The Multivariate Normal Distribution

Defn: $Z \in \mathbb{R}^1 \sim N(0, 1)$ iff

$$
f_Z(z) = \frac{1}{\sqrt{2\pi}} e^{-z^2/2}.
$$

Defn: $\mathbf{Z} \in \mathbb{R}^p \sim MVN_p(0,I)$ if and only if $\mathbf{Z} =$ $(Z_1,\ldots,Z_p)^T$ with the Z_i independent and each $Z_i \sim N(0, 1)$.

In this case according to our theorem

$$
f_{\mathbf{Z}}(z_1,\ldots,z_p) = \prod \frac{1}{\sqrt{2\pi}} e^{-z_i^2/2}
$$

= $(2\pi)^{-p/2} \exp\{-z^T z/2\};$

superscript t denotes matrix transpose.

Defn: $X \in \mathbb{R}^p$ has a multivariate normal distribution if it has the same distribution as $A Z + \mu$ for some $\boldsymbol{\mu} \in \mathbb{R}^p$, some $p \times q$ matrix of constants A and $Z \sim MVN_q(0,I)$.

 $p = q$, A singular: X does not have a density.

A invertible: derive multivariate normal density by change of variables:

$$
X = AZ + \mu \Leftrightarrow Z = A^{-1}(X - \mu)
$$

So

$$
f_{\mathbf{X}}(x) = f_{\mathbf{Z}}(\mathbf{A}^{-1}(x - \mu)) |\det(\mathbf{A}^{-1})|
$$

=
$$
\frac{\exp\{-(x - \mu)^T (\mathbf{A}^{-1})^T \mathbf{A}^{-1} (x - \mu)/2\}}{(2\pi)^{p/2} |\det \mathbf{A}|}.
$$

Now define $\Sigma = AA^T$ and notice that

$$
\Sigma^{-1} = (A^T)^{-1}A^{-1} = (A^{-1})^T A^{-1}
$$

and

$$
\det \Sigma = \det A \det A^T = (\det A)^2.
$$

Thus $f_{\mathbf{X}}$ is

$$
\frac{\exp\{-(x-\mu)^T\Sigma^{-1}(x-\mu)/2\}}{(2\pi)^{p/2}(\det\Sigma)^{1/2}};
$$

the $MVN(\mu, \Sigma)$ density. Note density is the same for all A such that $AA^T = \Sigma$. This justifies the notation $MVN(\mu, \Sigma)$.

For which μ , Σ is this a density?

Any $\boldsymbol{\mu}$ but if $x \in \mathbb{R}^p$ then

$$
x^T \Sigma x = x^T A A^T x
$$

= $(A^T x)^T (A^T x)$
= $\sum_{1}^{p} y_i^2 \ge 0$

where $y = A^T x$. Inequality strict except for $y = 0$ which is equivalent to $x = 0$. Thus Σ is a positive definite symmetric matrix.

Conversely, if Σ is a positive definite symmetric matrix then there is a square invertible matrix A such that $AA^T = \Sigma$ so that there is a $MVN(\mu, \Sigma)$ distribution. (A can be found via the Cholesky decomposition, e.g.)

When A is singular X will not have a density: $\exists a$ such that $P(a^T\mathbf{X}=a^T\boldsymbol{\mu})=1;$ \mathbf{X} is confined to a hyperplane.

Still true: distribution of X depends only on $\Sigma = AA^T$: if $AA^T = BB^T$ then $AZ + \mu$ and $BZ + \mu$ have the same distribution.

Expectation, moments

Defn: If $X \in \mathbb{R}^p$ has density f then

$$
\mathsf{E}(g(\mathbf{X})) = \int g(x) f(x) \, dx \, .
$$

any g from \mathbb{R}^p to \mathbb{R} .

FACT: if $Y = g(X)$ for a smooth g (mapping $\mathbb{R} \to \mathbb{R}$

$$
\begin{aligned} \mathsf{E}(Y) &= \int y f_Y(y) \, dy \\ &= \int g(x) f_Y(g(x)) g'(x) \, dx \\ &= \mathsf{E}(g(X)) \end{aligned}
$$

by change of variables formula for integration. This is good because otherwise we might have two different values for $E(e^X)$.

