
Brownian Motion

Richard Lockhart

Simon Fraser University

STAT 870 — Summer 2011

Richard Lockhart (Simon Fraser University) Brownian Motion STAT 870 — Summer 2011 1 / 33



Purposes of Today’s Lecture

Describe Brownian motion as a limit of random walks.

Define Brownian motion.

Describe properties of Brownian motion.

Use refelection principle to deduce law of maximum.

Define martingales.

Derive Black-Scholes formula.
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Brownian Motion

For fair random walk Yn = number of heads minus number of tails,

Yn = U1 + · · · + Un

where the Ui are independent and

P(Ui = 1) = P(Ui = −1) =
1

2

Notice:

E(Ui) = 0

Var(Ui) = 1

Recall central limit theorem:

U1 + · · ·+ Un√
n

⇒ N(0, 1)

Now: rescale time axis so that n steps take 1 time unit and vertical
axis so step size is 1/

√
n.
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Brownian Motion Graph
n=16 n=64

n=256 n=1024
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Limit of Random Walks

We now turn these pictures into a stochastic process:

For k
n
≤ t < k+1

n
we define

Xn(t) =
U1 + · · ·+ Uk√

n

Notice:
E(Xn(t)) = 0

and

Var(Xn(t)) =
k

n

As n → ∞ with t fixed we see k/n → t. Moreover:

U1 + · · ·+ Uk√
k

=

√

n

k
Xn(t)

converges to N(0, 1) by the central limit theorem. Thus

Xn(t) ⇒ N(0, t)
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Limit of Random Walks

Also: Xn(t + s)− Xn(t) is independent of Xn(t) because the 2 rvs
involve sums of different Ui .

Conclusions: As n → ∞ the processes Xn converge to a process X
with the properties:

1 X (t) has a N(0, t) distribution.
2 X has independent increments: if

0 = t0 < t1 < t2 < · · · < tk

then
X (t1)− X (t0), . . . ,X (tk )− X (tk−1)

are independent.
3 The increments are stationary: for all s

X (t + s)− X (s) ∼ N(0, t)

4 X (0) = 0.
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Definition of Brownian Motion
Def’n: Any process satisfying 1-4 above is a Brownian motion.

Properties of Brownian motion

Suppose t > s. Then

E(X (t)|X (s)) = E {X (t)− X (s) + X (s)|X (s)}
= E {X (t)− X (s)|X (s)} + E {X (s)|X (s)}
= 0 + X (s) = X (s)

Notice the use of independent increments and of E(Y |Y ) = Y .

Again if t > s:

Var {X (t)|X (s)} = Var {X (t)− X (s) + X (s)|X (s)}
= Var {X (t)− X (s)|X (s)}
= Var {X (t)− X (s)}
= t − s
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Conditional Distributions

Suppose t < s. Then X (s) = X (t) + {X (s)− X (t)} is a sum of two
independent normal variables. Do following calculation:

X ∼ N(0, σ2), and Y ∼ N(0, τ2) independent. Z = X + Y .

Compute conditional distribution of X given Z :

fX |Z (x |z) =
fX ,Z (x , z)

fZ (z)

=
fX ,Y (x , z − x)

fZ (z)

=
fX (x)fY (z − x)

fZ (z)
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Conditional Distributions

Now Z is N(0, γ2) where γ2 = σ2 + τ2 so

fX |Z (x |z) =
1

σ
√
2π
e−x2/(2σ2) 1

τ
√
2π
e−(z−x)2/(2τ2)

1
γ
√
2π
e−z2/(2γ2)

=
γ

τσ
√
2π

exp{−(x − a)2/(2b2)}

for suitable choices of a and b. To find them compare coefficients of
x2, x and 1.

Richard Lockhart (Simon Fraser University) Brownian Motion STAT 870 — Summer 2011 9 / 33



Conditional Distributions

Coefficient of x2:
1

b2
=

1

σ2
+

1

τ2

so b = τσ/γ.

Coefficient of x :
a

b2
=

z

τ2

so that

a = b2z/τ2 =
σ2

σ2 + τ2
z

Finally you should check that

a2

b2
=

z2

τ2
− z2

γ2

to make sure the coefficients of 1 work out as well.

So given Z = z conditional distribution of X is N(a, b2).
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Application to Brownian motion

For t < s let X be X (t) and Y be X (s)− X (t) so
Z = X + Y = X (s).

Then σ2 = t, τ2 = s − t and γ2 = s.

Thus

b2 =
(s − t)t

s

and

a =
t

s
X (s)

So:

E(X (t)|X (s)) =
t

s
X (s)

and

Var(X (t)|X (s)) =
(s − t)t

s
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The Reflection Principle

Tossing a fair coin:

HTHHHTHTHHTHHHTTHTH
5 more heads than
tails

THTTTHTHTTHTTTHHTHT
5 more tails than
heads

Both sequences have the same probability.

So: for random walk starting at stopping time:

Any sequence with k more heads than tails in next m tosses is
matched to sequence with k more tails than heads. Both sequences
have same prob.

Suppose Yn is a fair (p = 1/2) random walk. Define

Mn = max{Yk , 0 ≤ k ≤ n}
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Compute P(Mn ≥ x)?

