
1

ENSC 891: Directed Studies
Intergration of ns-BGP with ns-2.34

(ns-2.34-BGP)

Fall 2009

FINAL REPORT

Mohammad Reza Sahraei

mrs16@sfu.ca

2

Table of Contents

1. ABSTRACT.. 5
2. INTRODUCTION .. 6
2.1. ns Overview .. 8
2.2. BGP Overview.. 8
2.3. ns-BGP Overview ... 10
3. Hardware Platform.. 11
4. ns-2.33-BGP Analysis... 12
5. Integration ... 13
6. Validation.. 15
7. Related Work .. 16
8. Future Work .. 16
9. Conclusion .. 17
10. APPENDICES .. 18
10.1. Acronyms.. 18
10.2. ns-2.33-BGP files.. 18
10.3. ns-2.34-BGP patch file.. 21
11. REFERENCES ... 41

3

List of Figures

Figure 1: ns-BGP Progress and Timeline. .. 6
Figure 2: Network Architecture Routing Protocol.. 9
Figure 3: BGP Message Exchange. .. 10
Figure 4: Unicast structure of ns-BGP.. 11
Figure 5: ns-2.33-BGP file and directory structure. ... 12

4

Index of Tables

Table 1: Complexity of the Merging file in the Patch. ... 14
Table 2: Complexity of fixing the files in the Patch that caused error. 15
Table 3: ns-BGP Execution Results.. 15
Table 4: ns-BGP Output Comparison. .. 16

5

1. ABSTRACT

The ns network simulator (popularly called ns-2, in reference to its current generation) is
a discrete event simulator. It is popular in academia for its extensibility (due to its open
source model) and plentiful online documentation. ns is widely used in the simulation of
routing and multicast protocols, among others, and is heavily used in ad-hoc networking
research. ns supports an array of popular network protocols, offering simulation results
for wired and wireless networks alike. It can be also used as limited-functionality
network emulator [1].

The Border Gateway Protocol (BGP) is an inter-Autonomous System routing protocol.
Today, BGP is used as the core routing protocol of the Internet. It is built on experience
achieved using Exterior Gateway Protocol (EGP) as defined in Request For Comments
(RFC) 904 [2]. Border Gateway Protocol 4 (BGP-4) proposed in RFC 1771 by Y.
Rekhter and T. Li from Network Working Group within the Internet Engineering Task
Force (IETF). The primary function of a BGP speaking system is to exchange network
reachability information with other BGP systems. This network reachability information
includes information of the list of Autonomous Systems (ASs) that reachability
information traverses. This information is sufficient for constructing a graph of AS
connectivity for this reachability, from which routing loops may be pruned and, at the AS
level, some policy decisions may be enforced [3].

The BGP performance is changing due to the dynamic nature of the internet. Therefore,
the research community needed to study the protocol in a network simulator. As the
result, BGP was integrated into ns-2.27 in 2004 and was called ns-BGP [4].

ns-2 continued to develop and the new features added to the build apart from the ns-BGP
add on. In order to make ns-BGP compatible with the latest build, a newer version of ns-
BGP for ns-2.33 was implemented in 2008 [5]. This is the latest implementation of ns-
BGP for ns-2.34.

6

2. INTRODUCTION

The Border Gateway Protocol, BGP, is a de facto inter-Autonomous Systems (ASs)
routing protocol. The primary function of a BGP speaking system is to exchange network
reachability information with other BGP systems. This network reachability information
includes information on the list of Autonomous Systems that reachability information
traverses. This information is sufficient for constructing a graph of AS connectivity for
this reachability, from which routing loops may be pruned and, at the AS level, some
policy decisions may be enforced [6].

Since the Internet has a very dynamic nature and this has an effect on the performance of
the routing protocols such as BGP. Normally, every five years or so, the research
community performs a complete analysis on the protocol. Because the empirical data is
hard to access and theoretical analysis lacks the accuracy to reflect the complete picture,
simulation has become very attractive and practical for the academia and research
communities. On the other hand, the Network Simulator better known as ns with an open
source software policy is widely used by researchers all around the world. Therefore, the
above reasons were a good motivation to implement the BGP protocol for ns-2. This
happened by importing the code from BGP implementation in SSFNET and converting
them to C++ and OTcl code in 2004 [4]. Later, the ns-BGP upgraded to be compatible
with the latest version of ns, which was ns-2.33 in 2008 [5]. This project implements ns-
BGP for the latest stable ns release ns-2.34. Figure 1 shows the ns-BGP progress and
timeline.

