
Unbiased Estimation

Binomial problem shows general phenomenon.

An estimator can be good for some values of

θ and bad for others.

To compare θ̂ and θ̃, two estimators of θ: Say

θ̂ is better than θ̃ if it has uniformly smaller

MSE:

MSEθ̂(θ) ≤ MSEθ̃(θ)

for all θ.

Normally we also require that the inequality be

strict for at least one θ.
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Question: is there a best estimate – one which

is better than every other estimator?

Answer: NO. Suppose θ̂ were such a best es-

timate. Fix a θ∗ in Θ and let θ̃ ≡ θ∗.

Then MSE of θ̃ is 0 when θ = θ∗. Since θ̂ is

better than θ̃ we must have

MSEθ̂(θ
∗) = 0

so that θ̂ = θ∗ with probability equal to 1.

So θ̂ = θ̃.

If there are actually two different possible val-

ues of θ this gives a contradiction; so no such

θ̂ exists.
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Principle of Unbiasedness: A good estimate

is unbiased, that is,

Eθ(θ̂) ≡ θ .

WARNING: In my view the Principle of Unbi-

asedness is a load of hog wash.

For an unbiased estimate the MSE is just the

variance.

Definition: An estimator φ̂ of a parameter

φ = φ(θ) is Uniformly Minimum Variance

Unbiased (UMVU) if, whenever φ̃ is an unbi-

ased estimate of φ we have

Varθ(φ̂) ≤ Varθ(φ̃)

We call φ̂ the UMVUE. (‘E’ is for Estimator.)

The point of having φ(θ) is to study problems

like estimating µ when you have two parame-

ters like µ and σ for example.
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Cramér Rao Inequality

If φ(θ) = θ we can derive some information

from the identity

Eθ(T ) ≡ θ

When we worked with the score function we

derived some information from the identity
∫

f(x, θ)dx ≡ 1

by differentiation and we do the same here.

If T = T (X) is some function of the data X

which is unbiased for θ then

Eθ(T ) =

∫

T (x)f(x, θ)dx ≡ θ

Differentiate both sides to get

1 =
d

dθ

∫

T (x)f(x, θ)dx

=

∫

T (x)
∂

∂θ
f(x, θ)dx

=

∫

T (x)
∂

∂θ
log(f(x, θ))f(x, θ)dx

= Eθ(T (X)U(θ))

where U is the score function.
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Since score has mean 0

Covθ(T (X), U(θ)) = 1

Remember correlations between -1 and 1 or

1 = |Covθ(T (X), U(θ))|
≤

√

Varθ(T )Varθ(U(θ)) .

Squaring gives Cramér Rao Lower Bound:

Varθ(T ) ≥ 1

I(θ)
.

Inequality is strict unless corr = 1 so that

U(θ) = A(θ)T (X) + B(θ)

for non-random constants A and B (may de-

pend on θ.) This would prove that

`(θ) = A∗(θ)T (X) + B∗(θ) + C(X)

for other constants A∗ and B∗ and finally

f(x, θ) = h(x)eA∗(θ)T(x)+B∗(θ)

for h = eC.
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Summary of Implications

• You can recognize a UMVUE sometimes.

If Varθ(T (X)) ≡ 1/I(θ) then T (X) is the

UMVUE. In the N(µ,1) example the Fisher

information is n and Var(X) = 1/n so that

X is the UMVUE of µ.

• In an asymptotic sense the MLE is nearly

optimal: it is nearly unbiased and (approx-

imate) variance nearly 1/I(θ).

• Good estimates are highly correlated with

the score.

• Densities of exponential form (called expo-

nential family) given above are somehow

special.

• Usually inequality is strict — strict unless

score is affine function of a statistic T and

T (or T/c for constant c) is unbiased for θ.
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What can we do to find UMVUEs when the

CRLB is a strict inequality?

Example: Suppose X has a Binomial(n, p) dis-

tribution. The score function is

U(p) =
1

p(1 − p)
X − n

1 − p

CRLB will be strict unless T = cX for some

c. If we are trying to estimate p then choosing

c = n−1 does give an unbiased estimate p̂ =

X/n and T = X/n achieves the CRLB so it is

UMVU.

Different tactic: Suppose T (X) is some unbi-

ased function of X. Then we have

Ep(T (X) − X/n) ≡ 0

because p̂ = X/n is also unbiased. If h(k) =

T (k) − k/n then

Ep(h(X)) =
n

∑

k=0

h(k)
(n

k

)

pk(1 − p)n−k ≡ 0
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LHS of ≡ sign is polynomial function of p as is

RHS.