Linearity: $E(aX + bY) = aE(X) + bE(Y)$ for real X and Y .

Defn: The r^{th} moment (about the origin) of a real rv X is $\mu'_r = \mathsf{E}(X^r)$ (provided it exists). We generally use μ for $E(X)$.

Defn: The r^{th} central moment is

$$
\mu_r = \mathsf{E}[(X-\mu)^r]
$$

We call $\sigma^2 = \mu_2$ the variance.

Defn: For an \mathbb{R}^p valued random vector X

$$
\mu_X = E(X)
$$

is the vector whose i^{th} entry is $\mathsf{E}(X_i)$ (provided all entries exist).

Fact: same idea used for random matrices.

Defn: The $(p \times p)$ variance covariance matrix of X is

$$
\text{Var}(\mathbf{X}) = \mathsf{E}\left[(\mathbf{X} - \boldsymbol{\mu})(\mathbf{X} - \boldsymbol{\mu})^T \right]
$$

which exists provided each component X_i has a finite second moment.

Example moments: If $Z \sim N(0, 1)$ then

$$
E(Z) = \int_{-\infty}^{\infty} ze^{-z^2/2} dz/\sqrt{2\pi}
$$

$$
= \frac{-e^{-z^2/2}}{\sqrt{2\pi}} \Big|_{-\infty}^{\infty}
$$

$$
= 0
$$

and (integrating by parts)

$$
E(Zr) = \int_{-\infty}^{\infty} zr e-z2/2 dz / \sqrt{2\pi}
$$

=
$$
\frac{-z^{r-1}e^{-z^{2}/2}}{\sqrt{2\pi}} \Big|_{-\infty}^{\infty}
$$

+
$$
(r-1) \int_{-\infty}^{\infty} z^{r-2} e^{-z^{2}/2} dz / \sqrt{2\pi}
$$

so that

$$
\mu_r=(r-1)\mu_{r-2}
$$

for $r \geq 2$. Remembering that $\mu_1 = 0$ and

$$
\mu_0 = \int_{-\infty}^{\infty} z^0 e^{-z^2/2} dz / \sqrt{2\pi} = 1
$$

we find that

$$
\mu_r = \begin{cases} 0 & r \text{ odd} \\ (r-1)(r-3)\cdots 1 & r \text{ even.} \end{cases}
$$

If now $X \sim N(\mu,\sigma^2)$, that is, $X \sim \sigma Z + \mu$, then $E(X) = \sigma E(Z) + \mu = \mu$ and

$$
\mu_r(X) = \mathsf{E}[(X - \mu)^r] = \sigma^r \mathsf{E}(Z^r)
$$

In particular, we see that our choice of notation $N(\mu,\sigma^2)$ for the distribution of $\sigma Z + \mu$ is justified; σ is indeed the variance.

Similarly for $X \sim MVN(\mu, \Sigma)$ we have $X =$ $\mathbf{A}\mathbf{Z} + \mu$ with $\mathbf{Z} \sim MVN(0,I)$ and

$$
\mathsf{E}(\mathbf{X})=\mu
$$

and

$$
\begin{aligned} \text{Var}(\mathbf{X}) &= \mathsf{E}\left\{ (\mathbf{X} - \boldsymbol{\mu})(\mathbf{X} - \boldsymbol{\mu})^T \right\} \\ &= \mathsf{E}\left\{ \mathbf{A}\mathbf{Z}(\mathbf{A}\mathbf{Z})^T \right\} \\ &= \mathbf{A}\mathsf{E}(\mathbf{Z}\mathbf{Z}^T)\mathbf{A}^T \\ &= \mathbf{A}I\mathbf{A}^T = \boldsymbol{\Sigma} .\end{aligned}
$$

Note use of easy calculation: $E(Z) = 0$ and

$$
\text{Var}(\mathbf{Z}) = \mathsf{E}(\mathbf{Z}\mathbf{Z}^T) = I.
$$

Moments and independence

Theorem: If X_1, \ldots, X_p are independent and each X_i is integrable then $X = X_1 \cdots X_p$ is integrable and

$$
\mathsf{E}(X_1\cdots X_p)=\mathsf{E}(X_1)\cdots\mathsf{E}(X_p).
$$

Moment Generating Functions

Defn: The moment generating function of a real valued X is

$$
M_X(t) = \mathsf{E}(e^{tX})
$$

defined for those real t for which the expected value is finite.