In order to differentiate the ns-BGP implementation for different ns-2 release, any
referral in this paper includes the ns release number in ns-BGP name (e.g. ns-BGP
implementation in ns-2.34 is referred to as ns-2.34-BGP.

Figure 1: ns-BGP Progress and Timeline.

7

The ns-2.34-BGP project has these phases:

 Technology learning phase:

Before attempting the project, I had to review the technologies used in the ns-
BGP. Also, it was required to understand how BGP protocol worked. In this
phase, I studied and reviewed these technology fundamentals and concepts:

o Tcl/Tk [7]
o ns-2.33 and ns-2.34 network simulator [8, 9]
o BGP-4 [3]

 Integration environment setup phase:

ns-2 runs under Linux, Mac OS X, and Windows via Cygwin. I chose Linux
as the integration environment for the project and used two different flavors of
Linux: Xubuntu 9.4 and Xandros 3.0.2. I had to install gcc C compiler to be
able to compile and run the ns distributions. I installed ns-2.33 and ns-2.34 on
two separate computers. There are necessary changes to environment
parameters in .bashrc file. The changes setup path for various components
used in the distribution: OTcl, nam, etc. I discovered and used a required
patch for ns-2.33 distribution to work under Xubuntu 9.4 [10].

 Code integration phase:

This phase consists of two sub-phases: The first sub-phase integrates the ns-
BGP files into the ns files system tree structure. These files do not have any
overlap with the ns distribution files. The second sub-phase required
incorporating or changing ns code to be compatible with ns-BGP. This sub-
phase needed extra attention to the logic of the overlapping codes
implemented in ns-2.33-BGP in order to retain the functionality of the classes
and procedures in ns-2.34.BGP in tact.

 Code compilation phase:

Integration of ns-2.33-BGP code into ns-2.34 was not sufficient to generate an
error free compile result. Some of the C syntax and library calls had to be
modified to resolve the error reported by gcc C compiler.

 Project verification and validation phase:

This phase includes verification and validation of the code to ensure the
functionality of the ns-2.34-BGP build is identical to ns-2.33-BGP. There are
some standard test cases defined in ns-2.27-BGP under: ~/ns-allinone-2.27/ns-
2.27/tcl/bgp/test directory. I used these test cases in ns-2.34-BGP and
compared the result of the outputs and trace output (.nam) with ns-2.33-BGP.

8

 Project deliverables phase:

This phase includes the tasks related to preparation of the report, presentation
slides, and consolidation of ns-2.34-BGP code release.

2.1.ns Overview

The ns network simulator (popularly called ns-2, in reference to its current
generation) is a discrete event simulator. It is popular in academia for its extensibility
(due to its open source model) and plentiful online documentation. ns is popularly
used in the simulation of routing and multicast protocols, among others, and is
heavily used in ad-hoc networking research. ns supports an array of popular network
protocols, offering simulation results for wired and wireless networks alike. It can be
also used as limited-functionality network emulator [1].

Development of ns began in 1989 as a variant of the REAL network simulator. By
1995, ns had gained support from DARPA (Defense Advanced Research Projects
Agency), the VINT (Virtual Inter Network Test-bed) project at LBNL (Ernest
Orlando Lawrence Berkeley National Laboratory), Xerox PARC (Palo Alto Research
Center, Inc.), UCB (University of California, Berkeley), and USC/ISI (University of
Southern California / Information Sciences Institute) [1].

ns-2 is implemented in C++ and OTcl, which is an object oriented variant of Tcl. The
user benefits from OTcl scripts to describe the network and to configure the system.
C++ is used to implement codes that are executed frequently. C++ is also preferable
when the efficiency and performance has higher priority over the simplicity and
flexibility in writing the code.