Trick: Compute
P(Mn ≥ x ,Yn = y)

First: if y ≥ x then

{Mn ≥ x ,Yn = y} = {Yn = y}

Second: if Mn ≥ x then

T ≡ min{k : Yk = x} ≤ n

Fix y < x . Consider a sequence of H’s and T’s which leads to say
T = k and Yn = y .

Switch the results of tosses k + 1 to n to get a sequence of H’s and
T’s which has T = k and Yn = x+(x − y) = 2x − y > x . This proves

P(T = k ,Yn = y) = P(T = k ,Yn = 2x − y)
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Computation Continued

This is true for each k so

P(Mn ≥ x ,Yn = y) = P(Mn ≥ x ,Yn = 2x − y)

= P(Yn = 2x − y)

Finally, sum over all y to get

P(Mn ≥ x) =
∑

y≥x

P(Yn = y) +
∑

y<x

P(Yn = 2x − y)

Make the substitution k = 2x − y in the second sum to get

P(Mn ≥ x) =
∑

y≥x

P(Yn = y) +
∑

k>x

P(Yn = k)

= 2
∑

k>x

P(Yn = k) + P(Yn = x)
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Brownian motion version

The supremum and hitting time for level x are:

Mt = max{X (s); 0 ≤ s ≤ t}

Tx = min{s : X (s) = x}
Then

{Tx ≤ t} = {Mt ≥ x}
Any path with Tx = s < t and X (t) = y < x is matched to an
equally likely path with Tx = s < t and X (t) = 2x − y > x .

So for y > x

P(Mt ≥ x ,X (t) > y) = P(X (t) > y)

while for y < x

P(Mt ≥ x ,X (t) < y) = P(X (t) > 2x − y)
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Reflection Principal Graphically
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Strong Markov Propery
A random variable T which is non-negative (or possibly +∞) is a
stopping time for Brownian motion if

{T ≤ t} ∈ Ht = σ{B(u); 0 ≤ u ≤ t}.
The first time Tx that Bt = x is a stopping time.

For any stopping time T the process

t 7→ B(T + t)− B(t)

is a Brownian motion.
The future of the process from T on is like the process started at
B(T ) at t = 0.
Brownian motion is symmetric: if B is a Brownian motion so is −B .

So

W (t) =

{

Bt t < T

B(T )− (B(T + t − B(T )) t ≥ T

is a Brownian motion.
This proves the reflection principle.
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Reflection Principle Continued

Let y → x to get

P(Mt ≥ x ,X (t) > x) = P(Mt ≥ x ,X (t) < x)

= P(X (t) > x)

Adding these together gives

P(Mt > x) = 2P(X (t) > x)

= 2P(N(0, 1) > x/
√
t)

Hence Mt has the distribution of |N(0, t)|.
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Reflection

On the other hand in view of

{Tx ≤ t} = {Mt ≥ x}

the density of Tx is

d

dt
2P(N(0, 1) > x/

√
t)

Use the chain rule to compute this.

First
d

dy
P(N(0, 1) > y) = −φ(y)

where φ is the standard normal density

φ(y) =
e−y2/2

√
2π

because P(N(0, 1) > y) is 1 minus the standard normal cdf.

Richard Lockhart (Simon Fraser University) Brownian Motion STAT 870 — Summer 2011 19 / 33



First Passage Time Law

So

d

dt
2P(N(0, 1) > x/

√
t)

= −2φ(x/
√
t)

d

dt
(x/

√
t)

=
x√

2πt3/2
exp{−x2/(2t)}

This density is called the Inverse Gaussian density.

Tx is called a first passage time

NOTE: the preceding is a density when viewed as a function of the
variable t.
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Martingales

Def’n: A stochastic process M(t) indexed by either a discrete or
continuous time parameter t is a martingale if:

E{M(t)|M(u); 0 ≤ u ≤ s} = M(s)

whenever s < t.
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Examples of Martingales

A fair random walk is a martingale.

If N(t) is a Poisson Process with rate λ then N(t)− λt is a
martingale.

Standard Brownian motion (defined above) is a martingale.

Brownian motion with drift is a process of the form

X (t) = σB(t) + µt

where B is standard Brownian motion, introduced earlier.

X is a martingale if µ = 0.

We call µ the drift.
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More Examples

If X (t) is a Brownian motion with drift then

Y (t) = eX (t)

is a geometric Brownian motion.

For suitable µ and σ we can make Y (t) a martingale.

If a gambler makes a sequence of fair bets and Mn is the amount of
money s/he has after n bets then Mn is a martingale – even if the
bets made depend on the outcomes of previous bets, that is, even if
the gambler plays a strategy.
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Some evidence for some of the above

Random walk: U1,U2, . . . iid with

P(Ui = 1) = P(Ui = −1) = 1/2

and Yk = U1 + · · ·+ Uk with Y0 = 0.

Then

E(Yn|Y0, . . . ,Yk)

= E(Yn − Yk + Yk |Y0, . . . ,Yk)

= E(Yn − Yk |Y0, . . . ,Yk) + Yk

=

n
∑

k+1

E(Uj |U1, . . . ,Uk) + Yk

=
n

∑

k+1

E(Uj) + Yk

= Yk
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Things to notice

Yk treated as constant given Y1, . . . ,Yk .

