
Statistical Inference: Introduction

Outline of presentation:

1) How to form confidence interval for popu-

lation mean µ when population sd σ is known

and population is normally distributed.

2) How to test hypothesis that pop’n mean is

some specified number in same situation.

3) How to form confidence interval for popu-

lation mean when σ is unknown but n is large.

4) How to test hypothesis that µ is some spec-

ified number in situation in 3).

5) How to find confidence interval for popula-

tion proportion p when n is large.

6) How to test hypothesis about population

proportion when n large.

7) Normal populations, small n, σ unknown.

Then back to why they work, how to interpret.
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Confidence Intervals

Example: 25 precision measurements of the

mass of an object.

Probability model or statistical model for

results:

Each measured value is sum of three numbers:

1) true mass of object.

2) bias of measuring device.

3) random error.

In each measurement, 1) and 2) are the same.

Random errors are different each time: behave

like sample with replacement from “hypothet-

ical” population of possible errors.

Population mean of errors is 0.
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Added assumption: no bias in measuring de-

vice.

If so: measurements like sample from popula-

tion with mean µ which is the true mass of the

object.

Added assumption: have used measuring de-

vice so often that we “know” the standard de-

viation, σ, of the measurement errors.

This means that our measurements are like a

sample from a population with mean µ and

standard deviation σ where we know σ.

Confidence interval method:

1) collect sample of n from population.

2) assume population mean µ unknown.

3) assume population sd σ known.

4) assume population distribution normal.
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5) compute sample mean x̄.

6) select desired confidence level (usually 0.95

or 95%).

7) find z so that area between −z and z under

normal curve is desired confidence level.

8) work out lower and upper limits:

x̄± z
σ
√
n

9) these pair of numbers are a 95% (or other

percentage) confidence interval for the popu-

lation mean µ.

10) if we do many experiments of this sort and

work out a 95% confidence interval each time

then about 95% of the intervals work — i.e.,

the two numbers come out on either side of µ.

Actual mechanical steps are 1, 5, 6, 7, 8.
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Specific example: weigh object 16 times.

Step 1: Get mean of 9.999594 g.

Long experience (SD of many mmnts of same

object) on scale shows σ = 25µg (25 micro-

grams = 25×10−6 = 0.000025 g).

Step 2: to find 80% confidence interval: must

find z.

Need area from −z to z to be 0.8.

So area to left of −z plus area to right of z is

0.2.

Area to right of z is 0.1; area to left of z is

0.9.

From tables z = 1.28.

Step 3: confidence interval is

9.999594± 1.28
25× 10−6

√
16

= 9.999594± 0.000008

so runs from 9.999586 to 9.999602.
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To be more confident: take bigger z.

For 95% confidence interval use z = 1.96.

Make sure you know why!

To be certain: IMPOSSIBLE.

Could true weight be below 9.999580? YES

but this is unlikely.

How do I know?
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Steps in hypothesis testing:

1) collect sample of n from population.

2) specify value of µ to be examined for cred-

ibility. Use notation µ0.

(In weight example µ0 = 9.999580.)

3) assume population sd σ known.

4) assume population distribution normal.

5) work out sample mean x̄.

6) compute z-statistic:

z =
x̄− µ0
σ/

√
n

=

√
n(x̄− µ0)

σ
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(In example

z =
9.999594− 9.999580

0.000025/4
= 2.24

7) compute area to right of z or to left of z

or outside range of −z to z. Area is called

P -value.

(In example with weight: area to right of z.)

Area is 0.0125.

8) Interpret P -value. Small values of P mean

strong evidence against assumptions used to

compute P . We assumed: true weight at or

below 9.999580. So: “reject” that assump-

tion.
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More usual case: σ unknown.

Easiest case: large sample size n.

Get confidence interval for population mean:

1) compute x̄ and s, sample mean and sd.

2) select confidence level as before.

3) find corresponding multiplier z so area from

−z to z is desired confidence level.

4) work out

x̄± z
s

√
n

as your interval.

Notice: just substitute s for σ.
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Example: want to estimate number of trees in

some park infected by pine beetles. (All figures

hypothetical.)

Setup: partition area into 10m by 10m plots.

Imagine park is 10km by 10km so there are

1,000,000 plots.

