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1 Homotopy

1.1 Introduction

Homotopy methods also known as continuation or embedding methods,
solve difficult problem first by solving easy problem and then design the
problem in such a way that continuing the path along some parameter we
get the solution of hard problem.

To make it more clear we will give the full description of standard ho-
motopy below:

Homotopy methods[1] are used to solve systems of non-linear algebraic
equations and may be applied to a large variety of problems. We are most

interested in solving the zero finding problem

F(z) = 0 (1)
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where x € R*, F : R* — R Note that the fixed point problem F(x) = x
may be easily reformulated as a zero finding problem

Flz) — 2z =0 (2)

A homotopy function H (x, A) is created by embedding a parameter A
into F(x) to obtain an equation of higher dimension

H(z,\) = 0

where X € R, H: R® x R — R* . For A =0,

H(z,0) = 0 (3)

is an easy equation to solve. For A = 1,

H(z,1) = 0 (4)

is the original problem (1). The parameter XA is called the continuation
or homotopy parameter.

An example of a homotopy function is

H(z,\) = (1 — NG(x) + \F(x) (5)

Hence,

has an easy solution while



is the original problem. By following solutions of

H(z,\) = 0 (8)

as A varies from 0 to 1, the solution to F(x) = 0 is reached.

The solutions (8) trace a path known as the zero curve. Various numerical
situations may occur depending on the behaviour of this curve. One prob-
lem occurs if the curve folds back. At the turning point, the values of A
decrease as the path progresses. Increasing A from 0 to 1 results in “los-
ing” the curve. The difficulty is resolved by making A a function of a new
parameter: the arc length s. This method is known as the arc length

continuation.

1.2  Convergent ball concept for “globally convergent
with probability one.”

Let B be the closed unit ball in n-dimensional real Euclidean space E™ and
let f:B — B be a C? map. Define H(x,\):[0,1)X B — E" by

H\z) = A — f(x) + (1 - Az —a) (9)
The fundamental result [2] is that for almost all @ in the interior of B,
there is a zero curve v C [0,1]1X B of H , along which the Jacobian ma-
trix has rank n, emanating from (0, a) and reaching a point (1, z7),
where x~ is a fixed point of f. thus with probability one, picking a starting
point a € int B and following + leads to a fixed point x™ of f.

2 Types of Globally convergent homotopy func-
tions
In the following homotopies, G_leak has been used frequently. The

G _leak term used scales each linear term. G leak € R"XR" is a known

matrix containing only one non-zero entry per row and column.



For simplicity, G_leak[3] is chosen as the coefficient of the corresponding
x,; terms in F(x). In some cases, the coefficients were too small, causing the
Jacobian to lose rank, so for small coefficients (<107®), the G_leak term is
set to 1.

2.1 Fixed point homotopy:
H(x,\) = (1—N\)(x —a)C_leak + X\ F(x) (10)

In this homotopy, the whole equation is multiplied by A. This is only a
slight variation of standard homotopy.

2.2 Variable stimulus homotopy:
H(x,X\) = (1 =X\)(x—a)G_leak + F(x, \) (11)

In this homotopy, only non-linear terms of F(x) are multiplied by A. The
advantage of this homotopy is that all non-linear terms are removed in the
analysis of A=0 making the solution dependent only on linear circuit.

2.3 Modified variable stimulus homotopy:

H(x,\) = (1—=X\)(x—a)G_leak + F(xx) (12)
In this homotopy, all the nodes are multiplied by A. This homotopy was
implemented by me. And the results and further discussions will be in the

various sections below.

2.4  Variable gain homotopy:
H(x,\) = (1 =X)(x—a)G_leak + F(x,\a) (13)

In this homotopy, the transistors forward and reverse gains are corre-
spondingly multiplied by A. This is the fastest converging one for bipolar

circuits.
3 Testing of 2 transistor circuits on fixed point
homotopy:

The fixed point homotopy written by Heath Hofmann in Matlab [4], [5]
was needed to be tested on more circuits. The fixed point homotopy has



the requirement of circuit equations and Jacobians, both are generated by
the Parser.

We decided to analyze the circuits[6] which have been point of interest
for the scientists and engineers for a long time due to its simulation results
on the present circuit simulators. These circuits are designed using only
two transistors and claimed as voltage latch up circuits. Later after re-
search in NDR theory[7] it was found that some resistors are also needed
to show the NDR behavior. According to simulations these circuits go upto
1076 V with an input of just few mA which is never possible. So we choose
these circuits to test our homotopy and choose the initial values that had
been the solutions on Ltspice.