ns-2 supports various routing algorithms and transport protocols such as UDP, TCP,
and SCTP. It generates traffic in forms of Constant Bit Rate (CBR), Exponential and
Pareto distributions, and using trace files. The simulation process can be visually
traced by a companion package called network simulator or nam. ns-2 supports
Linux, Mac OS, and Windows via Cygwin. The latest stable version is ns-2.34, which
was released in June 2009.

ns-3 is the third generation of ns that has begun development as of July 1, 2006 and is
projected to take four years. It is funded by the institutes like University of
Washington, Georgia Institute of Technology and the ICSI Center for Internet
Research with collaborative support from the Planète research group at INRIA
Sophia-Antipolis. Currently ns-3 is in development phase. It is an event based
network simulator [1].

2.2.BGP Overview

9

Autonomous System (AS) is a collection of routers under a single technical
administrator. The routing protocol inside of the AS is called Interior Gateway
Protocol (IGP). Routing Information Protocol (RIP), Interior Gateway Routing
Protocol (IGRP), Enhanced Interior Gateway Routing Protocol (EIGRP), Open
Shortest Path First (OSPF), and Intermediate system to intermediate system (IS-IS)
are examples of IGP protocol.

The Border Gateway Protocol (BGP) is an inter-Autonomous System routing
protocol. Today, BGP is used as the core routing protocol of the Internet. It is
primarily used to exchange network layer reachability information (NLRI) between
ASs. It is built on experience achieved using Exterior Gateway Protocol (EGP) as
defined in Request For Comments (RFC) 904 [2]. Border Gateway Protocol 4 (BGP-
4) proposed in RFC 1771 by Y. Rekhter and T. Li from Network Working Group
within the Internet Engineering Task Force (IETF). The primary function of a BGP
speaking system is to exchange network reachability information with other BGP
systems. This network reachability information includes information of the list of
Autonomous Systems that reachability information traverses. This information is
sufficient for constructing a graph of AS connectivity for this reachability, from
which routing loops may be pruned and, at the AS level, some policy decisions may
be enforced [3]. BGP requires to run on a reliable layer, therefore, it uses TCP
protocol to send and receive its messages. BGP uses TCP port 179. Figure 2 shows an
example of network architecture routing protocol of four ASs.

Figure 2: Network Architecture Routing Protocol.

The BGP protocol uses the following messages:
o OPEN
o UPDATE
o KEEPALIVE
o NOTIFICATION

10

The router that advertises to its peer on another AS is called BGP speaker. Two
speakers first establish a TCP connection on port 179. Then, they exchange
messages to open and confirm BGP connection parameters using OPEN message.
The entire routing table is sent to the peer using UPDATE message. The speakers
send any incremental change to the routing table via UPDATE message. The
KEEPALIVE message is periodically sent to ensure the BGP connection is still
active. A NOTIFICATION message is sent when an error condition in a message
is detected or the hold timer expired. After sending the NOTIFICATION
message, the speaker gracefully closes the TCP connection and remove the path
to the speaker the error is detected from the routing table, and if necessary,
advertise the new change to the other peers. Figure 3 shows an example of
exchanging BGP messages between two speakers of different ASs. BGP speaker
of AS1 fails to send a KEEPALIVE message within the Hold Time.

Figure 3: BGP Message Exchange.

2.3.ns-BGP Overview

ns-BGP for the first time was ported and integrated to ns-2 (ns-2.27-BGP) in 2004
[4]. This effort involved the port of the BGP and TcpSocket modules from SSFNet
[11]. SSFNet is a Java-based network simulator which is comprised of a simulation
engine and a configuration language known as the Domain Modeling Language
(DML). Since SSFNet was implemented using object oriented technology, its BGP
module was a natural candidate for ns-2 integration. Additionally, IPv4 addressing
and packet forwarding was also incorporated into ns-2 to accommodate the SSFNet
BGP dependencies [5].

11

Within ns-2, unicast routing is achieved using forwarding and control planes where
the forwarding plane classifies and forwards packets to their destinations nodes using
classifier and routing modules while the control plane provisions the route creation,
computation, routing algorithms, and management of the routing tables. Figure 4
illustrates the ns-BGP unicast structure which is based the native ns-2 unicast
architecture [5].