Take sample of say 64 such plots.

Go to plot, count trees with pine beetles in

plot (Xi).

Work out sample mean X̄ and sample SD s;

Values: X̄ = 2.5, s = 3.

Get confidence interval for average number of

infected trees per 10 by 10 plot in the park.
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Mechanics: do 99% confidence interval.

Find z so that area to left is 0.995.

Find z = 2.57.

Confidence interval is

x̄± z
s

√
n
= 2.5± 2.57

3√
64

Simplifies to 2.5± 0.96 or 1.54 to 3.46.

Note: units are trees per 10 by 10 plot. Likely

want confidence interval for trees per hectare

or per square km or for trees in the park.

To go from trees per plot to trees in park:

multiply by number of plots in park.

We are 99% confident that there are between

1.54 million and 3.46 million infected trees in

the park.
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Hypothesis testing:

Sample of 144 salmon from 1 day’s catch.

Concern: newly caught fish have higher dioxin

/ furan content than historically found.

Fish Tissue Action Level (FTAL): 1.5 parts

per trillion for “protection of cancer related ef-

fects”.

Measure d/f content in sample fish.

Find X̄ = 1.3, and s = 0.8 (ppt).

Trying to convince ourselves: average d/f level

in catch below 1.5.

Mechanics: compute observed sample mean in

standard units, assuming actual level is just at

FTAL.

z =
1.3− 1.5

0.8/
√
144

= −3

Then find area under normal curve beyond -3.

Get 0.0013.
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We call 0.0013 a P -value for a test of the hy-

pothesis that the mean d/f concentration in

today’s catch is 1.5 (or more).

Conclusion: average d/f concentration in pop-

ulation (today’s catch) is very likely below 1.5.

(If not then today’s sample of 144 fish is one

of a pretty rare group of samples – should only

happen 1.3 times in 1000 trials.)
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Confidence interval for a proportion.

Toss tack 100 times. It lands upright 46 times.

What is p = Prob(U) on a single toss?

Solution:

p̂± z

√

p̂(1− p̂)

n

Meaning: p̂ = 46/100 = 0.46.

Value of z from normal curve as always: 1.96

for 95%.

CI is

0.46± 1.96

√
.46× .54

10
= 0.46± 0.098

Notice that n = 100 trials gives wide range of

credible values for p.

Comment: better approximation – page 508 in

text.
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Could p = 1/2?

Measure discrepancy using

z =
p̂− 1/2

√

0.5(1− 0.5)/100

Get z = −0.8. Look up area outside −z to z.

Get

P = 0.4237

Not small, so no real evidence against p = 1/2.

Notice use of “two tails”. More to come later.
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Final pair of examples: n small, σ unknown.

Fifteen pairs of plants: each pair off spring

of same parent plant. In each pair one cross-

fertilized, one self-fertilized.

Record difference in heights (in eights of an

inch): cross minus self.

The data

49 -67 8 16 6 23 28 41
14 29 56 24 75 60 -48

Questions:

1) does crossing tend to produce taller plants?

2) how much average difference?
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Q 1 asks for a hypothesis test.

Q 2 asks for a confidence interval.

Interpret Q 1 as question about population

mean:

Let µ be the population average difference for

cross minus self in such pairs.

Treat our 15 observations as sample of size

n = 15 from population.

Q 1 becomes: is µ = 0?
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Mechanics of confidence interval:

1) work out summary statistics, x̄ = 20.93 and

s = 37.74.

2) compute the interval

x̄± tn−1,α
s

√
n

What is tn−1,α?

Multiplier found from “Student’s t table” —

table C in text.

Called t∗ in text.
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To find the multiplier:

a) select desired confidence level.

b) compute α from this level by subtracting

level from 1 (or 100%) and dividing by 2.

c) look up t∗ in Table C in line for df = n− 1.

Go to column for α (called p in table).

Jargon: n − 1 is called the “degrees of free-

dom”.

Example: for 95% Conf Int. Find α = 0.025.

For our data set: n− 1 = 14.

In Table C find t∗ = 2.145.
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In our example, then, the CI is

20.93± 2.145
37.74√

15
= 20.93± 20.90

which runs from 0.03 to 41.83.