3.1 Circuits diagram:

3.2  Homotopy output:



Testing parameters:
% BJT Parameters

qlIS = le-14;
qlBF = 200;
qlBR = 3;

qlN = 38.78;
q2IS = le-14;
q2BF = 250;
q2BR = 3;

q2N = 38.78;

1. Initial condition: v1=0.854; v2=0.841, v3=0.82, [1=2e-03
B[ -l + [+ [x [HE]0, NEde (R U8EL- (B0H D

% T2Rsameside (Modified Nodal Equations) using Homotopy

2= clear all

4|= clc

5

6 - global a

7

g % Initial Guess

L]

10 — a = [D.854; 0.841 ; 0.82];

11

12 % Determine a root of the homotopy function when lambda = 0

13

14 = X0 = fsolve('T2Rsamesideinit',a);

15

16 % Solve the nonlinear system of egquations using CDE-based homotop
17 % with a variable-order variable-step predictor-corrector integra
18

19 - [vs,s,lambda,v,N] = pchomotopy ('T2RsamesideJac',X0,2500);

20

21 % Plot the trajectory of the wvariables wrt lambda

22

23 — plot (lambda, v)

24 — title ('Homotopy paths for T2Rsameside (Modified Nodal Equations)*
25 — xlabel ('Lambda')

26 — ylabel ('Hode Voltages and Currents')

27 — leg = legend('wi(l)','v(2)",'Vv(3)")

2. Initial condition: v1=0.854; v2=0.241, v3=0.0082, I1=2e-03
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1 % T2Rsameside (Modified Nodal Eguations) using Homotopy
2 Homotopy paths for T2Rsameside (Modified Nodal Equations)
3 - clear all 500
“l= clc
5
a- global a 0
7
g % Initial Guess
9 " 500
10 — = = [0.854; 0.241 ; 0.0082]; E
11 E
12 % Determine a root of the homotopy function when lambda = 0 ‘_; 1000
13 [
14 — X0 = fsolve('T2Rsamesideinit',a); g,’
15 £ 1500
16 % Solve the non ions using ODE-based homotop >°
17 % with a variable-order variable-step predictor-corrector integral -5
o
= _ ) i = 2000
19 - [vs, s, lanbda, v,N] = pchomotopy ('T2RsamesideJac’,X0,2500)
20
21 % Plot the trajectory of the variables wrt lambda
22 -2500
23 - plot (lambda, v)
24 — title ('Homotopy paths for T2Rsameside (Modified Nodal Eguations)® i i i i i i i i i
25— xlabel('lLambda’) A0 T0z 03 04 05 06 07 08 09 1
26 — ylabel ('Node Voltages and Currents') Lambda
27 — leg = legend("v(1}', 'v(2}",'v(3)"):

As you can see the output of homotopy is very sensitive to the initial con-
ditions i.e “a”. After a lot of simulations tweaking “a” every time the value
of lambda reached changed a lot. Initially lambda was able to reach only
10~%to 10™* range. But later lambda reached 0.001156 and then 0.9987,
very close to 1 but couldn’t cross 1 and hence no solutions.

4 Results

Some more simulation results have been summarized in the following table
that has been obtained by changing various parameters and the value of
lambda that could be reached.

g2 92 ql ql
ri r2 Input (1) IS Bf Br Bf Br vl v2 v3 lambda

100 5000 2.00E-03 1.00E-14 250 3 200 3 0.854 0.84 0.82 0.001156
100 5000 2.00E-03 1.00E-14 250 3 200 3 0.854 0.84 0.0082 0.08984
100 5000 2.00E-03 1.00E-14 250 3 200 3 0.854 0.24 0.0082 0.9987
100 50000 2.00E-03 1.00E-14 250 3 200 3 0.854 0.24 0.0082 0.9981
100 5000 2.00E-04 1.00E-14 250 3 200 3 1.02 1 0.356 0.9987
100 500 2.00E-03 1.00E-14 250 3 200 3 1.02 0.1 0.439 0.9998
100 50 2.00E-08 1.00E-14 250 3 200 3 1.2 0.99 7.20E-05 0.045
100 5000 2.00E-08 1.00E-14 250 3 200 3 1.2 1 0.00001 0.9978

4.1 Results of homotopy after adding one resistor



The circuits having two resistors only could not give solutions even after
so many attempts. So we decided to add one extra resistor between node 2
and node 3. And finally we got one solution i.e.

