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Purposes of Today’s Lecture

Illustrate modelling process.

Show some probabilistic notation.

Show potential use of inequalities.

Introduce independence, overdispersion, Markov’s inequality.
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Traffic Loading on Lions Gate Bridge

Idea: want to know how strong bridge needs to be.

Compute: load x such that
Expected time to first exceedance of load x is 100 years.

Method uses:

1 modelling assumptions.
2 conservative modelling; to replace random variable of interest with

stochastically larger quantity.
3 moment generating functions; Markov’s inequality — compute upper

bound on x .
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The Lions Gate Bridge
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Facts about the Lions Gate Bridge

Built 1936-38 for $6M.

3 spans: 614, 1550, 614 feet long.

Originally 2 lanes now 3.

Originally toll bridge built by developers.

See

http://www.b-t.com/menu/project/rehabilitationandseismicretrofit/Pages/Lions-

at Buckland and Taylor web site for engineering info.
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The Lions Gate Bridge
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Process of Interest

Think of bridge as rectangle.

Co-ordinates: x runs from 0 to length LB of bridge, y runs from 0 to
width WB of bridge.

Define:

Z (x , y , t) = load on bridge at (x , y) at time t

General quantity of interest at time t: total load or other force on
segment of bridge:

∫

xy

Z (x , y , t)w(x , y)dxdy

Example w : load in strip across bridge between x1 and x2 feet out
from south side on central span

W (t, x1, x2) =

∫ x2

x1

∫ WB

0
Z (x , y , t)dydx
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Quantity of concern to engineers

Quantity of concern to engineers:

MT (L) ≡ max
t∈[0,T ]

max
0≤x1≤LB−L

W (t, x1, x1 + L)

First modelling assumption. Years 1, . . . ,T are iid.

So:
P(MT (L) ≤ y) = P(M1(L) ≤ y)T

So: years to first exceedance of level y has geometric distribution
with probability of success

P(M1(L) > y)

Find y so this last is 1/100; expected value of geometric is 100.

Call this the 100 year return time load.
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Next modelling consideration.

Two kinds of loads: static and dynamic.

Consider only static not dynamic loading.

Observation: static loading much higher when traffic stopped than
not.

So: define N to be number of traffic stoppages in year.

Let M1,n(L) be worst load over segment of length L during nth of N
stoppages.

Idea
P(M1(L) > y) = P( max

1≤n≤N
M1,n(L) > y)

Treat M1,n(L) as iid given N.
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Conditioning

Next: Evaluate P(M1(L) > y) by conditioning.

Shorten notation:
M = max

1≤n≤N
Xn

where Xi iid, cdf F , survival ftn S = 1− F .

P(M ≤ y) = E{P(M ≤ y |N)}
= E[{1− S(y)}N)]
= φ[log{1− S(y)}]

where
φ(t) = E

(

etN
)

is the moment generating function of N.
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Solve for y

Comment: φ is monotone increasing.

So: if S(y) ≤ g(y) then

P(M > y) ≤ 1− φ[log{1− g(y)}]

and solving
φ[log{1− g(y)}] = 0.99

gives larger solution than

P(M ≤ y) = 0.99

Remaining steps:

1 Model for N .
2 Model / upper bound for S .
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Modelling N :

Simplest idea: Poisson process of accidents.

So N has Poisson(λ) dist for some λ.

Then

φ(t) =
∑

e−λ (λe
t)n

n!

which is
φ(t) = exp{λ(et − 1)}

Criticisms: No allowance for variation in traffic densities, weather, etc
from year to year.
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More sophisticated assumption

Potentially better assumption.

N is overdispersed Poisson, say, Negative Binomial:

P(N = k) =

(

r + k − 1

k

)

pr (1− p)k k = 0, 1, · · ·

This makes

E(etX ) =
pr

{1− (1− p)et}r

Idea: for Poisson σ =
√
µ.

For Negative Binomial µ = r(1− p)/p and

σ =
√

r(1− p)/p2 =
√

1/p
√
µ >

√
µ

Idea: use of overdispersed variable makes for longer tails relative to
mean.
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Use of Upper Bounds

Now we need to model / bound the survival function S .

Stoppage lasts random time T .