We are 95% confident that true gain in average

height due to cross-fertilization is in the range

0.03/8 to 41.83/8 inches.

Corresponding hypothesis test:

1) compute sample mean and sd as before.

2) compute t-statistic:

t =
x̄− µ0
s/

√
n

NOTE: exactly the same as large sample z for-

mula.

3) Get P value from t table.

In our case:

t =
20.93− 0

37.74/
√
15

= 2.148
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How to find P -value:

A) from tables:

Look at row df = 14 in Table C.

Want area outside -2.148 to 2.148.

In Table see that area from -2.145 to 2.145 is

0.9500 and area from -2.264 to 2.264 ix 0.96

So

0.05 > P > 0.04

Of course, 2.145 is very close to 2.148 so P is

very close to 0.05.

Interpretation:

P is on the small side so there is “significant”

evidence against µ = 0.

Jargon: say difference is significant if P <

0.05.
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Now go back to the beginning:

Confidence interval for a parameter:

An interval, calculated from data, usually

estimate±multiplier× standard error

with an associated confidence level C.

Prob(interval includes parameter) = C.

Intervals discussed so far:

1) for population mean, σ known, population

distribution normal.

x̄± z
σ
√
n

2) for population mean, σ known, sample size

large.

x̄± z
σ
√
n

Exactly the same formula as (1).

178



3) for population proportion, sample size large:

p̂± z

√

p̂(1− p̂)
√
n

where p̂ is sample proportion.

4) for population mean, σ unknown, n small,

population distribution normal:

x̄± t∗
s

√
n

Not discussed yet but closely related:

5) for population mean, σ unknown, n large:

x̄± t∗
s

√
n

or

x̄± z
s

√
n

(For reasonably large n no perceptible differ-

ence. Simplest to always use t∗ when σ is un-

known.)
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Case not covered:

If σ is not known and you doubt that the pop-

ulation distribution is normal: need to investi-

gate non-parametric methods.

Jargon: the standard deviation of an estimate

(guess calculated from the sample) is called

the standard error of the estimate.

Example is σ/
√
n.

If σ is unknown we usually use the data to

guess σ and get

Estimated standard error of x̄ is s/
√
n.
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Theory underlying confidence intervals.

Start with population: mean µ, sd σ.

1) if you sample with replacement

a) if population distribution is normal then sam-

pling distribution of x̄ is normal and sd of x̄ is

σ/
√
n

b) if n is large same is true approximately by

central limit theorem.

2) if you sample without replacement and n is

not too large compared to population size but

n is large enough for central limit approx to be

ok then same conclusion holds.
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So: what is chance x̄ comes out within z stan-

dard errors of µ?

Answer: want chance x̄ is in interval

µ− z
σ
√
n

to µ+ z
σ
√
n

Convert limits to standard units: subtract µ

(mean of sampling distribution of x̄) and divide

by sd (σ/
√
n)

Get −z to z. Look up area in normal tables

from −z to z.

If we pick z in advance to make that area C

the chance comes out to C.

So, for instance, with z = 1.96 we find chance

is 0.95.

Key point: every time that x̄ comes out within

z standard errors of µ, our confidence interval

includes µ.

So: chance confidence interval includes µ is C
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More theory:

Start with population: mean µ, sd σ.

3) if n is large then s will be close to σ so

chance using s/
√
n will be almost the same as

chance using σ/
√
n.

Start with population of whom proportion hav-

ing trait is p.

4) if n is large then number X in sample with

trait is approximately normally distributed: mean

is np and sd is
√

np(1− p).

So sample proportion p̂ = X/n has approxi-

mately normal distribution.

Mean is np/n = p.

SD is
√

np(1− p)/n =
√

p(1− p)/n.
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Compute chance sample proportion is within z

times
√

p(1− p)/n of p.

Limits are

p− z
√

p(1− p)/n to p+ z
√

p(1− p)/n

Convert to standard units: subtract p, divide

by standard error.

Get −z to z.

As in previous case area area from −z to z is

C as designed.

5) if n large then replacing p by p̂ in standard

error makes little difference.

So: chance sample proportion is within z times
√

p̂(1− p̂)/n of p is also about C.

So chance conf int includes p is about C.
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More theory:

Population distribution normal, mean µ, sd σ.

