,=2x—y) 2

Richard Lockhart (Simon Fraser University) Brownian Motion STAT 870 — Summer 2011 13 /33




Computation Continued
@ This is true for each k so

PM,>x,Yp=y)=PM,>x,Y,=2x—y)
:P(Ynzzx_)/)

@ Finally, sum over all y to get

P(My 2 x) = S P(Ya=y) + 3 P(Ya =2~ )

y>x y<x

@ Make the substitution k = 2x — y in the second sum to get

P(My>x)=Y P(Ya=y)+ Y P(Ya=k)

y>x k>x
=2 " P(Y,=k)+ P(Y, =x)
k>x
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Brownian motion version

@ The supremum and hitting time for level x are:
M; = max{X(s);0 <s < t}

T« = min{s : X(s) = x}

@ Then
{Tx <t} ={M: > x}

@ Any path with T, =s < t and X(t) = y < x is matched to an
equally likely path with T, =s < t and X(t) =2x —y > x.
@ So for y > x

P(M: = x,X(t) > y) = P(X(t) > y)
while for y < x

P(My > x, X(t) <y) = P(X(t) >2x —y)
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Reflection Principal Graphically

=
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Strong Markov Propery

@ A random variable T which is non-negative (or possibly +00) is a
stopping time for Brownian motion if

{T<t}eH:=0{B(u);0<u<t}
@ The first time Ty that B; = x is a stopping time.
@ For any stopping time T the process
t— B(T +t)— B(t)
is a Brownian motion.
@ The future of the process from T on is like the process started at

B(T)att=0.
@ Brownian motion is symmetric: if B is a Brownian motion so is —B.
@ So
B t< T
W()=< Ny
B(T)—(B(T+t—B(T)) t>T

is a Brownian motion.
@ This proves the reflection principle.

=
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Reflection Principle Continued

o Let y — x to get

P(M; > x, X(t) > x) = P(M; > x, X(t) < x)
= P(X(t) > x)

@ Adding these together gives

P(M, > x) = 2P(X(t) > X)
=2P(N(0,1) > x/\/1)

@ Hence M, has the distribution of |N(0, t)|.
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Reflection

@ On the other hand in view of

{Te <t} ={M: > x}
the density of Ty is

d
—72P(N(0,1) > x/V't)

@ Use the chain rule to compute this.

o First J
d_yP(N(Ov 1) >y)=—9(y)

where ¢ is the standard normal density
e_y2/2
V2T

because P(N(0,1) > y) is 1 minus the standard normal cdf.
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First Passage Time Law

e So

9PN, 1) > x/V5)

dt
= 260/ V) L (x/V)

- ﬁ exp{—x2/(2t)}

@ This density is called the Inverse Gaussian density.
@ T, is called a first passage time

@ NOTE: the preceding is a density when viewed as a function of the
variable t.
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Martingales

Def’n: A stochastic process M(t) indexed by either a discrete or
continuous time parameter t is a martingale if:

E{M(t)|M(u);0 < u <s} = M(s)

whenever s < t.
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Examples of Martingales

@ A fair random walk is a martingale.

@ If N(t) is a Poisson Process with rate A then N(t) — At is a
martingale.

@ Standard Brownian motion (defined above) is a martingale.

@ Brownian motion with drift is a process of the form

X(t) = oB(t) + put

where B is standard Brownian motion, introduced earlier.

X is a martingale if p = 0.
We call p the drift.

=
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More Examples

@ If X(t) is a Brownian motion with drift then
Y(t) = X

is a geometric Brownian motion.

@ For suitable 1 and o we can make Y(t) a martingale.

@ If a gambler makes a sequence of fair bets and M,, is the amount of
money s/he has after n bets then M, is a martingale — even if the
bets made depend on the outcomes of previous bets, that is, even if
the gambler plays a strategy.

ﬁ
=
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Some evidence for some of the above
@ Random walk: Ui, Us, ... iid with
P(U:=1) = P(U; = —1) = 1/2

and Y, = U; + -+ Uk with Yo = 0.
@ Then

E(Ya|Yo, ..., Yx)
=E(Yn — Yk + Ykl Yo, .-+, Yk)
=E(Yn — Yl Yo, .-+, Yi) + Yk

=> E(Uj|U1,..., U + Yx
k+1
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Things to notice

@ Y treated as constant given Y7,..., Y.
@ Knowing Yi,..., Yk is equivalent to knowing Uy, ..., Uy.
@ For j > k we have U; independent of Uy,..., Us so conditional

expectation is unconditional expectation.

