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What | assume you already know

@ The basics of normal distributions in 1 dimension.
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The Multivariate Normal Distribution

o Definition: Z € R ~ N(0,1) iff

e Definition: Z € RP ~ MVN(0,/) if and only if Z = (Z,.. .,Zp)T
with the Z; independent and each Z; ~ N(0, 1).

@ In this case according to our theorem

fz(z15- - 2p H\/E = (27) P2 exp{—2"z/2};

superscript T denotes matrix transpose.

@ Definition: X € RP has a multivariate normal distribution if it has
same distribution as AZ + p for some p € RP, some p X p matrix g
constants A and Z ~ MVN(0, /).

=
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The Multivariate Normal Density

@ Matrix A singular: X does not have a density.
@ Ainvertible: derive multivariate normal density by change of variables:

oxX 0z

—_— = _— = -1
0z A oX AT

X=AZ+pesZ=AX-p)
@ So

fix(x) = fz(A7 (x — p))| det(A™))]
_op{=(x =) (AT A (x = p)/2}

(27)P/2| det A|
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The Multivariate Normal Density continued

@ Now define ¥ = AAT and notice that
T 1 (AT) lA—l — (A—l)TA—l

and
detY = det Adet AT = (det A)?.

@ Thus fx is
exp{—(x — ) TE " (x — ) /2} |

(27)P/2(det ¥)1/2 '
the MVN(u,X) density.
@ Note density is the same for all A such that AAT =¥
@ This justifies the notation MVN(u, X).
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The Multivariate Normal Density continued

(]

For which p, ¥ is this a density?
Any 1 but if x € RP then, putting y = AT x,

(]

xTEx =xTAATx = (ATx)T(ATx) = Zy, >0

Inequality strict except for y = 0 which is equivalent to x = 0.

(]

Thus X is a positive definite symmetric matrix.

(]

Conversely, if ¥ is a positive definite symmetric matrix then there is a
square invertible matrix A such that AAT = ¥ so that there is a
MVN(p1, X) distribution.

A can be found via the Cholesky decomposition, e.g.

)
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Singular cases

When A is singular X will not have a density.

Ja such that P(a’ X =a"p) =1

X is confined to a hyperplane.

Still true: distribution of X depends only on ¥ = AAT

if AAT = BBT then AZ 4 i and BZ + 1 have the same distribution.

Proof by mgfs or characteristic functions.

e © ¢ ¢ ¢ ¢
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Equality in distribution
@ We say X and Y have the same distribution if, for all A,
P(X € A) = P(Y € A).
@ If X has density f then X and Y have the same distribution iff Y has

density f.
@ If X € RP then the moment generating function (mgf) of X is

Mx(t) = E [efTX]

for t € RP.
@ If X € RP then the characteristic function (cf) of X is

ox(t) = E {eitTX}

for t € RP; the symbol i is the imaginary unit, i2 = —1.
o cf is complex number defined for every t € RP. The mgf may well

oo for any t # 0.
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Equality in distribution 2

o If there is an € > 0 such that
My (t) = Mx(t)

for all t such that ||t]| = VtTt < e then X and Y have the same
distribution.
o If
oy (t) = ox(t)

for all t € RP then X and Y have the same distribution.

=
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Application to MVN

o If Z is MVN,(0, /) then
oz(t) =E (exp{itz}) =E exp{z itiZ}
J

= (Hexp{ithj}> = HE(eXP{ichh})
h
H¢N(t

where ¢p denotes the cf of a N(0,1) variate.
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Application to MVN 2
@ The cf of N(0,1) is

on(t) = E (exp{itZ}) = /OO exp{itz — z2/2}dz /21

_ /°° exp{—t2/2 — (z — it)2/2}dz/v/2r

o0
= exp(—t2/2)/ exp{—(z — it)?/2}dz/V2r = exp(—t?/2)
—00
@ So the multivariate cf above is

02(t) = [[exo(~t}/2} = exp{~tt/2).

@ Notice the use of normal density with mean p = it; works by magidi
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General Case

o If X =AZ+ pwith Z € RY9, Aapxqg matrix and u € RP then
E (exp{itTX}> = exp(itTW)pz(ATt) = exp(it Ty — tTAAT t/2)

@ Depends only on 1 and ¥ = AAT so distribution of X depends only
on its mean and variance.

® The mgf is

Mx(t) == exp(t’ u+tTAATt/2)

=
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Properties of the MVN distribution

© All margins are multivariate normal: if
X1

=[]
_ | M

: [ o ]

)::[211 212]

and

201 Yo
then X ~ MVN(, £) = Xy ~ MVN(u1, T11).

O All conditionals are normal: the conditional distribution of Xj given
Xo = xp is MVN(p1 + 12X 55 (x2 — p12), T11 — T12¥57 X21)

© MX + v~ MVN(Mu+ v, MEMT): affine transformation of MVN
normal.
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