Fact: sampling distribution of

t =
x̄− µ

s/
√
n

follows curve called: Student’s t distribution

on n− 1 degrees of freedom.

Some t curves with N(0,1) curve:

−4 −2 0 2 4

0.
0

0.
1

0.
2

0.
3

0.
4

x

de
ns

ity

Normal
10 df
3 df
1 df
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Essential point: chance that t comes out be-

tween −t∗ and t∗ is area under t curve with n−1

df.

If t is between −t∗ and t∗ then µ is between

x̄− t∗
s

√
n

and x̄+ t∗
s

√
n

So: chance confidence interval works is area

from −t∗ to t∗.

Table C shows values of t∗ which give variety

of areas.

Get middle areas along bottom; areas to right

on top.
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Summary of confidence intervals:

Steps to go through:

1) What parameter do we want a confidence

interval for?

A: Population proportion, p, or B: population

mean µ?

A: If population proportion is parameter of in-

terest:

i) find correct multiplier z to give desired con-

fidence level.

ii) compute sample proportion p̂ = X/n.

Here X is number of successes in n indepen-

dent trials.

Can be used if sampling without replacement

but n small compared to population size N .
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iii) Compute interval:

p̂± z

√

p̂(1− p̂)

n

B: if population mean is parameter of interest.

Identify case in list:

Case 1: population standard deviation σ known

and sample size n large.

Case 2: population standard deviation σ known

and sample size n is small and population dis-

tribution is normal.

Case 3: population sd unknown, sample size n

is large.

Case 4: population sd unknown, sample size n

is small, population distribution is normal.

Remaining cases: n small, population distribu-

tion not normal. Need non-parametric proce-

dures or other help.
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Now finish cases:

Cases 1 or 2: when σ is known get multiplier

z from normal tables. Compute

x̄± z
σ
√
n

WARNING: not valid if n small and population

distribution not normal.

Cases 3 or 4: when σ is unknown get multiplier

t from t tables. Compute

x̄± t
s

√
n

Note: if n is quite large can get away with

finding multiplier in normal tables. But no

real point in thinking about whether n is large

enough. Just use t; that is what software does.
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Hypothesis Testing

General framework:

Considering making a yes/no decision about a

parameter.

Parameters considered so far:

Population mean µ or proportion p.

What kind of decision?

Is p = 1/2? Is µ ≥ 1.5? is µ = 0?

Standard Jargon:

We have two hypotheses to choose between.

Examples: p = 1/2 or p 6= 1/2? µ ≥ 1.5 or

µ < 1.5.
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Neyman Pearson method of doing hypothesis

testing.

Pick one of two choices as null hypothesis.

Other is alternative hypothesis.

Assess evidence against null hypothesis:

Work out value of test statistic (t or z so far)

which measures discrepancy between data and

null hypothesis.

Assume null true (just barely) and compute:

Chance of obtaining a statistic as extreme as

the one you did get if you did experiment again

and null were true.

Last quantity is called P -value.

To make firm decision if needed:

Set acceptable error rate, α: type I error rate

or level of the test.

“Reject null at level α if P < α.”
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Standard values of α: 0.05, 0.01, 0.001.

If P < 0.05 say “results are significant”

If P < 0.01 say “results are highly significant”

If P < 0.001 say “results are very highly signif-

icant”

If no firm decision needed: just report P and

describe result in words.

If P is really small say strong or very strong

evidence against null.

(Evidence against null assumed to be evidence

for alternative: not always right.)
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Steps in doing a hypothesis testing problem:

1) Identify what parameter is being investi-

gated. So far: population mean µ or popu-

lation proportion p.

2) Formulate null hypothesis: one of

µ ≤ µ0, µ = µ0, µ ≥ µ0

(or with p, p0 for proportions).

3) Formulate alternative hypothesis:

a) if null is µ ≤ µ0 then alternative is µ > µ0.

b) if null is µ ≥ µ0 then alternative is µ < µ0.

c) if null is µ = µ0 then alternative is one of

µ > µ0, µ < µ0 or µ 6= µ0.