@ Since Standard Brownian Motion is limit of such random walks we
get martingale property for standard Brownian motion.

=
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Another martingale

Poisson Process: X(t) = N(t) — At. Fix t > s.

E(X(t)|X(u);0 <u<s)
= B(X(t) — X(s) + X(s)[Hs)
= B(X(t) — X(s)[Hs) + X(s)
=E(N(t) — N(s) — A(t — s)|Hs) + X(s)
=E(N(t) — N(s)) — A(t — s) + X(s)
= At —s5)— At —s)+ X(s)
= X(s)

Things to notice:

@ | used independent increments.

@ H, is shorthand for the conditioning event.

@ Similar to random walk calculation.
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Black Scholes

@ We model the price of a stock as
X(t) = xpe”®
where
Y(t) = oB(t) + pt

is a Brownian motion with drift (B is standard Brownian motion).

@ If annual interest rates are e* — 1 we call « the instantaneous interest
rate; if we invest $1 at time 0 then at time t we would have e®t.

@ In this sense an amount of money x(t) to be paid at time t is worth
only e™*tx(t) at time 0 (because that much money at time 0 will
grow to x(t) by time t).

ﬁ
=
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Present Value

@ If the stock price at time t is X(t) per share then the present value of
1 share to be delivered at time t is

Z(t) = e ¥ X(t)
@ With X as above we see
Z(t) = xge? B+ (u—a)t
@ Now we compute
E{Z(t)|Z(u);0 <u<s}=E{Z(t)|B(u);0 < u<s}

for s < t.

@ Write
Z(t) = XOeUB(S)Jr(u—a)t « e (B(t)=B(s))

@ Since B has independent increments we find

E{Z(t)|B(u);0 < u < s} = xge?BEH -ty [e"{B(t)—B(s)} :
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Moment Generating Functions

@ Note: B(t) — B(s) is N(0,t — s); the expected value needed is the
moment generating function of this variable at o.
@ Suppose U ~ N(0,1). The Moment Generating Function of U is

My(r) = E(e'V) = "/
@ Rewrite
o{B(t) — B(s)} = ovt—sU
where U ~ N(0,1) to see

E [eU{B(t)—B(s)}] — o2(t=s)/2

o Finally we get
E{Z(t)|Z(u); 0<u< S} _ XoeaB(s)—l—(u—oz)s e(u—a)(t—s)—i—az(t—s)/Q
= Z(s)

provided

,u—l—o*2/2:a.
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Option Pricing
o If this identity is satisfied then the present value of the stock price is a

martingale.

@ Suppose you can pay $c today for the right to pay K for a share of
this stock at time t (regardless of the actual price at time t).

o If, at time t, X(t) > K you will exercise your option and buy the
share making X(t) — K dollars.

e If X(t) < K you will not exercise your option; it becomes worthless.

@ The present value of this option is
e “(X(t) - K)y —c

where

(Called positive part of z.)
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In a fair market

@ The discounted share price e"**X(t) is a martingale.
@ The expected present value of the option is 0.

o So:
c=e ME[{X(t) - K},]

@ Since
X(t) = xoeN(“t"’2t)

we are to compute

E { (Xoeat1/2u+ut _ K) }
+
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Black-Scholes Continued

@ This is o
/ (xoeb“+d - K) e " 2du/\2r
where |
a = (log(K/x0) — ut)/(ct}?),b = ot/? d = ut
o Evidently

K/Oo e " 2du/\2r = KP(N(0,1) > a)

@ The other integral needed is

0o oo ,—(u—b)2/2 b?/2
—u2/2+bud \/2—_/ e e d
e u ™ = —au
/a / a V 27T
00 g=v?/2b7/2
:/ —dv
a—b V2m

= e”/2P(N(0,1) > a— b)
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Black-Scholes Continued

@ Introduce the notation
®(v) = P(N(0,1) < v) = P(N(0,1) > —v)
and do all the algebra to get
c= {e_o‘tebz/”dxo(b(b —a)— Ke_o‘td>(—a)}

= xpelH 7 2=t p(p — ) — Ke ' d(—a)
= x®(b — a) — Ke *'d(—a)

@ This is the Black-Scholes option pricing formula.
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