Soll
1.7148
1.5139
0.6705
Circuit diagram

AT Tspice IV - [twoTtwoRsameside.asc] -
4, Fle Edit Hierchy View Simulate Tools Window Help NEE

BE R[] R0AR| B ERE A BEM OB LLDIE I TOHOD e

4 Dutlasc 4 Drhlasc 4 Drafdasc & DrsfSasc 4, DraRGasc 4, twoToneRasc -+, twoTwoRsamesidessc 1. twoTtwoRsamesideaso

Homotopy result:
Initial condition v1=1.4 ; v2=1.17 ;v3=.693 ;11=0.002

NS\ smB9 e [S2- |- 70 vax @ Newto MATLAB? Wateh 1) 15 [ i | by | & % O D of
CEE[ -0 Jr [ [x |0
] T Initial Guess = Equation solved
3
10 - &= [1.4; 1.17 ; 0.673]; fsolve completed
11 is near zero as
12 % Determine a root of the homotopy function w the problem appe
13
14 - X0 = fsolve('T2Rsamesideinit',a): <stopping criter
15
16 % Solve the nonlinear system of equations usi The final soluti
17 % with 2 varisble-order varizble-step predict Sol1
18 1.7148
19 - [vs, 2, lambda, v,N] = pchomotopy ('T2Rsamessideds 1.5139
20 0.6705
21 % Plot the trajectory of the variables wrt la
22 fx 3>
23 - plot(lanbda,v)
24 - title('Homotopy paths for T3Rsameside (Modifi
25 - =xlabel('Lambda')
26 -~  ylabel('Node Voltages and Currents')
27 - leg = legend('v(1)','w(2)','v(3)'):
28 —  set(leg,'lLocation','NerthWest') [ [ T e
29 - axis([-1 1.2 -80 &01)
30 - grid
31
32 % Display the final soluticns of the nonlines
33

5 Conclusion:



Based on the results that we got using homotopy applied over the above
two circuits we conclude that homotopy is very sensitive to the initial con-
dition. As described above in the section 1.2 convergent ball concept, to
have a solution we must have initial condition in the ball. No solution in 2-
transistor-2-resistor circuit after so many attempts and one solution in 2-
transistor-3-resistor gives the insight that either the ball is too small so
that we couldn’t choose the initial condition inside that ball or the ball

might not have existed for the 2-transistor-2-resistor circuit.

6 Modified Variable Stimulus Homotopy: Imple-

mentation.

We had already the fixed point homotopy code. We have a parser that
can generate system nodal and modified nodal equations and the Jacobian
of the equations. The equations and Jacobians are used in the implementa-
tion of homotopy.

6.1 Why do we need to implement this:

The types of homotopy functions described above are used to find the
solutions of circuits having multiple dc operating points of the given cir-
cuits. And once we get the all dc operating points we can move on for the
steady state analysis part. Since we may encounter various types of cir-
cuits and depending on the homotopy functions applied to find the solu-
tions, we can get different convergence time. For example: variable gain
homotopy is the fastest converging for bipolar circuits. So, we must have
mathematical tool on which we can analyze the circuits. In this regard, I
choose to implement modified variable stimulus homotopy.

6.2 Implementation:
H(x,\) = (1—X\)(x—a)G_leak + F()\x) (14)

In the Matlab code used in fixed point homotopy method we will use the
predictor corrector method (pchomotopy) same as it is. But we need to
change other Matlab functions appropriately. For the implementation part

we will need these two equations also which are as follows:

H
df = —G_leak(x — a) + Jacobian(A\x)x

) (15)



And,

C;—H = G_leak(1 — \) + AJacobian(x) (16)
T

NOTE: Order of multiplication of Jacobian(Ax) and x in equation (15)

must be maintained as both are matrix and non-commutative.

6.3 Finding constant a:

We have already discussed the importance of initial value in implement-
ing the homotopy. Finding appropriate a is must for the convergence. Alt-
hough the homotopy functions are globally convergent but when applying
new homotopy initial value must be tweaked properly.

For our case we had initial value of fixed point homotopy and for this

homotopy, our initial value will be calculated be following equation:
F(0)
Glk (17)

This is because modified variable stimulus homotopy does not give ini-
tial value equal to ‘a’ unlike fixed point homotopy, as it does not reduce to

x=a as A=0.