Defn: The moment generating function of $\mathbf{X} \in \mathbb{R}^p$ is

$$
M_{\mathbf{X}}(u) = \mathsf{E}[e^{u^T \mathbf{X}}]
$$

defined for those vectors u for which the expected value is finite.

Example: If $Z \sim N(0, 1)$ then

$$
M_Z(t) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{tz - z^2/2} dz
$$

=
$$
\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-(z - t)^2/2 + t^2/2} dz
$$

=
$$
\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-u^2/2 + t^2/2} du
$$

=
$$
e^{t^2/2}
$$

Theorem: $(p = 1)$ If M is finite for all t in a neighbourhood of 0 then

- 1. Every moment of X is finite.
- 2. M is C^{∞} (in fact M is analytic).

$$
3. \mu'_{k} = \frac{d^{k}}{dt^{k}} M_{X}(0).
$$

Note: C^{∞} means has continuous derivatives of all orders. Analytic means has convergent power series expansion in neighbourhood of each $t \in (-\epsilon, \epsilon)$.

The proof, and many other facts about mgfs, rely on techniques of complex variables.

Characterization & MGFs

Theorem: Suppose X and Y are \mathbb{R}^p valued random vectors such that

$$
M_{\mathbf{X}}(\mathbf{u}) = M_{\mathbf{Y}}(\mathbf{u})
$$

for ${\bf u}$ in some open neighbourhood of ${\bf 0}$ in $\mathbb{R}^p.$ Then X and Y have the same distribution.

The proof relies on techniques of complex variables.

MGFs and Sums

If X_1,\ldots,X_p are independent and $Y\,=\,\sum X_i$ then mgf of Y is product mgfs of individual X_i :

$$
\mathsf{E}(e^{tY}) = \prod_i \mathsf{E}(e^{tX_i})
$$

or $M_Y = \prod M_{X_i}$. (Also for multivariate X_i .)

Example: If Z_1, \ldots, Z_p are independent $N(0, 1)$ then

$$
E(e^{\sum a_i Z_i}) = \prod_i E(e^{a_i Z_i})
$$

=
$$
\prod_i e^{a_i^2/2}
$$

=
$$
\exp(\sum a_i^2/2)
$$

Conclusion: If $\mathbf{Z} \sim MNV_p(0,I)$ then

$$
M_Z(u) = \exp(\sum u_i^2/2) = \exp(\mathbf{u}^T \mathbf{u}/2).
$$

Example: If $X \sim N(\mu, \sigma^2)$ then $X = \sigma Z + \mu$ and

$$
M_X(t) = \mathsf{E}(e^{t(\sigma Z + \mu)}) = e^{t\mu}e^{\sigma^2 t^2/2}.
$$

 $\big)$

Theorem: Suppose $X = AZ + \mu$ and $Y =$ $A^*Z^* + \mu^*$ where $Z \sim MVN_p(0,I)$ and $Z^* \sim$ $MVN_q(0, I)$. Then X and Y have the same distribution if and only iff the following two conditions hold:

$$
1. \ \mu=\mu^*.
$$

$$
2. \mathbf{A} \mathbf{A}^T = \mathbf{A}^* (\mathbf{A}^*)^T.
$$

Alternatively: if X, Y each MVN then $E(X) =$ $E(Y)$ and $Var(X) = Var(Y)$ imply that X and Y have the same distribution.

Proof: If 1 and 2 hold the mgf of X is

$$
\mathbf{E}\left(e^{t^T \mathbf{X}}\right) = \mathbf{E}\left(e^{t^T (\mathbf{A} \mathbf{Z} + \boldsymbol{\mu})}\right)
$$

$$
= e^{t^T \boldsymbol{\mu}} \mathbf{E}\left(e^{(\mathbf{A}^T t)^T \mathbf{Z}}\right)
$$

$$
= e^{t^T \boldsymbol{\mu} + (\mathbf{A}^T t)^T (\mathbf{A}^T t)}
$$

$$
= e^{t^T \boldsymbol{\mu} + t^T \Sigma t}
$$

Thus $M_{\rm X} = M_{\rm Y}$. Conversely if X and Y have the same distribution then they have the same mean and variance.