Thus if the left hand side is expanded out the

coefficient of each power pk is 0.

Constant term occurs only in term k = 0; its

coefficient is

h(0)
(n

0

)

= h(0) .

Thus h(0) = 0.

Now p1 = p occurs only in term k = 1 with

coefficient nh(1) so h(1) = 0.

Since terms with k = 0 or 1 are 0 the quantity

p2 occurs only in k = 2 term; coefficient is

n(n − 1)h(2)/2

so h(2) = 0.

Continue to see that h(k) = 0 for each k.

So only unbiased function of X is X/n.
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A Binomial random variable is a sum of n iid

Bernoulli(p) rvs. If Y1, . . . , Yn iid Bernoulli(p)

then X =
∑

Yi is Binomial(n, p).

Could we do better by than p̂ = X/n by trying

T (Y1, . . . , Yn) for some other function T?

Try n = 2. There are 4 possible values for

Y1, Y2. If h(Y1, Y2) = T (Y1, Y2) − [Y1 + Y2]/2

then

Ep(h(Y1, Y2)) ≡ 0

and we have

Ep(h(Y1, Y2)) = h(0,0)(1 − p)2

+[h(1,0) + h(0,1)]p(1 − p)

+h(1,1)p2 .
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This can be rewritten in the form

n
∑

k=0

w(k)
(n

k

)

pk(1 − p)n−k

where

w(0) = h(0,0)

2w(1) = h(1,0) + h(0,1)

w(2) = h(1,1) .

So, as before w(0) = w(1) = w(2) = 0.

Argument can be used to prove:

For any unbiased estimate T (Y1, . . . , Yn):

Average value of T (y1, . . . , yn) over y1, . . . , yn

which have exactly k 1s and n − k 0s is k/n.
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Now let’s look at the variance of T :

Var(T )

= Ep([T (Y1, . . . , Yn) − p]2)

= Ep([T (Y1, . . . , Yn) − X/n + X/n − p]2)

= Ep([T (Y1, . . . , Yn) − X/n]2)+

2Ep([T (Y1, . . . , Yn) − X/n][X/n − p])

+ Ep([X/n − p]2)

Claim cross product term is 0 which will prove

variance of T is variance of X/n plus a non-

negative quantity (which will be positive un-

less T (Y1, . . . , Yn) ≡ X/n). Compute the cross

product term by writing

Ep([T (Y1, . . . , Yn) − X/n][X/n − p])

=
∑

y1,...,yn

[T (y1, . . . , yn) −
∑

yi/n][
∑

yi/n − p]

× p
∑

yi(1 − p)n−
∑

yi
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Sum over those y1, . . . , yn whose sum is an in-

teger x; then sum over x:

Ep([T (Y1, . . . , Yn) − X/n][X/n − p])

=
n

∑

x=0

∑

∑

yi=x

[T (y1, . . . , yn) −
∑

yi/n]

× [
∑

yi/n − p]p
∑

yi(1 − p)n−
∑

yi

=
n

∑

x=0







∑

∑

yi=x

[T (y1, . . . , yn) − x/n]






[x/n − p]

× px(1 − p)n−x

We have already shown that the sum in [] is 0!

This long, algebraically involved, method of

proving that p̂ = X/n is the UMVUE of p is

one special case of a general tactic.
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To get more insight rewrite

Ep{T (Y1, . . . , Yn)}

=
n

∑

x=0

∑

∑

yi=x

T (y1, . . . , yn)

× P (Y1 = y1, . . . , Yn = yn)

=
n

∑

x=0

∑

∑

yi=x

T (y1, . . . , yn)

× P (Y1 = y1, . . . , Yn = yn|X = x)P (X = x)

=
n

∑

x=0

∑

∑

yi=x T (y1, . . . , yn)
(n

x

)

(n

x

)

px(1 − p)n−x

Notice: large fraction is average value of T
over y such that

∑

yi = x.

Notice: weights in average do not depend on
p.

Notice: this average is actually

E{T (Y1, . . . , Yn)|X = x}
=

∑

y1,...,yn

T (y1, . . . , yn)

× P (Y1 = y1, . . . , Yn = yn|X = x)
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Notice: conditional probabilities do not depend

on p.