6.4 Points to remember while testing this homotopy on

other circuits

e Change a accordingly z, + % by finding F(0) in .....init.m func-

tion by uncommenting “equation(lambda*X)”

e Paste equation and Jacobian at appropriate location in matlab
functions

e In main.m function change the axis legend accordingly.

e In ...jac.m function change eye() as per the number of variables

7 Results using modified variable stimulus ho-

motopy

The “modified variable stimulus homotopy” tested on the two circuits ie.
Schmitt circuits and chua’s circuit. And we got the following results which

is shown below in the following table and graph:

7.1  Schmitt circuit (3 dc operating points)
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Homotopy Path:

Mode Voltages and Currents

Homotopy paths for Schmitt (Modified Nodal Equations)

12 T T T T T
v(1) : ; :
v(2) :
10+ v(3)
v(d) :
v(5) §
gl g [ ..................................................... i
ifvce)
N 1 ] TR W0 P—
Ab i , e 5 o (oo 15, e ST LO D B e T e B D AV e o L 0 R aEA L D )
e . §
f”_/ :
; i 1 i 1
0 0.2 0.4 06 0.8 1 1.2
Lambda

Homotopy Solution:

The final solutions for Schmitt (Modified Hodal Eguations) are

0.
0.
10.
0.
1.

5011
T103
a6TZ5
ale]sls]
T103
2000
. 0000
. 0046
L0021

N

5012

. T682
L6918
L2355
. 43900
. 2000
. 0000
D063
. D000

20l3
L6257
. 0646
.0383
. 7962
. 5000
10.0000
-0.0087
0.0000

=

7.2

Chua’s circuit (9 dc operating points)

Homotopy Path:
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Homotopy paths for Chua Circuit (Modified Nodal Equations)

I ! ! V(1)
v@2)
20+ g W3)
v(4)
5)
7 (E)
)
)
¥(9)
. —(10)
£ Vi)
: i w(12)
3 13)
5 V(14)
3 i ifveet)
2 ——i(wee)
> il itv1)
E i(2)
2
0 02 04 06 08 1 12
Lambda
Homotopy Solution:
The final solutions for Chua Circuit (Modified Nodal Egquations) are
S5o0ll Sol2 50l3 S50l4 5015 Solé 50l7 5018 50l%9
1.7713 1.7835 1.7703 1.8344 1.8551 1.7834 1.7684 1.82&8 1.7601
-8.2281 -8.21686 -8.2298 -8.1656 —8.1449 -8.2187 -8.2318 -8.1733 -8.2400
-1.106&& -2.562%9 -2.9337 —4.4405 —-4.3603 -2.5626 -2.9817 -4.4741 -4.7314
1.4640 T7.753986 9.6007 g.8922 8.1419 1.4715 1.4615 T.988% 9.4817
1.4639 1.4717 1.4628 8.0358 8.1476 T.7596 9.8215 9.1853 9.6986
0.36887 1.8051 1.8230 1.8736 1.8833 0.3718 0.36893 1.8523 1.8097
0.36887 0.3707 0.3684 1.8608 1.8834 1.8051 1.8274 1.8713 1.8153
1.3882 1.4313 1.4423 1.4942 1.5083 1.39%2 1.3848 1.4765 1.4297
1.3882 1.3994 1.3866 1.4847 1.5064 1.4312 1.4460 1.4910 1.4345
10.4580 3.3134 1.5424 1.6133 2.2040 10.2917 10.2424 2.5464 1.529%
0.8934 -0.5628 -0.9337 —-2.4405 —-2.3603 -0.5626 -0.9817 -2.4741 -2.7314
10.6933 10.5220 10.4784 2.6807 2.4294 3.5454 1.5440 1.6027 1.5328

12.0000 12.0000 12.0000 12.0000 12.0000 12.0000 12.0000 12.0000 12.0000
12.0000 12.0000 12.0000 12.0000 12.0000 12.0000 12.0000 12.0000 12.0000

-0.0030 -0.0032 -0.0032 -0.0034 -0.0034 -0.0031 -0.0031 -0.0034 -0.0032
-0.0030 -0.0030 -0.0030 -0.0033 -0.0034 -0.0032 -0.0032 -0.0033 -0.0032
-0.0007 -0.0006 -0.0005 —-0.0004 —-0.0004 -0.000& -0.0005 -0.0004 -0.0004
0.0003 0.0004 0.0004 0.0002 0.0002 0.0001 0.0001 0.0001 0.0001

8 Implementation challenges in other homotopy

Having fixed point homotopy implemented already, I worked on imple-
menting modified variable stimulus homotopy and got the same results.

The other two homotopy “variable stimulus homotopy” and “variable gain

d\’ dx

homotopy” can also be implemented in the same way by finding
and z, appropriately.

The major problem in these homotopies will be the treatment of non-lin-
ear terms differently. Derivative of the homotopy function will require ex-
tra Matlab routine written according to the requirement which is not so

difficult. But that will be very specific depending on circuits to circuits.
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For now, we have parse which generate equations and Jacobian, only
these two are used in the homotopy implemented. For other two ho-
motopies Jacobian will require some terms in different format. And for
those specific terms we will have to modify our parser in accordance to
those equations as well.
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