Thus mgf is determined by μ and Σ .

Theorem: If $X \sim MVN_p(\mu, \Sigma)$ then there is A a $p \times p$ matrix such that X has same distribution as $A\mathbf{Z} + \boldsymbol{\mu}$ for $\mathbf{Z} \sim MVN_p(0,I)$.

We may assume that A is symmetric and nonnegative definite, or that A is upper triangular, or that Ba is lower triangular.

Proof: Pick any A such that $AA^T = \Sigma$ such as $PD^{1/2}P^{T}$ from the spectral decomposition. Then $\mathbf{A}\mathbf{Z} + \boldsymbol{\mu} \sim MVN_p(\boldsymbol{\mu},\boldsymbol{\Sigma}).$

From the symmetric square root can produce an upper triangular square root by the Gram Schmidt process: if A has rows a_1^T $^T_1,\ldots,a^T_p$ $_p^T$ then let v_p be $a_p/\sqrt{a_p^Ta_p}$. Choose v_{p-1} proportional to $a_{p-1} - b v_p$ where $b = a_p^T$ $\frac{T}{p-1}v_p$ so that v_{p-1} has unit length. Continue in this way; you automatically get a_j^T $j^Tv_k\,=\,0$ if $j\,<\,k.$ If ${\bf P}$ has columns v_1, \ldots, v_p then P is orthogonal and AP is an upper triangular square root of Σ .

Variances, Covariances, Correlations

Defn: The covariance between X and Y is

$$
Cov(X, Y) = E\left\{ (X - \mu_X)(Y - \mu_Y)^T \right\}
$$

This is a matrix.

Properties:

•
$$
Cov(X, X) = Var(X)
$$
.

• Cov is bilinear:

$$
Cov(AX + BW, Y) = ACov(X, Y) + BCov(W, Y)
$$

and

$$
Cov(X, CY + DZ) = Cov(X, Y)CT
$$

+
$$
Cov(X, Z)DT
$$

Properties of the MVN distribution

1: All margins are multivariate normal: if

$$
\mathbf{X} = \begin{bmatrix} \mathbf{X}_1 \\ \mathbf{X}_2 \end{bmatrix}
$$

$$
\mu = \begin{bmatrix} \mu_1 \\ \mu_2 \end{bmatrix}
$$

and

$$
\Sigma = \left[\begin{array}{cc} \Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & \Sigma_{22} \end{array} \right]
$$

then $\mathbf{X} \sim MVN(\boldsymbol{\mu},\boldsymbol{\Sigma}) \Rightarrow \mathbf{X}_1 \sim MVN(\boldsymbol{\mu}_1,\boldsymbol{\Sigma}_{11}).$

2: $MX + \nu \sim MVN(M\mu + \nu, M\Sigma M^T)$: affine transformation of MVN is normal.

3: If

$$
\Sigma_{12} = \text{Cov}(X_1, X_2) = 0
$$

then X_1 and X_2 are independent.

4: All conditionals are normal: the conditional distribution of X_1 given $X_2 = x_2$ is $MVN(\mu_1 +$ $\Sigma_{12}\Sigma_{22}^{-1}(x_2-\mu_2), \Sigma_{11}-\Sigma_{12} \Sigma_{22}^{-1}\Sigma_{21})$

Proof of (1): If $X = AZ + \mu$ then

$X_1 = [I|0] X$

for I the identity matrix of correct dimension.

So

$$
X_1 = ([I|0] A) Z + [I|0] \mu
$$

Compute mean and variance to check rest.

Proof of (2): If $X = AZ + \mu$ then $MX + \nu = MAZ + \nu + M\mu$

Proof of (3): If

$$
\mathbf{u} = \left[\begin{array}{c} \mathbf{u}_1 \\ \mathbf{u}_2 \end{array}\right]
$$

then

$$
M_{\mathbf{X}}(u) = M_{\mathbf{X}_1}(\mathbf{u}_1) M_{\mathbf{X}_2}(\mathbf{u}_2)
$$

Proof of (4): first case: assume Σ_{22} has an inverse.