In a sequence of Binomial trials if I tell you

that 5 of 17 were heads and the rest tails the

actual trial numbers of the 5 Heads are chosen

at random from the 17 possibilities; all of the

17 choose 5 possibilities have the same chance

and this chance does not depend on p.

Notice: with data Y1, . . . , Yn log likelihood is

`(p) =
∑

Yi log(p) − (n −
∑

Yi) log(1 − p)

and

U(p) =
1

p(1 − p)
X − n

1 − p

as before. Again CRLB is strict except for

multiples of X. Since only unbiased multiple

of X is p̂ = X/n UMVUE of p is p̂.
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Sufficiency

In the binomial situation the conditional dis-

tribution of the data Y1, . . . , Yn given X is the

same for all values of θ; we say this conditional

distribution is free of θ.

Defn: Statistic T (X) is sufficient for the model

{Pθ; θ ∈ Θ} if conditional distribution of data

X given T = t is free of θ.

Intuition: Data tell us about θ if different val-

ues of θ give different distributions to X. If two

different values of θ correspond to same den-

sity or cdf for X we cannot distinguish these

two values of θ by examining X. Extension of

this notion: if two values of θ give same condi-

tional distribution of X given T then observing

T in addition to X doesn’t improve our ability

to distinguish the two values.
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Mathematically Precise version of this in-

tuition: Suppose T (X) is sufficient statistic

and S(X) is any estimate or confidence inter-

val or ... If you only know value of T then:

• Generate an observation X∗ (via some sort

of Monte Carlo program) from the condi-

tional distribution of X given T .

• Use S(X∗) instead of S(X). Then S(X∗)
has the same performance characteristics

as S(X) because the distribution of X∗ is

the same as that of X.

You can carry out the first step only if the

statistic T is sufficient; otherwise you need to

know the true value of θ to generate X∗.
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Example 1: Y1, . . . , Yn iid Bernoulli(p). Given
∑

Yi = y the indexes of the y successes have

the same chance of being any one of the
(n

y

)

possible subsets of {1, . . . , n}. Chance does not

depend on p so T (Y1, . . . , Yn) =
∑

Yi is sufficient

statistic.

Example 2: X1, . . . , Xn iid N(µ,1). Joint dis-

tribution of X1, . . . , Xn, X is MVN. All entries of

mean vector are µ. Variance covariance matrix

partitioned as
[

In×n 1n/n
1

t
n/n 1/n

]

where 1n is column vector of n 1s and In×n is

n × n identity matrix.

Compute conditional means and variances of

Xi given X; use fact that conditional law is

MVN. Conclude conditional law of data given

X = x is MVN. Mean vector has all entries

x. Variance-covariance matrix is In×n−1n1
t
n/n.

No dependence on µ so X is sufficient.

WARNING: Whether or not statistic is suffi-

cient depends on density function and on Θ.
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Theorem: [Rao-Blackwell] Suppose S(X) is a

sufficient statistic for model {Pθ, θ ∈ Θ}. If T

is an estimate of φ(θ) then:

1. E(T |S) is a statistic.

2. E(T |S) has the same bias as T ; if T is un-

biased so is E(T |S).

3. Varθ(E(T |S)) ≤ Varθ(T ) and the inequality

is strict unless T is a function of S.

4. MSE of E(T |S) is no more than MSE of T .
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Proof: Review conditional distributions: ab-

stract definition of conditional expectation is:

Defn: E(Y |X) is any function of X such that

E [R(X)E(Y |X)] = E [R(X)Y ]

for any function R(X). E(Y |X = x) is a func-

tion g(x) such that

g(X) = E(Y |X)

Fact: If X, Y has joint density fX,Y (x, y) and

conditional density f(y|x) then

g(x) =
∫

yf(y|x)dy

satisfies these definitions.
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Proof:

E(R(X)g(X)) =

∫

R(x)g(x)fX(x)dx

=

∫ ∫

R(x)yfX(x)f(y|x)dydx

=

∫ ∫

R(x)yfX,Y (x, y)dydx

= E(R(X)Y )

Think of E(Y |X) as average Y holding X fixed.

Behaves like ordinary expected value but func-

tions of X only are like constants:

E(
∑

Ai(X)Yi|X) =
∑

Ai(X)E(Yi|X)
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Example: Y1, . . . , Yn iid Bernoulli(p). Then

X =
∑

Yi is Binomial(n, p). Summary of con-

clusions:

• Log likelihood function of X only not of

Y1, . . . , Yn.

