
The Multivariate Normal Distribution

Defn: Z ∈ R
1 ∼ N(0,1) iff

fZ(z) =
1√
2π

e−z2/2 .

Defn: Z ∈ R
p ∼ MV Np(0, I) if and only if Z =

(Z1, . . . , Zp)T with the Zi independent and each

Zi ∼ N(0,1).

In this case according to our theorem

fZ(z1, . . . , zp) =
∏ 1√

2π
e−z2

i /2

= (2π)−p/2 exp{−zTz/2} ;

superscript t denotes matrix transpose.

Defn: X ∈ Rp has a multivariate normal distri-

bution if it has the same distribution as AZ+µ

for some µ ∈ Rp, some p×q matrix of constants

A and Z ∼ MV Nq(0, I).
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p = q, A singular: X does not have a density.

A invertible: derive multivariate normal density

by change of variables:

X = AZ + µ ⇔ Z = A−1(X − µ)

∂X

∂Z
= A

∂Z

∂X
= A−1 .

So

fX(x) = fZ(A−1(x − µ))|det(A−1)|

=
exp{−(x − µ)T (A−1)TA−1(x − µ)/2}

(2π)p/2|detA|
.

Now define Σ = AAT and notice that

Σ−1 = (AT )−1A−1 = (A−1)TA−1

and

detΣ = detAdetAT = (detA)2 .

Thus fX is

exp{−(x − µ)TΣ−1(x − µ)/2}
(2π)p/2(detΣ)1/2

;

the MV N(µ,Σ) density. Note density is the

same for all A such that AAT = Σ. This jus-

tifies the notation MV N(µ, Σ).
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For which µ, Σ is this a density?

Any µ but if x ∈ R
p then

xTΣx = xTAATx

= (AT x)T (ATx)

=
p
∑

1

y2
i ≥ 0

where y = ATx. Inequality strict except for

y = 0 which is equivalent to x = 0. Thus Σ is

a positive definite symmetric matrix.

Conversely, if Σ is a positive definite symmet-

ric matrix then there is a square invertible ma-

trix A such that AAT = Σ so that there is a

MV N(µ,Σ) distribution. (A can be found via

the Cholesky decomposition, e.g.)

When A is singular X will not have a density:

∃a such that P (aTX = aT
µ) = 1; X is confined

to a hyperplane.

Still true: distribution of X depends only on

Σ = AAT : if AAT = BBT then AZ + µ and

BZ + µ have the same distribution.
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Expectation, moments

Defn: If X ∈ Rp has density f then

E(g(X)) =
∫

g(x)f(x) dx .

any g from R
p to R.

FACT: if Y = g(X) for a smooth g (mapping

R → R)

E(Y ) =

∫

yfY (y) dy

=

∫

g(x)fY (g(x))g′(x) dx

= E(g(X))

by change of variables formula for integration.

This is good because otherwise we might have

two different values for E(eX).

Linearity: E(aX + bY ) = aE(X) + bE(Y ) for

real X and Y .
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Defn: The rth moment (about the origin) of

a real rv X is µ′
r = E(Xr) (provided it exists).

We generally use µ for E(X).

Defn: The rth central moment is

µr = E[(X − µ)r]

We call σ2 = µ2 the variance.

Defn: For an Rp valued random vector X

µX = E(X)

is the vector whose ith entry is E(Xi) (provided

all entries exist).

Fact: same idea used for random matrices.

Defn: The (p × p) variance covariance matrix

of X is

Var(X) = E
[

(X − µ)(X − µ)T
]

which exists provided each component Xi has

a finite second moment.
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Example moments: If Z ∼ N(0,1) then

E(Z) =

∫ ∞

−∞
ze−z2/2dz/

√
2π

=
−e−z2/2
√

2π

∣

∣

∣

∣

∣

∣

∞

−∞
= 0

and (integrating by parts)

E(Zr) =

∫ ∞

−∞
zre−z2/2dz/

√
2π

=
−zr−1e−z2/2

√
2π

∣

∣

∣

∣

∣

∣

∞

−∞

+ (r − 1)

∫ ∞

−∞
zr−2e−z2/2dz/

√
2π

so that

µr = (r − 1)µr−2

for r ≥ 2. Remembering that µ1 = 0 and

µ0 =

∫ ∞

−∞
z0e−z2/2dz/

√
2π = 1

we find that

µr =

{

0 r odd
(r − 1)(r − 3) · · ·1 r even .
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If now X ∼ N(µ, σ2), that is, X ∼ σZ +µ, then

E(X) = σE(Z) + µ = µ and

µr(X) = E[(X − µ)r] = σrE(Zr)

In particular, we see that our choice of nota-

tion N(µ, σ2) for the distribution of σZ + µ is

justified; σ is indeed the variance.

Similarly for X ∼ MV N(µ,Σ) we have X =

AZ + µ with Z ∼ MV N(0, I) and

E(X) = µ

and

Var(X) = E
{

(X − µ)(X − µ)T
}

= E
{

AZ(AZ)T
}

= AE(ZZT )AT

= AIAT = Σ .