Define

$$
\mathbf{W} = \mathbf{X}_1 - \Sigma_{12} \Sigma_{22}^{-1} \mathbf{X}_2
$$

Then

$$
\begin{bmatrix} \mathbf{W} \\ \mathbf{X}_2 \end{bmatrix} = \begin{bmatrix} \mathbf{I} & -\Sigma_{12} \Sigma_{22}^{-1} \\ 0 & \mathbf{I} \end{bmatrix} \begin{bmatrix} \mathbf{X}_1 \\ \mathbf{X}_2 \end{bmatrix}
$$

Thus $(\mathbf{W}, \mathbf{X}_2)^T$ is $MVN(\boldsymbol{\mu}_1 - \boldsymbol{\Sigma}_{12}\boldsymbol{\Sigma}_{22}^{-1}\boldsymbol{\mu}_2, \boldsymbol{\Sigma}^*)$ where

$$
\Sigma^* = \left[\begin{array}{cc} \Sigma_{11} - \Sigma_{12} \Sigma_{22}^{-1} \Sigma_{21} & 0 \\ 0 & \Sigma_{22} \end{array} \right]
$$

Now joint density of W and X factors

$$
f_{\mathbf{W}, \mathbf{X}_2}(w, x_2) = f_{\mathbf{W}}(w) f_{\mathbf{X}_2}(x_2)
$$

By change of variables joint density of X is

$$
f_{X_1,X_2}(x_1,x_2) = c f_{\mathbf{W}}(x_1 - Mx_2) f_{X_2}(x_2)
$$

where $c = 1$ is the constant Jacobian of the linear transformation from (W, X_2) to (X_1, X_2) and

$$
M = \Sigma_{12} \Sigma_{22}^{-1}
$$

Thus conditional density of X_1 given $X_2 = x_2$ is

$$
\frac{f_{\mathbf{W}}(x_1 - \mathbf{M}x_2) f_{\mathbf{X}_2}(x_2)}{f_{\mathbf{X}_2}(x_2)} = f_{\mathbf{W}}(x_1 - \mathbf{M}x_2)
$$

As a function of x_1 this density has the form of the advertised multivariate normal density.

Specialization to bivariate case:

Write

$$
\Sigma = \begin{bmatrix} \sigma_1^2 & \rho \sigma_1 \sigma_2 \\ \rho \sigma_1 \sigma_2 & \sigma_2^2 \end{bmatrix}
$$

where we define

$$
\rho = \frac{\text{Cov}(X_1, X_2)}{\sqrt{\text{Var}(X_1)\text{Var}(X_2)}}
$$

Note that

$$
\sigma_i^2 = \text{Var}(X_i)
$$

Then

$$
W = X_1 - \rho \frac{\sigma_1}{\sigma_2} X_2
$$

is independent of X_2 . The marginal distribution of W is $N(\mu_1 - \rho \sigma_1 \mu_2 / \sigma_2, \tau^2)$ where

$$
\tau^{2} = \text{Var}(X_{1}) - 2\rho \frac{\sigma_{1}}{\sigma_{2}} \text{Cov}(X_{1}, X_{2})
$$

$$
+ \left(\rho \frac{\sigma_{1}}{\sigma_{2}}\right)^{2} \text{Var}(X_{2})
$$

This simplifies to

$$
\sigma_1^2(1-\rho^2)
$$

Notice that it follows that

$$
-1\leq \rho\leq 1
$$

More generally: any X and Y :

$$
0 \le \text{Var}(X - \lambda Y)
$$

= $\text{Var}(X) - 2\lambda \text{Cov}(X, Y) + \lambda^2 \text{Var}(Y)$

RHS is minimized at

$$
\lambda = \frac{\text{Cov}(X, Y)}{\text{Var}(Y)}
$$

Minimum value is

$$
0 \leq \text{Var}(X)(1 - \rho_{XY}^2)
$$

where

$$
\rho_{XY} = \frac{\text{Cov}(X, Y)}{\sqrt{\text{Var}(X)\text{Var}(Y)}}
$$

defines the correlation between X and Y .

