next up previous


Postscript version of this file

STAT 380 Lecture 9

Reading for Today's Lecture: Chapter 4 sections 1-3.

Goals of Today's Lecture:

Finding stationary initial distributions. Consider the ${\bf P}$for the weather example. The equation

\begin{displaymath}\alpha {\bf P}= \alpha
\end{displaymath}

is really
\begin{align*}\alpha_D &= 3\alpha_D/5 + \alpha_W/5
\\
\alpha_W &= 2\alpha_D/5 + 4\alpha_W/5
\end{align*}
The first can be rearranged to

\begin{displaymath}\alpha_W =2\alpha_D
\end{displaymath}

and so can the second. If $\alpha$ is to be a probability vector then

\begin{displaymath}\alpha_W+\alpha_D=1
\end{displaymath}

so we get

\begin{displaymath}1-\alpha_D=2\alpha_D
\end{displaymath}

leading to

\begin{displaymath}\alpha_D=1/3
\end{displaymath}

Some more examples:

\begin{displaymath}{\bf P}= \left[\begin{array}{cccc}
0 & 1/3 & 0 & 2/3
\\
1/3...
...\\
0 & 2/3 & 0 & 1/3
\\
2/3 & 0 & 1/3 & 0
\end{array}\right]
\end{displaymath}

Set $\alpha{\bf P}=\alpha$ and get
\begin{align*}\alpha_1 &= \alpha_2/3+2\alpha_4/3
\\
\alpha_2 &= \alpha_1/3+2\al...
... 2\alpha_1/3+\alpha_3/3
\\
1&= \alpha_1+\alpha_2+\alpha_3+\alpha_4
\end{align*}
First plus third gives

\begin{displaymath}\alpha_1+\alpha_3=\alpha_2+\alpha_4\end{displaymath}

so both sums 1/2. Continue algebra to get

\begin{displaymath}(1/4,1/4,1/4,1/4) \, .
\end{displaymath}

p:=matrix([[0,1/3,0,2/3],[1/3,0,2/3,0],
          [0,2/3,0,1/3],[2/3,0,1/3,0]]);

               [ 0     1/3     0     2/3]
               [                        ]
               [1/3     0     2/3     0 ]
          p := [                        ]
               [ 0     2/3     0     1/3]
               [                        ]
               [2/3     0     1/3     0 ]
> p2:=evalm(p*p);
             [5/9     0     4/9     0 ]
             [                        ]
             [ 0     5/9     0     4/9]
        p2:= [                        ]
             [4/9     0     5/9     0 ]
             [                        ]
             [ 0     4/9     0     5/9]
> p4:=evalm(p2*p2):
> p8:=evalm(p4*p4):
> p16:=evalm(p8*p8):
> p17:=evalm(p8*p8*p):


> evalf(evalm(p16));
    [.5000000116 , 0 , .4999999884 , 0]
    [                                 ]
    [0 , .5000000116 , 0 , .4999999884]
    [                                 ]
    [.4999999884 , 0 , .5000000116 , 0]
    [                                 ]
    [0 , .4999999884 , 0 , .5000000116]
> evalf(evalm(p17));
    [0 , .4999999961 , 0 , .5000000039]
    [                                 ]
    [.4999999961 , 0 , .5000000039 , 0]
    [                                 ]
    [0 , .5000000039 , 0 , .4999999961]
    [                                 ]
    [.5000000039 , 0 , .4999999961 , 0]
> evalf(evalm((p16+p17)/2));
  [.2500, .2500, .2500, .2500]
  [                          ]
  [.2500, .2500, .2500, .2500]
  [                          ]
  [.2500, .2500, .2500, .2500]
  [                          ]
  [.2500, .2500, .2500, .2500]
${\bf P}^n$ doesn't converges but $({\bf P}^n+{\bf P}^{n+1})/2$ does.

Next example:

\begin{displaymath}p = \left[\begin{array}{cccc}
\frac{2}{5} & \frac{3}{5}
& 0 &...
...{3}{5}
\\
0 &0 &
\frac{1}{5} & \frac{4}{5}\end{array}\right]
\end{displaymath}

Solve $\alpha{\bf P}=\alpha$:
\begin{align*}\alpha_1 & = \frac{2}{5}\alpha_1+ \frac{1}{5} \alpha_2
\\
\alpha_...
...+ \frac{4}{5}\alpha_4
\\
1 & = \alpha_1+\alpha_2+\alpha_3+\alpha_4
\end{align*}
Second and fourth equations redundant. Get
\begin{align*}\alpha_2& =3 \alpha_1
\\
3 \alpha_3&=\alpha_4
\\
1 & = 4\alpha_1+4\alpha_3
\end{align*}

Pick $\alpha_1$ in [0,1/4]; put $\alpha_3=1/4-\alpha_1$.

\begin{displaymath}\alpha = (\alpha_1,3\alpha_1,1/4-\alpha_1,3(1/4-\alpha_1))
\end{displaymath}

solves $\alpha{\bf P}=\alpha$. So solution is not unique.

> p:=matrix([[2/5,3/5,0,0],[1/5,4/5,0,0],
            [0,0,2/5,3/5],[0,0,1/5,4/5]]);

               [2/5    3/5     0      0 ]
               [                        ]
               [1/5    4/5     0      0 ]
          p := [                        ]
               [ 0      0     2/5    3/5]
               [                        ]
               [ 0      0     1/5    4/5]
> p2:=evalm(p*p):
> p4:=evalm(p2*p2):
> p8:=evalm(p4*p4):

> evalf(evalm(p8*p8));
        [.2500000000 , .7500000000 , 0 , 0]
        [                                 ]
        [.2500000000 , .7500000000 , 0 , 0]
        [                                 ]
        [0 , 0 , .2500000000 , .7500000000]
        [                                 ]
        [0 , 0 , .2500000000 , .7500000000]
Notice that rows converge but to two different vectors:

\begin{displaymath}\alpha^{(1)} = (1/4,3/4,0,0)
\end{displaymath}

and

\begin{displaymath}\alpha^{(2)} = (0,0,1/4,3/4)
\end{displaymath}

Solutions of $\alpha{\bf P}=\alpha$ revisited? Check that

\begin{displaymath}\alpha^{(1)}{\bf P}=\alpha^{(1)}
\end{displaymath}

and

\begin{displaymath}\alpha^{(2)}{\bf P}=\alpha^{(2)}
\end{displaymath}

Now if $\alpha=\lambda\alpha^{(1)}+(1-\lambda)\alpha^{(2)}$(with $0 \le \lambda \le 1$) then

\begin{displaymath}\alpha {\bf P}= \alpha
\end{displaymath}

so again solution is not unique.

Last example:

> p:=matrix([[2/5,3/5,0],[1/5,4/5,0],
             [1/2,0,1/2]]);

                  [2/5    3/5     0 ]
                  [                 ] 
             p := [1/5    4/5     0 ]
                  [                 ]
                  [1/2     0     1/2]
> p2:=evalm(p*p):
> p4:=evalm(p2*p2):
> p8:=evalm(p4*p4):
> evalf(evalm(p8*p8));
  [.2500000000 .7500000000        0       ]
  [                                       ]
  [.2500000000 .7500000000        0       ]
  [                                       ]
  [.2500152588 .7499694824 .00001525878906]

Interpretation of examples

Basic distinguishing features: pattern of 0s in matrix ${\bf P}$.


next up previous



Richard Lockhart
2000-10-02