T he Multivariate Normal Distribution

Defn: Z ¢ Rl ~ N(0,1) iff

1
f7(2) = me_ZQ/Q'

Defn: Z € RP ~ MV N,(0,I) if and only if Z =
(Z1,...,Zp)T with the Z; independent and each
Z; ~ N(0,1).

In this case according to our theorem

1
fz(z1,...,2p) = H \/%e—zf/Q

= (27r)_p/2 exp{—sz/Q} ;

superscript ¢t denotes matrix transpose.

Defn: X € RP has a multivariate normal distri-
bution if it has the same distribution as AZ 4
for some pu € RP, some px g matrix of constants
A and Z ~ MV Ny(O,I).
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p = ¢q, A singular: X does not have a density.

A invertible: derive multivariate normal density
by change of variables:

X=AZ+pusZ=AX-pn

% — A % — AL
07 00X
So
fx(x) = fz(A"1(z — p))| det(A™D)
_ exp{—(z — ) ' (A= HTA L (z — pn)/2}
(2m)P/2| det A| '
Now define ¥ = AA? and notice that

Z—l — (AT)_lA_]' — (A_]')TA_l

and

detY = det Adet Al = (det A)?.
Thus fX IS

exp{—(z — WIS Nz — p)/2}
(27)P/2(det X)1/2 ’
the MV N(u,X) density. Note density is the

same for all A such that AAT = 3. This jus-
tifies the notation MV N(u, X2).
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For which u, 3 is this a density?

Any p but if x € RP then
'Y =l AA
= (AT2)T (AT D)

p
=> y7 >0
1

where y = ATz. Inequality strict except for
y = 0 which is equivalent to £ = 0. Thus X is
a positive definite symmetric matrix.

Conversely, if X is a positive definite symmet-
ric matrix then there is a square invertible ma-
trix A such that AAT = ¥ so that there is a
MV N(u,X) distribution. (A can be found via
the Cholesky decomposition, e.g.)

When A is singular X will not have a density:
Ja such that P(alX = af'p) = 1; X is confined
to a hyperplane.

Still true: distribution of X depends only on
> = AAT: if AAT = BB?Y then AZ 4+ p and
BZ + p have the same distribution.
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Expectation, moments

Defn: If X € RP has density f then

E(9(X)) = [ 9(2)f(2) da.
any g from RP to R.

FACT: if Y = ¢g(X) for a smooth g (mapping
R — R)
EC) = [ufy () dy

= [ 9@ fy (9(2))g (@) do
= E(g(X))

by change of variables formula for integration.
This is good because otherwise we might have
two different values for E(eX).

Linearity: E(aX 4+ bY) = aE(X) + bE(Y") for
real X and Y.
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Defn: The rth moment (about the origin) of
a real rv X is u/. = E(X") (provided it exists).
We generally use u for E(X).

Defn: The rt" central moment is

pr = E[(X — )]

We call 2 = u, the variance.

Defn: For an RP valued random vector X

px = E(X)

is the vector whose it" entry is E(X;) (provided
all entries exist).

Fact: same idea used for random matrices.

Defn: The (p x p) variance covariance matrix
of X is

Var(X) = E[(X - ) (X — )"

which exists provided each component X, has

a finite second moment.
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Example moments: If Z ~ N(0,1) then
©.@)
E(Z) =/ ze_z2/2dz/\/27r

—00
_e—z2/2

V2T
=0
and (integrating by parts)

E(Z") =/ zTe_ZQ/de/\/ 27
— 0
7“—16—,22/2 >

Var |
+ (r—1) /OO zr_ze_ZQ/de/\/%

@)

— 00

@)

—Z

so that
pr = (r — 1)py—2
for »r > 2. Remembering that 71 = 0 and
o0 2
140 =/ Ve /de/\/27r =1

— 00

we find that

o r odd
=Y r—=1)(r—3)---1 r even.
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If now X ~ N(u,o?), thatis, X ~ oZ 4+ u, then
E(X)=0cE(Z)+ = pn and

pr(X) = E[(X —p)'] = c"E(Z")

In particular, we see that our choice of nota-
tion N(u,o?) for the distribution of ¢Z + u is
justified; o is indeed the variance.