• Only function of X which is unbiased esti-

mate of p is p̂ = X/n.

• If T (Y1, . . . , Yn) is unbiased for p then av-

erage value of T (y1, . . . , yn) over y1, . . . , yn

for which
∑

yi = x is x/n.

• Distribution of T given
∑

Yi = x does not

depend on p.

• If T (Y1, . . . , Yn) is unbiased for p then

Var(T ) = Var(p̂) + E[(T − p̂)2]

• p̂ is the UMVUE of p.

This proof that p̂ = X/n is UMVUE of p is

special case of general tactic.
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Proof of the Rao Blackwell Theorem

Step 1: The definition of sufficiency is that

the conditional distribution of X given S does

not depend on θ. This means that E(T (X)|S)

does not depend on θ.

Step 2: This step hinges on the following iden-

tity (called Adam’s law by Jerzy Neyman – he

used to say it comes before all the others)

E[E(Y |X)] = E(Y )

which is just the definition of E(Y |X) with

R(X) ≡ 1.

From this we deduce that

Eθ[E(T |S)] = Eθ(T )

so that E(T |S) and T have the same bias. If

T is unbiased then

Eθ[E(T |S)] = Eθ(T ) = φ(θ)

so that E(T |S) is unbiased for φ.
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Step 3: relies on very useful decomposition.

(Total sum of squares = regression sum of

squares + residual sum of squares.)

Var(Y) = Var{E(Y |X)} + E[Var(Y |X)]

The conditional variance means

Var(Y |X) = E[{Y − E(Y |X)}2|X]

Square out right hand side:

Var(E(Y |X)) = E[{E(Y |X) − E[E(Y |X)]}2]
= E[{E(Y |X) − E(Y )}2]

and

E[Var(Y |X)] = E[{Y − E(Y |X)}2]

Adding these together gives

E
[

Y 2 − 2Y E[Y |X] + 2(E[Y |X])2

−2E(Y )E[Y |X] + E2(Y )
]
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Simplify remembering E(Y |X) is function of X

— constant when holding X fixed. So

E[Y |X]E[Y |X] = E[Y E(Y |X)|X]

taking expectations gives

E[(E[Y |X])2] = E[E[Y E(Y |X)|X]]

= E[Y E(Y |X)]

So 3rd term above cancels with 2nd term.

Fourth term simplifies

E[E(Y )E[Y |X]] = E(Y )E[E[Y |X]] = E2(Y )

so that

Var(E(Y |X)) + E[Var(Y |X)] = E[Y 2] − E2(Y )

Apply to Rao Blackwell theorem to get

Varθ(T ) = Varθ(E(T |S)) + E[(T − E(T |S))2]

Second term ≥ 0 so variance of E(T |S) is no

more than that of T ; will be strictly less un-

less T = E(T |S). This would mean that T is

already a function of S. Adding the squares

of the biases of T (or of E(T |S)) gives the in-

equality for MSE.
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Examples:

In the binomial problem Y1(1 − Y2) is an unbi-

ased estimate of p(1 − p). We improve this by

computing

E(Y1(1 − Y2)|X)

We do this in two steps. First compute

E(Y1(1 − Y2)|X = x)
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Notice that the random variable Y1(1 − Y2) is

either 1 or 0 so its expected value is just the

probability it is equal to 1:

E(Y1(1 − Y2)|X = x)

= P (Y1(1 − Y2) = 1|X = x)

= P (Y1 = 1, Y2 = 0|Y1 + Y2 + · · · + Yn = x)

=
P (Y1 = 1, Y2 = 0, Y1 + · · · + Yn = x)

P (Y1 + Y2 + · · · + Yn = x)

=
P (Y1 = 1, Y2 = 0, Y3 + · · · + Yn = x − 1)

(n

x

)

px(1 − p)n−x

=

p(1 − p)
(n − 2

x − 1

)

px−1(1 − p)(n−2)−(x−1)

(n

x

)

px(1 − p)n−x

=

(n − 2

x − 1

)

(n

x

)

=
x(n − x)

n(n − 1)

This is simply np̂(1− p̂)/(n−1) (can be bigger

than 1/4, the maximum value of p(1 − p)).
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Example: If X1, . . . , Xn are iid N(µ,1) then X̄

is sufficient and X1 is an unbiased estimate of

µ. Now

E(X1|X̄) = E[X1 − X̄ + X̄|X̄]

= E[X1 − X̄|X̄] + X̄

= X̄

which is the UMVUE.
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Finding Sufficient statistics

Binomial(n, θ): log likelihood `(θ) (part de-

pending on θ) is function of X alone, not of

Y1, . . . , Yn as well.