During that time traffic builds up behind stoppage; cars jam together.

Worst section of length L found by sliding window along line of
stopped cars to find maximum.

Notional model (not the way we did it):

Model vehicles arriving at end of queue.

Might use Poisson Process.

Each vehicle has random mass, length, distribution of load along
length.

Random gaps between vehicles.

Just before traffic starts to move again: look for heaviest segment of
length L in stoppage.
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Problems

1 different kinds of stoppage: # lanes, direction of flow, location on
bridge, cars trickle past?

2 hard to deal with supremum over all segments of length L.

3 specify joint law of mass, length, distribution of load along single
vehicle.

Digression to method we didn’t use:

Model length of stoppage T with density g .

Model N, number of vehicles arriving at end of stoppage, given T as
Poisson(λT ).

Assume next vehicle arriving picked at random; joint density h(w , l)
of weight, length. Wi , Li values for ith arrival.
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Physical Length of stoppage

Assume load distributed evenly along length of vehicle.

Final length of line at end of stoppage is

LT ≡
N
∑

i=1

Li .

Can compute mean, variance, generating function of LT ?

E{exp(sL)} = E [E{exp(sL)|N}]

= E

(

[E{exp(sLi )}]N
)

= φN [log{φL(s)}]

Here each φ is a moment generating function.
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Compound Poisson processes

Method of analysis for a compound Poisson Process.

Can use the mgf of L to compute distribution of L by inversion of
Laplace transform.

Problem: how to scan for maximum load?
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Discretization

Simplify problem: discretize and bound.

If h is small and X (s) some process then

sup
0≤t≤T−τ

∫ t+τ

t

X (s)ds

is close to

max
k

∫ kh+τ

kh

X (s)ds

We took h to be 50 feet and considered τ = 50n feet.

Switch from thinking about length of stoppage in time to length of
stoppage in multiples of h.

Let Ni be number of segments of length h building up on bridge
during stoppage

Let Xj ; j = 1, . . . ,Ni be the loads on the consecutive segments.
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Upper Bounds

So: our interest is in

max{Xr + · · ·Xr+n−1; 1 ≤ r ≤ Ni + 1− n}

Upper bound on survival function?

Define
Ur = Xr + · · ·Xr+n−1

Argue that

1− P( max
1≤r≤m

Ur > y) ≤ 1−
∏

1≤r≤m

{1− P(Ur > y)}

for any m.

Rationale: Values of Ur are positive orthant dependent.

(Large values of one U suggest large values of adjacent U.)

Richard Lockhart (Simon Fraser University) The Lions Gate Bridge STAT 380 — Spring 2016 19 / 23



Modelling Details

So now:

P(max{Ur ; 1 ≤ r ≤ Ni} > y)

≤ 1− φNi
[log{1− SU(y)}]

Model law of Xi by considering possible loading patterns by cars,
trucks, buses.

We took cars to be fixed length and weight.

Same for buses.

Trucks had fixed length, weight uniform on 12 to 40 tons.

Computed moment generating function of an X :

φX (t) = E(etX )
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Markov’s inequality

Final step. Need to compute SU .

Instead use Markov’s inequality:

P(X ≥ x) ≤ E{g(X )}
g(x)

for any increasing positive g .

Choose g(·) = exp(h·).
So:

SU(y) ≤
E(ehU)

exp(hy)

=
{φX (h)}n
exp(hy)

where
φX (h) = E{exp(hX )}
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Optimize Markov’s inequality

These can be assembled to give a bound depending on h.

Then: minimize over h > 0 to find good bound.

I wrote FORTRAN code to do this in 1975 for my summer job with
Jim Zidek.

He was consulting with Frank Navin for Peter Buckland.

Zidek, James V., Navin, Francis P. D. and Lockhart, R. A. (1979).
Statistics of extremes: An alternate method with application to bridge
design codes. Technometrics, 21, 185–191.
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Summary of Today’s Lecture

Notice big picture of modelling process.

Define variables, introduce notation.

Formulate problem (here as one of bounding return period).

Make assumptions about joint and conditional distributions.

Use conditioning.

Use independence, overdispersion, dependence notions.

Use Markov’s inequality or numerical inversion of Laplace transform.

Notice wealth of detailed modelling assumptions
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