Similarly for X ~ MVN(u,XY) we have X =
AZ + p with Z ~ MV N(0,I) and

E(X) =p
and
Var(X) = E{(X - p)(X - )"}
—E {AZ(AZ)T}

= AE(ZZHAT
—AIAT =3

Note use of easy calculation: E(Z) = 0 and

Var(Z) =E(ZZ)) =1.
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Moments and independence

Theorem: If X,,...,X, are independent and
each X; is integrable then X = X7 ---Xp Is in-
tegrable and

E(X1---Xp) = E(X1)---E(Xp) .
Moment Generating Functions

Defn: The moment generating function of a
real valued X is

Mx (t) = E(e")

defined for those real t for which the expected
value is finite.

Defn: The moment generating function of
X e RP js

Mx (u) = E[e* X]

defined for those vectors uw for which the ex-
pected value is finite.

42



Example: If Z ~ N(0,1) then

My(t) = =212,

1 o0
\V 2m /—oo
L[ —(a—1)2/2442)2
= —— e dZ
V2T /—oo
- \/_1 / T w24t 2y,
21 J—o0

2
_ 122

Theorem: (p = 1) If M is finite for all ¢t in a
neighbourhood of 0 then

1. Every moment of X is finite.
2. M is C*° (in fact M is analytic).

k
3.y = %MX(O).

Note: C° means has continuous derivatives
of all orders. Analytic means has convergent
power series expansion in neighbourhood of
each t € (—e¢,¢€).

The proof, and many other facts about mgfs,
rely on techniques of complex variables.
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Characterization & MGFs
Theorem: Suppose X and Y are RP valued
random vectors such that

Mx (u) = My (u)

for u in some open neighbourhood of 0 in RP,
Then X and Y have the same distribution.

The proof relies on techniques of complex vari-
ables.
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MGFs and Sums

If X1,...,Xp are independent and Y = >} X;
then mgf of Y is product mgfs of individual
Xii

E(etY) =TI E(etXZ')
1

or My =[] Mx,. (Also for multivariate X;.)

Example: If Z4,...,Z, areindependent N(0,1)
then

E(ez Wiy = I1 E(e%%)

2
— ol /2

i
= exp(}_a?/2)
Conclusion: If Z ~ M NV,(0,I) then
My (u) = exp(>_u?/2) = exp(ulu/2).

Example: If X ~ N(u,02) then X = o6Z + 1
and

My (t) = E(et(aZ—I—,u)) — et,ueath/Q.
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Theorem: Suppose X = AZ 4+ u and Y =
A*Z* + p* where Z ~ MV Ny(0,I) and Z* ~
MV Ng(0,I). Then X and Y have the same
distribution if and only iff the following two
conditions hold:

1. = u*.
2. AAT = A*(A")T,

Alternatively: if X, Y each MVN then E(X) =
E(Y) and Var(X) = Var(Y) imply that X and
Y have the same distribution.

Proof: If 1 and 2 hold the mgf of X is
= (etTX) —E (etT(AZJru)
S etT[,LE (e(ATt)TZ)
— A uHATHT(ATY)
_ tpttt St
Thus Mx = M~. Conversely if X and Y have
the same distribution then they have the same

mean and variance.
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Thus mgf is determined by u and 3.

Theorem: If X ~ MV Ny(u,3) then there is A
a pxp matrix such that X has same distribution
as AZ + p for Z ~ MV Np(O,I).

We may assume that A is symmetric and non-
negative definite, or that A is upper triangular,
or that Ba is lower triangular.

Proof: Pick any A such that AAT = ¥ such
as PD/2PT from the spectral decomposition.
Then AZ+ p~ MV Np(u,X).

From the symmetric square root can produce
an upper triangular square root by the Gram

Schmidt process: if A has rows af,...,al then

let vy be ap/y/alap. Choose v, 1 proportional

to a, 1 — bup where b = al jup so that v, 3
has unit length. Continue in this way; you au-
tomatically get ajv, = 0 if j < k. If P has
columns vq,...,vp then P is orthogonal and AP
IS an upper triangular square root of ..
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Variances, Covariances, Correlations

Defn: The covariance between X and Y is

Cov(X,Y) = E{(X — px)(Y — py)" |

This is a matrix.

Properties:
e Cov(X,X) = Var(X).

e Cov is bilinear:

Cov(AX +BW,Y) =ACov(X,Y)
+ BCov(W,Y)

and

Cov(X,CY + DZ) =Cov(X,Y)Ct
+ Cov(X,Z)D'
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Properties of the MV N distribution

1: All margins are multivariate normal: if

[ X
X__X2]
__,ul
=t

and

$— | 211 212
2ip1 2o

then X ~ MVN([,L, 2) = X1 ~ MVN(,U,l, 211).
2: MX +v ~ MVNMp + v, MEMT): affine
transformation of MVN is normal.
3. If

310 = Cov(Xy,X5) =0

then X7 and X, are independent.

