Postscript version of these notes
STAT 804
Lecture 21 Notes
The Periodogram
The sample covariance between a series and
is
Using the identity
and
formulas for geometric sums the mean of the sines can be evaluated. When
for an integer , not 0, we find that
so that the sample covariance
is simply
For these special we can also compute
so that the sample correlation between and
is just
where is the sample variance
.
Consider now adjusting to maximize this correlation. The sine
can be rewritten as
so that we are simply choosing coefficients and to
maximize the correlation between and
subject to the condition .
Since correlations are scale invariant we can drop the condition
on and and maximize the correlation between and the
linear combination of sine and cosine. This problem is solved by
linear regression; the coefficients are given by
where is the by 2 design matrix filled in with the sines and
cosines. In fact
and we see that the desired
regression coefficients are
and
The covariance between and this best linear combination is
But in fact
which is just the modulus of the discrete Fourier transform
divided by .
Definition: The periodogram is the function
Here are some periodogram plots for some data sets:
- Here is a plot of the modulus of against frequency
for the sunspot data. The mean has been subtracted from the data.
Notice the peak at a frequency slightly below 0.1 cycles per year
as well as a peak at a frequency close to 0.03.
- To get a better understanding of these peaks I plot
only for frequencies from 1/12 to 1/8 which should include
the largest peak.
Notice that the picture is clearly piecewise linear. This happens
because we are actually using the discrete Fourier transform which
computes the sample spectrum only at frequencies of the form
(in cycles per point) for integer values of . There are only about
10 points on this plot.
- The same plot against period () shows peaks just
below 10 years and just below 11.
- The DFT can be computed very quickly at the special frequencies but
to see the structure clearly near a peak you need to compute
for a denser grid of . I use the S-Plus function
transform<- function(x, a, b, n = 100)
{
f <- seq(a, b, length = n)
nn <- 1:length(x)
args <- outer(f, nn, "*") * 2 * pi
cosines <- cos(args) * x
sines <- sin(args) * x
one <- rep(1, length(x))
((cosines %*% one)^2 + (sines %*% one)^2)/length(x)
}
to compute lots of values for periods between 8 and 12 years.
- Now here is the periodogram for the CO2 concentration above
Mauna Loa after removing a linear trend from the series by linear
regression. Notice the peaks at periods of 1 year and 6 months. These
peaks show clearly the annual cycle and the fact that the annual
cycle is not a simple sine wave but rather contains overtones: components
whose frequency is an integer multiple of the basic frequency of 1
cycle per year.
- Now a detail of this image:
- Here is what the periodogram does with various generated
series which have exact sinusoidal components. First a pure sine
wave with no noise. The middle panel is a direct plot of the periodogram
while the lower panel is the logarithm - strictly speaking
. The apparent waves are actually
the effect of round off error in computing the log of something which is
algebraically 0 but numerically slightly different.
- The same series plus N(01,) white noise. Notice it is much harder
to see the perfect sine wave in the data but the periodogram shows the
presence of the sine wave quite clearly.
- The sum of three sine waves.
- Now add N(0,1) white noise. The periodogram still picks out
each of the 3 components very easily.
- The sum of three sine waves.
- Now multiply the pure sine wave by a damping exponential. Notice that
the signal is gone by about a quarter of the way through the series. The
periodogram still has that peak at 0.04 cycles per point.
- Withe noise added you can still see the effect. But compare the
scales on the middle plots between all these series.
- Now an exponentially damped sine wave plus the other two pure sine
waves with N(0,1/16) noise. You can see only two peaks in the raw
periodogram but on the logarithmic scale you see that there is a hump on
the left of the peak at 0.05 which is the peak at 0.04. The raw scale
can make small secondary peaks invisible.
<\CENTER>
Richard Lockhart
2001-09-30