Note use of easy calculation: E(Z) = 0 and

Var(Z) = E(ZZT ) = I .
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Moments and independence

Theorem: If X1, . . . , Xp are independent and

each Xi is integrable then X = X1 · · ·Xp is in-

tegrable and

E(X1 · · ·Xp) = E(X1) · · ·E(Xp) .

Moment Generating Functions

Defn: The moment generating function of a

real valued X is

MX(t) = E(etX)

defined for those real t for which the expected

value is finite.

Defn: The moment generating function of

X ∈ Rp is

MX(u) = E[euTX]

defined for those vectors u for which the ex-

pected value is finite.
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Example: If Z ∼ N(0,1) then

MZ(t) =
1√
2π

∫ ∞

−∞
etz−z2/2dz

=
1√
2π

∫ ∞

−∞
e−(z−t)2/2+t2/2dz

=
1√
2π

∫ ∞

−∞
e−u2/2+t2/2du

= et2/2

Theorem: (p = 1) If M is finite for all t in a

neighbourhood of 0 then

1. Every moment of X is finite.

2. M is C∞ (in fact M is analytic).

3. µ′
k = dk

dtk
MX(0).

Note: C∞ means has continuous derivatives

of all orders. Analytic means has convergent

power series expansion in neighbourhood of

each t ∈ (−ε, ε).

The proof, and many other facts about mgfs,

rely on techniques of complex variables.
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Characterization & MGFs

Theorem: Suppose X and Y are R
p valued

random vectors such that

MX(u) = MY(u)

for u in some open neighbourhood of 0 in R
p.

Then X and Y have the same distribution.

The proof relies on techniques of complex vari-

ables.

44



MGFs and Sums

If X1, . . . , Xp are independent and Y =
∑

Xi
then mgf of Y is product mgfs of individual

Xi:

E(etY ) =
∏

i

E(etXi)

or MY =
∏

MXi
. (Also for multivariate Xi.)

Example: If Z1, . . . , Zp are independent N(0,1)
then

E(e
∑

aiZi) =
∏

i

E(eaiZi)

=
∏

i

ea2
i /2

= exp(
∑

a2
i /2)

Conclusion: If Z ∼ MNVp(0, I) then

MZ(u) = exp(
∑

u2
i /2) = exp(uTu/2).

Example: If X ∼ N(µ, σ2) then X = σZ + µ
and

MX(t) = E(et(σZ+µ)) = etµeσ2t2/2.
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Theorem: Suppose X = AZ + µ and Y =

A∗Z∗ + µ
∗ where Z ∼ MV Np(0, I) and Z∗ ∼

MV Nq(0, I). Then X and Y have the same

distribution if and only iff the following two

conditions hold:

1. µ = µ
∗.

2. AAT = A∗(A∗)T .

Alternatively: if X, Y each MVN then E(X) =

E(Y) and Var(X) = Var(Y) imply that X and

Y have the same distribution.

Proof: If 1 and 2 hold the mgf of X is

E

(

etTX
)

= E

(

etT (AZ+µ

)

= etTµE

(

e(A
T t)TZ

)

= etTµ+(AT t)T (AT t)

= etTµ+tTΣt

Thus MX = MY. Conversely if X and Y have

the same distribution then they have the same

mean and variance.
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Thus mgf is determined by µ and Σ.

Theorem: If X ∼ MV Np(µ,Σ) then there is A

a p×p matrix such that X has same distribution

as AZ + µ for Z ∼ MV Np(0, I).

We may assume that A is symmetric and non-

negative definite, or that A is upper triangular,

or that Ba is lower triangular.

Proof: Pick any A such that AAT = Σ such

as PD1/2PT from the spectral decomposition.

Then AZ + µ ∼ MV Np(µ,Σ).

From the symmetric square root can produce

an upper triangular square root by the Gram

Schmidt process: if A has rows aT
1 , . . . , aT

p then

let vp be ap/
√

aT
p ap. Choose vp−1 proportional

to ap−1 − bvp where b = aT
p−1vp so that vp−1

has unit length. Continue in this way; you au-

tomatically get aT
j vk = 0 if j < k. If P has

columns v1, . . . , vp then P is orthogonal and AP

is an upper triangular square root of Σ.
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Variances, Covariances, Correlations

Defn: The covariance between X and Y is

Cov(X, Y) = E
{

(X − µX)(Y − µY)T
}

This is a matrix.

Properties:

• Cov(X, X) = Var(X).

• Cov is bilinear:

Cov(AX + BW,Y) =ACov(X, Y)

+ BCov(W,Y)

and

Cov(X, CY + DZ) =Cov(X, Y)CT

+ Cov(X, Z)DT
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Properties of the MV N distribution

1: All margins are multivariate normal: if

X =

[

X1
X2

]

µ =

[

µ1
µ2

]

and

Σ =

[

Σ11 Σ12
Σ21 Σ22

]

then X ∼ MV N(µ,Σ) ⇒ X1 ∼ MV N(µ1,Σ11).