Knowing Y1, . . . ,Yk is equivalent to knowing U1, . . . ,Uk .

For j > k we have Uj independent of U1, . . . ,Uk so conditional
expectation is unconditional expectation.

Since Standard Brownian Motion is limit of such random walks we
get martingale property for standard Brownian motion.

Richard Lockhart (Simon Fraser University) Brownian Motion STAT 870 — Summer 2011 25 / 33



Another martingale

Poisson Process: X (t) = N(t)− λt. Fix t > s.

E(X (t)|X (u); 0 ≤ u ≤ s)

= E(X (t)− X (s) + X (s)|Hs)

= E(X (t)− X (s)|Hs) + X (s)

= E(N(t) − N(s)− λ(t − s)|Hs) + X (s)

= E(N(t) − N(s)) − λ(t − s) + X (s)

= λ(t − s)− λ(t − s) + X (s)

= X (s)

Things to notice:

I used independent increments.

Hs is shorthand for the conditioning event.

Similar to random walk calculation.
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Black Scholes

We model the price of a stock as

X (t) = x0e
Y (t)

where
Y (t) = σB(t) + µt

is a Brownian motion with drift (B is standard Brownian motion).

If annual interest rates are eα − 1 we call α the instantaneous interest
rate; if we invest $1 at time 0 then at time t we would have eαt .

In this sense an amount of money x(t) to be paid at time t is worth
only e−αtx(t) at time 0 (because that much money at time 0 will
grow to x(t) by time t).
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Present Value

If the stock price at time t is X (t) per share then the present value of
1 share to be delivered at time t is

Z (t) = e−αtX (t)

With X as above we see

Z (t) = x0e
σB(t)+(µ−α)t

Now we compute

E {Z (t)|Z (u); 0 ≤ u ≤ s} = E {Z (t)|B(u); 0 ≤ u ≤ s}

for s < t.

Write
Z (t) = x0e

σB(s)+(µ−α)t × eσ(B(t)−B(s))

Since B has independent increments we find

E {Z (t)|B(u); 0 ≤ u ≤ s} = x0e
σB(s)+(µ−α)t

E

[

eσ{B(t)−B(s)}
]
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Moment Generating Functions

Note: B(t)− B(s) is N(0, t − s); the expected value needed is the
moment generating function of this variable at σ.

Suppose U ∼ N(0, 1). The Moment Generating Function of U is

MU(r) = E(erU ) = er
2/2

Rewrite
σ{B(t)− B(s)} = σ

√
t − sU

where U ∼ N(0, 1) to see

E

[

eσ{B(t)−B(s)}
]

= eσ
2(t−s)/2

Finally we get

E{Z (t)|Z (u); 0 ≤ u ≤ s} = x0e
σB(s)+(µ−α)s e(µ−α)(t−s)+σ2(t−s)/2

= Z (s)

provided
µ+ σ2/2 = α .
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Option Pricing

If this identity is satisfied then the present value of the stock price is a
martingale.

Suppose you can pay $c today for the right to pay K for a share of
this stock at time t (regardless of the actual price at time t).

If, at time t, X (t) > K you will exercise your option and buy the
share making X (t)− K dollars.

If X (t) ≤ K you will not exercise your option; it becomes worthless.

The present value of this option is

e−αt(X (t)− K )+ − c

where

z+ =

{

z z > 0

0 z ≤ 0

(Called positive part of z .)

Richard Lockhart (Simon Fraser University) Brownian Motion STAT 870 — Summer 2011 30 / 33



In a fair market

The discounted share price e−αtX (t) is a martingale.

The expected present value of the option is 0.

So:
c = e−αt

E
[

{X (t)− K}+
]

Since
X (t) = x0e

N(µt,σ2t)

we are to compute

E

{

(

x0e
σt1/2U+µt − K

)

+

}
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Black-Scholes Continued

This is
∫ ∞

a

(

x0e
bu+d − K

)

e−u2/2du/
√
2π

where

a = (log(K/x0)− µt)/(σt1/2), b = σt1/2, d = µt

Evidently

K

∫ ∞

a

e−u2/2du/
√
2π = KP(N(0, 1) > a)

The other integral needed is
∫ ∞

a

e−u2/2+budu/
√
2π =

∫ ∞

a

e−(u−b)2/2eb
2/2

√
2π

du

=

∫ ∞

a−b

e−v2/2eb
2/2

√
2π

dv

= eb
2/2P(N(0, 1) > a − b)
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Black-Scholes Continued

Introduce the notation

Φ(v) = P(N(0, 1) ≤ v) = P(N(0, 1) > −v)

and do all the algebra to get

c =
{

e−αteb
2/2+dx0Φ(b − a)− Ke−αtΦ(−a)

}

= x0e
(µ+σ2/2−α)tΦ(b − a)− Ke−αtΦ(−a)

= x0Φ(b − a)− Ke−αtΦ(−a)

This is the Black-Scholes option pricing formula.
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