Multiple Correlation

Now suppose X_2 is scalar but X_1 is vector.

Defn: Multiple correlation between X_1 and X_2

$$
R^2(\mathbf{X}_1, X_2) = \max |\rho_{a^T X_1, X_2}|^2
$$

over all $a \neq 0$.

Thus: maximize
\n
$$
\frac{\text{Cov}^2(\mathbf{a}^T \mathbf{X}_1, X_2)}{\text{Var}(\mathbf{a}^T \mathbf{X}_1) \text{Var}(X_2)} = \frac{\mathbf{a}^T \Sigma_{12} \Sigma_{21} \mathbf{a}}{(\mathbf{a}^T \Sigma_{11} \mathbf{a}) \Sigma_{22}}
$$

Put $b = \Sigma_{11}^{1/2} \text{a}$. For Σ_{11} invertible problem is equivalent to maximizing

$$
\frac{{\bf b}^T{\bf Q}{\bf b}}{\bf b}^T{\bf b}
$$

where

$$
\mathbf{Q} = \boldsymbol{\Sigma}_{11}^{-1/2} \boldsymbol{\Sigma}_{12} \boldsymbol{\Sigma}_{21} \boldsymbol{\Sigma}_{11}^{-1/2}
$$

Solution: find largest eigenvalue of Q.

Note

$$
\mathbf{Q} = \mathbf{v}\mathbf{v}^T
$$

where

$$
\mathbf{v} = \Sigma_{11}^{-1/2} \Sigma_{12}
$$

is a vector. Set

$$
\mathbf{v}\mathbf{v}^T\mathbf{x} = \lambda\mathbf{x}
$$

and multiply by \mathbf{v}^T to get

$$
\mathbf{v}^T \mathbf{x} = 0 \text{ or } \lambda = \mathbf{v}^T \mathbf{v}
$$

If $\text{v}^T\text{x}=0$ then we see $\lambda=0$ so largest eigenvalue is $\mathbf{v}^T\mathbf{v}$.

Summary: maximum squared correlation is

$$
R^{2}(\mathbf{X}_{1}, X_{2}) = \frac{\mathbf{v}^{T}\mathbf{v}}{\Sigma_{22}} = \frac{\Sigma_{21}\Sigma_{11}^{-1}\Sigma_{12}}{\Sigma_{22}}
$$

Achieved when eigenvector is $x = v = b$ so

$$
a = \Sigma_{11}^{-1/2} \Sigma_{11}^{-1/2} \Sigma_{12} = \Sigma_{11}^{-1} \Sigma_{12}
$$

Notice: since R^2 is squared correlation between two scalars $(\mathbf{a}^t \mathbf{X}_1$ and $X_2)$ we have

$$
0\leq R^2\leq 1
$$

Equals 1 iff X_2 is linear combination of X_1 .

Correlation matrices, partial correlations:

Correlation between two scalars X and Y is $\rho_{XY} =$ $\mathsf{Cov}(X,Y)$ $\sqrt{\text{Var}(X)\text{Var}(Y)}$

If X has variance Σ then the correlation matrix of X is R_X with entries

$$
R_{ij} = \frac{\text{Cov}(X_i, X_j)}{\sqrt{\text{Var}(X_i)\text{Var}(X_j)}} = \frac{\Sigma_{ij}}{\sqrt{\Sigma_{ii}\Sigma_{jj}}}
$$

If X_1, X_2 are MVN with the usual partitioned variance covariance matrix then the conditional variance of X_1 given X_2 is

$$
\Sigma_{11\cdot 2} = \Sigma_{11} - \Sigma_{12} \Sigma_{22}^{-1} \Sigma_{21}
$$

From this define partial correlation matrix

$$
\mathbf{R}_{11\cdot 2} = \frac{(\Sigma_{11\cdot 2})_{ij}}{\sqrt{\Sigma_{11\cdot 2}}_{ii}\Sigma_{11\cdot 2}}_{jj}
$$

Note: these are used even when X_1, X_2 are NOT MVN