2: MX + ν ∼ MV N(Mµ + ν,MΣMT ): affine

transformation of MVN is normal.

3: If

Σ12 = Cov(X1,X2) = 0

then X1 and X2 are independent.

4: All conditionals are normal: the conditional

distribution of X1 given X2 = x2 is MV N(µ1+

Σ12Σ
−1
22 (x2 − µ2), Σ11 − Σ12Σ

−1
22 Σ21)
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Proof of (1): If X = AZ + µ then

X1 = [I|0]X

for I the identity matrix of correct dimension.

So

X1 = ([I|0]A)Z + [I|0]µ

Compute mean and variance to check rest.

Proof of (2): If X = AZ + µ then

MX + ν = MAZ + ν + Mµ

Proof of (3): If

u =

[

u1
u2

]

then

MX(u) = MX1
(u1)MX2

(u2)
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Proof of (4): first case: assume Σ22 has an

inverse.

Define

W = X1 − Σ12Σ
−1
22 X2

Then
[

W

X2

]

=

[

I −Σ12Σ
−1
22

0 I

] [

X1
X2

]

Thus (W,X2)
T is MV N(µ1 − Σ12Σ

−1
22 µ2,Σ∗)

where

Σ∗ =

[

Σ11 − Σ12Σ
−1
22 Σ21 0

0 Σ22

]
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Now joint density of W and X factors

fW,X2
(w, x2) = fW(w)fX2

(x2)

By change of variables joint density of X is

fX1,X2
(x1, x2) = cfW(x1 − Mx2)fX2

(x2)

where c = 1 is the constant Jacobian of the

linear transformation from (W,X2) to (X1,X2)

and

M = Σ12Σ
−1
22

Thus conditional density of X1 given X2 = x2

is

fW(x1 − Mx2)fX2
(x2)

fX2
(x2)

= fW(x1 − Mx2)

As a function of x1 this density has the form

of the advertised multivariate normal density.

52



Specialization to bivariate case:

Write

Σ =

[

σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

]

where we define

ρ =
Cov(X1, X2)

√

Var(X1)Var(X2)

Note that

σ2
i = Var(Xi)

Then

W = X1 − ρ
σ1

σ2
X2

is independent of X2. The marginal distribu-

tion of W is N(µ1 − ρσ1µ2/σ2, τ2) where

τ2 =Var(X1) − 2ρ
σ1

σ2
Cov(X1, X2)

+

(

ρ
σ1

σ2

)2

Var(X2)
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This simplifies to

σ2
1(1 − ρ2)

Notice that it follows that

−1 ≤ ρ ≤ 1

More generally: any X and Y :

0 ≤ Var(X − λY )

= Var(X) − 2λCov(X, Y ) + λ2Var(Y )

RHS is minimized at

λ =
Cov(X, Y )

Var(Y )

Minimum value is

0 ≤ Var(X)(1 − ρ2
XY )

where

ρXY =
Cov(X, Y )

√

Var(X)Var(Y )

defines the correlation between X and Y .
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Multiple Correlation

Now suppose X2 is scalar but X1 is vector.

Defn: Multiple correlation between X1 and X2

R2(X1, X2) = max |ρaTX1,X2
|2

over all a 6= 0.

Thus: maximize

Cov2(aTX1, X2)

Var(aTX1)Var(X2)
=

aTΣ12Σ21a
(

aTΣ11a
)

Σ22

Put b = Σ
1/2
11 a. For Σ11 invertible problem is

equivalent to maximizing

bTQb

bTb

where

Q = Σ
−1/2
11 Σ12Σ21Σ

−1/2
11

Solution: find largest eigenvalue of Q.
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Note

Q = vvT

where

v = Σ
−1/2
11 Σ12

is a vector. Set

vvTx = λx

and multiply by vT to get

vTx = 0 or λ = vTv

If vTx = 0 then we see λ = 0 so largest eigen-
value is vTv.

Summary: maximum squared correlation is

R2(X1, X2) =
vTv

Σ22
=

Σ21Σ
−1
11 Σ12

Σ22

Achieved when eigenvector is x = v = b so

a = Σ
−1/2
11 Σ

−1/2
11 Σ12 = Σ−1

11 Σ12

Notice: since R2 is squared correlation between
two scalars (atX1 and X2) we have

0 ≤ R2 ≤ 1

Equals 1 iff X2 is linear combination of X1.
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Correlation matrices, partial correlations:

Correlation between two scalars X and Y is

ρXY =
Cov(X, Y )

√

Var(X)Var(Y )

If X has variance Σ then the correlation matrix

of X is RX with entries

Rij =
Cov(Xi, Xj)

√

Var(Xi)Var(Xj)
=

Σij
√

ΣiiΣjj

If X1,X2 are MVN with the usual partitioned

variance covariance matrix then the conditional

variance of X1 given X2 is

Σ11·2 = Σ11 − Σ12Σ
−1
22 Σ21

From this define partial correlation matrix

R11·2 =
(Σ11·2)ij

√

Σ11·2)iiΣ11·2)jj

Note: these are used even when X1,X2 are

NOT MVN
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