Reading for Today's Lecture: Chapter 4 sections 1-3.
Goals of Today's Lecture:
Finding stationary initial distributions. Consider the for the weather example. The equation
Some more examples:
p:=matrix([[0,1/3,0,2/3],[1/3,0,2/3,0], [0,2/3,0,1/3],[2/3,0,1/3,0]]); [ 0 1/3 0 2/3] [ ] [1/3 0 2/3 0 ] p := [ ] [ 0 2/3 0 1/3] [ ] [2/3 0 1/3 0 ] > p2:=evalm(p*p); [5/9 0 4/9 0 ] [ ] [ 0 5/9 0 4/9] p2:= [ ] [4/9 0 5/9 0 ] [ ] [ 0 4/9 0 5/9] > p4:=evalm(p2*p2): > p8:=evalm(p4*p4): > p16:=evalm(p8*p8): > p17:=evalm(p8*p8*p):
> evalf(evalm(p16)); [.5000000116 , 0 , .4999999884 , 0] [ ] [0 , .5000000116 , 0 , .4999999884] [ ] [.4999999884 , 0 , .5000000116 , 0] [ ] [0 , .4999999884 , 0 , .5000000116] > evalf(evalm(p17)); [0 , .4999999961 , 0 , .5000000039] [ ] [.4999999961 , 0 , .5000000039 , 0] [ ] [0 , .5000000039 , 0 , .4999999961] [ ] [.5000000039 , 0 , .4999999961 , 0] > evalf(evalm((p16+p17)/2)); [.2500, .2500, .2500, .2500] [ ] [.2500, .2500, .2500, .2500] [ ] [.2500, .2500, .2500, .2500] [ ] [.2500, .2500, .2500, .2500]doesn't converges but does.
Next example:
Pick
in [0,1/4];
put
.
> p:=matrix([[2/5,3/5,0,0],[1/5,4/5,0,0], [0,0,2/5,3/5],[0,0,1/5,4/5]]); [2/5 3/5 0 0 ] [ ] [1/5 4/5 0 0 ] p := [ ] [ 0 0 2/5 3/5] [ ] [ 0 0 1/5 4/5] > p2:=evalm(p*p): > p4:=evalm(p2*p2): > p8:=evalm(p4*p4):
> evalf(evalm(p8*p8)); [.2500000000 , .7500000000 , 0 , 0] [ ] [.2500000000 , .7500000000 , 0 , 0] [ ] [0 , 0 , .2500000000 , .7500000000] [ ] [0 , 0 , .2500000000 , .7500000000]Notice that rows converge but to two different vectors:
Last example:
> p:=matrix([[2/5,3/5,0],[1/5,4/5,0], [1/2,0,1/2]]); [2/5 3/5 0 ] [ ] p := [1/5 4/5 0 ] [ ] [1/2 0 1/2] > p2:=evalm(p*p): > p4:=evalm(p2*p2): > p8:=evalm(p4*p4): > evalf(evalm(p8*p8)); [.2500000000 .7500000000 0 ] [ ] [.2500000000 .7500000000 0 ] [ ] [.2500152588 .7499694824 .00001525878906]
Basic distinguishing features: pattern of 0s in matrix .