Normal example: `(µ) is, ignoring terms not

containing µ,

`(µ) = µ
∑

Xi − nµ2/2 = nµX̄ − nµ2/2 .

Examples of the Factorization Criterion:

Theorem: If the model for data X has density

f(x, θ) then the statistic S(X) is sufficient if

and only if the density can be factored as

f(x, θ) = g(S(x), θ)h(x)

219



Proof: Find statistic T (X) such that X is a

one to one function of the pair S, T . Apply

change of variables to the joint density of S

and T . If the density factors then

fS,T (s, t) = g(s, θ)h(x(s, t))J(s, t)

where J is the Jacobian, so conditional density

of T given S = s does not depend on θ. Thus

the conditional distribution of (S, T ) given S

does not depend on θ and finally the condi-

tional distribution of X given S does not de-

pend on θ.

Conversely if S is sufficient then the fT |S has

no θ in it so joint density of S, T is

fS(s, θ)fT |S(t|s)

Apply change of variables formula to get

fX(x) = fS(S(x), θ)fT |S(t(x)|S(x))J(x)

where J is the Jacobian. This factors.
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Example: If X1, . . . , Xn are iid N(µ, σ2) then

the joint density is

(2π)−n/2σ−n×
exp{−

∑

X2
i /(2σ2)+ µ

∑

Xi/σ2 −nµ2/(2σ2)}

which is evidently a function of

∑

X2
i ,

∑

Xi

This pair is a sufficient statistic. You can write

this pair as a bijective function of X̄,
∑

(Xi−X̄)2

so that this pair is also sufficient.

Example: If Y1, . . . , Yn are iid Bernoulli(p) then

f(y1, . . . , yp; p) =
∏

pyi(1 − p)1−yi

= p
∑

yi(1 − p)n−
∑

yi

Define g(x, p) = px(1 − p)n−x and h ≡ 1 to see

that X =
∑

Yi is sufficient by the factorization

criterion.
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Minimal Sufficiency

In any model S(X) ≡ X is sufficient. (Apply

the factorization criterion.) In any iid model

the vector X(1), . . . , X(n) of order statistics is

sufficient. (Apply the factorization criterion.)

In N(µ,1) model we have 3 sufficient statistics:

1. S1 = (X1, . . . , Xn).

2. S2 = (X(1), . . . , X(n)).

3. S3 = X̄.

Notice that I can calculate S3 from the val-

ues of S1 or S2 but not vice versa and that I

can calculate S2 from S1 but not vice versa.

It turns out that X̄ is a minimal sufficient

statistic meaning that it is a function of any

other sufficient statistic. (You can’t collapse

the data set any more without losing informa-

tion about µ.)
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Recognize minimal sufficient statistics from `:

Fact: If you fix some particular θ∗ then the log

likelihood ratio function

`(θ) − `(θ∗)

is minimal sufficient. WARNING: the function

is the statistic.

Subtraction of `(θ∗) gets rid of irrelevant con-

stants in `. In N(µ,1) example:

`(µ) = −n log(2π)/2−
∑

X2
i /2+µ

∑

Xi−nµ2/2

depends on
∑

X2
i , not needed for sufficient

statistic. Take µ∗ = 0 and get

`(µ) − `(µ∗) = µ
∑

Xi − nµ2/2

This function of µ is minimal sufficient. No-

tice: from
∑

Xi can compute this minimal suf-

ficient statistic and vice versa. Thus
∑

Xi is

also minimal sufficient.
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Completeness

In Binomial(n, p) example only one function of

X is unbiased. Rao Blackwell shows UMVUE,

if it exists, will be a function of any sufficient

statistic.

Q: Can there be more than one such function?

A: Yes in general but no for some models like

the binomial.

Definition: A statistic T is complete for a

model Pθ; θ ∈ Θ if

Eθ(h(T )) = 0

for all θ implies h(T ) = 0.
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We have already seen that X is complete in

the Binomial(n, p) model. In the N(µ,1) model

suppose

Eµ(h(X̄)) ≡ 0 .

Since X̄ has a N(µ,1/n) distribution we find

that

E(h(X̄)) =

√
ne−nµ2/2
√

2π

∫ ∞

−∞
h(x)e−nx2/2enµxdx

so that
∫ ∞

−∞
h(x)e−nx2/2enµxdx ≡ 0 .