4: All conditionals are normal: the conditional
distribution of X1 given X5 = x5 is MV N(uq +

$12357 (22 — o), 11 — 212353 X21)
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Proof of (1): If X = AZ 4+ p then
X1 =1[I|0]X

for I the identity matrix of correct dimension.

So
X1 = ([I|0] A) Z + [1]0]

Compute mean and variance to check rest.

Proof of (2): If X = AZ + u then
MX +v=MAZ+ v+ Mpu

Proof of (3): If

then
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Proof of (4): first case: assume Y>> has an
inverse.

Define
W =X; - 215359 X5
Then
W | |1 —2122521 X1
X |0 I X2

Thus (W,X3)T is MVN(uq — 215555 o, %)
where

s — | 211 — S1285, %01 0
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Now joint density of W and X factors

fw x,(w,z2) = fw(w) fx,(x2)

By change of variables joint density of X is

fx,x,(x1,22) = cfw(z1 — Mx2) fx, (22)

where ¢ = 1 is the constant Jacobian of the
linear transformation from (W, X») to (X1, X5)
and

M=X,%5)

Thus conditional density of X1 given Xo = x»
IS

fw(z1 — Mzxs) fx, (z2)
fx,(x2)

As a function of x1 this density has the form

of the advertised multivariate normal density.

= fw(z1 — Mzy)
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Specialization to bivariate case:

Write

> — 0% ,001202
po102 05

where we define

Cov(X1, X2)
p p—
V/Var(X1)Var(X»)
Note that
o? = Var(X;)
Then

01
W=X1—p—Xo
02
is independent of X». The marginal distribu-
tion of W is N(u1 — poipuo/oo, %) where

72 =Var(X1) — 2p-2Cov(X1, X»)

o}
g2

2
n (ﬂ) Var(Xs)
02
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This simplifies to

o1(1 - p?)
Notice that it follows that

—1<p<1

More generally: any X and Y
0 <Var(X —\Y)
= Var(X) — 2)ACov(X,Y) 4+ \?Var(Y)
RHS is minimized at

Cov(X,Y)
\ =
Var(Y)

Minimum value is

0 < Var(X)(1 - p%y)

where
Cov(X,Y)
JVar(X)Var(y)

defines the correlation between X and Y.

PXY —
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Multiple Correlation
Now suppose X, is scalar but X7 is vector.

Defn: Multiple correlation between X1 and X»
R?(X1, X2) = max |p,rx, x,|°

over all a #= 0.

Thus: maximize
Cov2(a’X1,X5) = al¥i5%5ia
Var(al'Xq)Var(X5) (aTElla) 207

Put b = E%{Qa. For 3171 invertible problem is
equivalent to maximizing

b1 Qb
bTb

where
—1/2 —1/2
Q= 211/ 212221211/

Solution: find largest eigenvalue of Q.
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Note
Q= vvl
where

—1/2

V:E 212

IS a vector. Set

VVTX = \X

and multiply by v to get

VTX:OOr)\szV

If vIx = 0 then we see A = 0 so largest eigen-

value is vIv.

Summary: maximum squared correlation is
VTV 221211 212
Yoo 250
Achieved when eigenvector is x =v = b soO
—1/2 1 2
a=%1?v71?n, =975,

RQ(X]J XQ) —

Notice: since R? is squared correlation between
two scalars (atX; and X5) we have

0<R?2<1

Equals 1 iff X5 is linear combination of Xj.
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Correlation matrices, partial correlations:

Correlation between two scalars X and Y is
Cov(X,Y)
JVar(X)Var(y)

PXY —

If X has variance X then the correlation matrix
of X is Rx with entries

R — COV(XZ',XJ') . Zz]

\/V3I’(XZ')V8F(XJ') ,/Ziiij

If X1,X> are MVN with the usual partitioned
variance covariance matrix then the conditional
variance of X1 given X is

21120 = 211 — E12535215321

From this define partial correlation matrix
(X11.2)4j
\/211-2)2'2'211-2)]'3'

Ri1.0 =

Note: these are used even when Xqi,X, are
NOT MVN
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