Which one? Depends on scientific problem of

interest!
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4) Select test statistic: one of

z =
p̂− p0

√

p0(1− p0)/n
z =

x̄− µ0
σ/

√
n

t =
x̄− µ0
s/

√
n

5) Use alternative to decide whether to look

up one tailed or two tailed P value.

If alternative is 6= it is “two tailed”.

6) Get P from z tables or t tables.

7) Interpret P value.
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Review of earlier examples:

1) could true weight be as low as 9.999580?

Parameter of interest is µ.

So null is either µ = 9.999580 or µ ≤ 9.999580.

Alternative is µ > 9.999580.

Notice µ0 = 9.999580.

Know σ so use

z =
x̄− µ0
σ/

√
n

Actual value was z = 2.24 (slide 164).

Alternative is one tailed and predicts big value

of z. Look up P value as area to right of 2.24.

Found P = 0.0125. “The weight is signifi-

cantly heavier than 5.999580.

NOTICE: not usual English meaning of “sig-

nificant”.
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2) Is average dioxin/furan content above 1.5
ppt?

Parameter of interest is µ, µ0 = 1.5.

Trying to choose between < 1.5 and ≥ 1.5.

Could make either µ ≤ 1.5 or µ ≥ 1.5 be null.

Make null the one you want to prove is wrong.

I choose µ ≥ 1.5, alternative µ < 1.5.

Compute test statistic

z =
x̄− 1.5

s/
√
n

= −3

Alternative is one tailed; predicts large negative
z values.

So look up P value as chance of large negative
values: left tail.

Get P = 0.0013.

Highly statistically significant evidence that d/f
concentration in this day’s catch below FTAL
(1.5 ppt).
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3) Toss thumbtack: is chance of U equal to

1/2?

Parameter of interest is population proportion

of U p.

(I.e. parameter of interest is p = chance of U.)

Null hypothesis is p = 1/2 so p0 = 1/2.

Alternative is naturally p 6= 1/2; no theory to

suggest direction of departure.

Test statistic is

z =
p̂− p0

√

p0(1− p0)/n
= −0.8

Since alternative is two tailed look up area in

two tails!.

Area to left of −0.8 plus area to right of 0.8.

Get P = 0.4237.

Summary: no significant evidence that p is not

1/2.
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4) Pairs of plants:

Parameter of interest is mean µ of population

of differences.

Null hypothesis is µ = 0 so µ0 is just 0.

Alternative specified by science. Unless theory

makes prediction: do 2 tailed test.

Alternative µ 6= 0.

Test statistic: σ not known so

t =
x̄− µ0
s/

√
n

= 2.148

Look up two sided area. As before P near but

just below 0.05.

“Barely significant” evidence of a difference in

average height between crossed and self fertil-

ized plants.
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Further topics in one sample tests and confi-

dence intervals.

1) Interpretation of CIs: work out 2 95% conf

intervals based on two independent experiments.

Chance both intervals include target?

Solution: probability that two independent events

both happen via multiplication rule:

Chance is 0.95*0.95=0.9025=90.25%

2) Sample size determination. To get margin

of error equal to a target: set

margin = zσ/
√
n

Solve for n to get

n =
z2σ2

margin2

Problems in using this:

a) must know σ or design using tolerable guess.

b) inversely proportional to square of tolerable

error; often comes out too big for experimenter

to afford!
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3) Caveats: (ways for tests not to make sense).

a) The method computes a chance based on

the assumption that you have a sample from

a population and the hypothesis is about that

population.

You can’t make a meaningful test if the data

are just a convenience sample. (Such as the

students in this class, e.g.)

b) Small P -value doesn’t necessarily mean im-

portant difference. If n is really large then even

a tiny difference will turn out to be “signifi-

cant”.
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4) Jargon: Type I, Type II errors. Power.

When carrying out test there are two ways to

be wrong:

a) the null hypothesis could be true but by

bad luck you get a small P -value and reject

Ho. Called a Type I error.

Fixing α places an upper limit on the Type I

error rate.

b) the alternative hypothesis is true but by bad

luck you get a larger P -value and do not reject

Ho. Called a Type II error.

Theoretical statisticians try to pick procedures

which make chance of Type II error small while

fixing Type I error rate.

Power is name for 1 - chance of type II error.

Power depends on unknown parameter.

Power calculations used to set sample sizes.
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