Called Laplace transform of h(x)e−nx2/2.

Theorem: Laplace transform is 0 if and only if

the function is 0 (because you can invert the

transform).

Hence h ≡ 0.
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How to Prove Completeness

Only one general tactic: suppose X has density

f(x, θ) = h(x) exp{
p

∑

1

ai(θ)Si(x) + c(θ)}

If the range of the function (a1(θ), . . . , ap(θ)) as

θ varies over Θ contains a (hyper-) rectangle

in Rp then the statistic

(S1(X), . . . , Sp(X))

is complete and sufficient.

You prove the sufficiency by the factorization

criterion and the completeness using the prop-

erties of Laplace transforms and the fact that

the joint density of S1, . . . , Sp

g(s1, . . . , sp; θ) = h∗(s) exp{
∑

ak(θ)sk + c∗(θ)}
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Example: N(µ, σ2) model density has form

exp

{

(

− 1
2σ2

)

x2 +
(

µ
σ2

)

x − µ2

2σ2 − logσ

}

√
2π

which is an exponential family with

h(x) =
1√
2π

a1(θ) = − 1

2σ2

S1(x) = x2

a2(θ) =
µ

σ2

S2(x) = x

and

c(θ) = − µ2

2σ2
− log σ .

It follows that

(
∑

X2
i ,

∑

Xi)

is a complete sufficient statistic.
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Remark: The statistic (s2, X̄) is a one to one

function of (
∑

X2
i ,

∑

Xi) so it must be com-

plete and sufficient, too. Any function of the

latter statistic can be rewritten as a function

of the former and vice versa.

FACT: A complete sufficient statistic is also

minimal sufficient.

The Lehmann-Scheffé Theorem

Theorem: If S is a complete sufficient statis-

tic for some model and h(S) is an unbiased

estimate of some parameter φ(θ) then h(S) is

the UMVUE of φ(θ).

Proof: Suppose T is another unbiased esti-

mate of φ. According to Rao-Blackwell, T is

improved by E(T |S) so if h(S) is not UMVUE

then there must exist another function h∗(S)

which is unbiased and whose variance is smaller

than that of h(S) for some value of θ. But

Eθ(h
∗(S) − h(S)) ≡ 0

so, in fact h∗(S) = h(S).
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Example: In the N(µ, σ2) example the random

variable (n − 1)s2/σ2 has a χ2
n−1 distribution.

It follows that

E

[√
n − 1s

σ

]

=

∫∞
0 x1/2

(

x
2

)(n−1)/2−1
e−x/2dx

2Γ((n − 1)/2)
.

Make the substitution y = x/2 and get

E(s) =
σ√

n − 1

√
2

Γ((n − 1)/2)

∫ ∞

0
yn/2−1e−ydy .

Hence

E(s) = σ

√
2Γ(n/2)√

n − 1Γ((n − 1)/2)
.

The UMVUE of σ is then

s

√
n − 1Γ((n − 1)/2)√

2Γ(n/2)

by the Lehmann-Scheffé theorem.
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Criticism of Unbiasedness

• UMVUE can be inadmissible for squared

error loss meaning there is a (biased, of

course) estimate whose MSE is smaller for

every parameter value. An example is the

UMVUE of φ = p(1−p) which is φ̂ = np̂(1−
p̂)/(n − 1). The MSE of

φ̃ = min(φ̂,1/4)

is smaller than that of φ̂.

• Unbiased estimation may be impossible.

Binomial(n, p) log odds is

φ = log(p/(1 − p)) .

Since the expectation of any function of

the data is a polynomial function of p and

since φ is not a polynomial function of p

there is no unbiased estimate of φ
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• The UMVUE of σ is not the square root

of the UMVUE of σ2. This method of es-

timation does not have the parameteriza-

tion equivariance that maximum likelihood

does.

• Unbiasedness is irrelevant (unless you av-

erage together many estimators).

Property is an average over possible values

of the estimate in which positive errors are

allowed to cancel negative errors.

Exception to criticism: if you average a

number of estimators to get a single esti-

mator then it is a problem if all the esti-

mators have the same bias.

See assignment 5, one way layout exam-

ple: mle of the residual variance averages

together many biased estimates and so is

very badly biased. That assignment shows

that the solution is not really to insist on

unbiasedness but to consider an alternative

to averaging for putting the individual es-

timates together.
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