Figure 4: Unicast structure of ns-BGP.

In ns-2.27-BGP, TcpSocket has been modified to support socket and at the same time
maintain the structure of SSFNet BGP. ns-2 address classifier has been replaced with
IPv4Classifier to support IPv4 addressing and packet forwarding. FullTcpAgent,
which is the TCP agent for TcpSocket, is modified to support user data transmission.

The TcpSocket class implements a UNIX-like socket application programming
interface (API) which includes standard calls such as bind(), connect(), listen(),
close(), read(), and write(). Additionally, it also provisions data queuing and callback
functions [5].

classifier_ in Figure 4 is an IPv4Classifier. A new routing module rtModule/BGP
manages the IPv4Classifier and is a replacement of the basic routing module
rtModule/Base. TcpSocket has been added to the modified FullTcpAgent,
encapsulating the TCP services into a socket interface. A new routing protocol
rtProtoBGP relies only on TcpSocket for packet transmission. rtProto/BGP has one
PeerEntry for each peer. PeerEntry establishes and closes a peer session and
exchanges BGP messages with a peer. Each instance of PeerEntry contains one
AdjIn, one AdjOut, and a variable BGP_Timer. LocRIB, AdjIn, and AdjOut
correspond to the three parts of the BGP Routing Information Base (RIB): Loc-RIB,
Adj-RIBs-In, and Adj-RIBs-Out. BGP_Timer provides support for the BGP timing
features [4].

3. Hardware Platform

12

In this project, I used two computers with the following specifications:

 Primary hardware:
o Toshiba Satellite
o Intel® Pentium® 4 CPU 2.4 GHz / 1 GB RAM
o Linux Xandros 3.0.2

 Additional hardware:
o Dell Inspiron
o Pentium® Dual-Core CPU T4200 2.0 GHz / 3 GB RAM
o Linux Xubuntu 9.4

Originally the project started on Toshiba Satellite with Linux Xubuntu 9.4. However,
approximately half way through the project I added a new Dell computer and installed
Xubuntu 9.4 on it. Thereafter, I installed Linux Xandros 3.0.2. I used the Thoshiba
computer to run and to test ns-2.33-BGP and also used the Dell computer to implement
and verify ns-2.34-BGP.

4. ns-2.33-BGP Analysis

ns-2.33-BGP files and directories are archived into a .tgz tar ball. For a complete list of
the files and directories refer to Appendix 11.2. Figure 5 illustrates the files, which
organized into a series of directories.

Figure 5: ns-2.33-BGP file and directory structure.

13

The notation in the figure 5 is as:
 The ellipses represent directories. The number (X/Y/Z) in each ellipse shows:

o X – number of the files and directories in this directory and its sub-
directories.

o Y – number of the files in current directory only.
o Z – number of sub-directories in this directory only.

 The angled rectangles represent core ns-2.33-BGP Tcl scripts.
 The rectangles represent ns-2.33-BGP test cases scripts.

The total number of files and directories are shown in the figure 5. Overall, there are
104 source files in the tar ball including: 41 C++ files (.cc), 46 header files (.h), 16 tcl
files, and one patch file.

The first step to install ns-2.33-BGP is to copy and extract the tar ball into the
ns-2 top level, which makes the following modifications:

 Creates a patch file in the top level directory
 Adds new files for TcpSocket under /tcp
 Creates a bgp sub-directory under /tcl
 Creates a test sub-directory under /bgp with all the test scripts files

The second step is to apply the patch file in order to update related ns files. The last
step is to recompile ns files.

5. Integration

The objective of the project is to integrate ns-BGP to the current release of the simulator:
ns-2.34. In addition, all of subsequent enhancement, development, and bug fixes that
have taken place, since ns-2.33-BGP was released, needed to be retained. This phase
consists of two sub-phases:

The first sub-phase integrates the ns-BGP files into the ns files system tree structure.
These files do not have any overlap with the ns distribution files. These files are
consolidated into a tar ball. These files include the C codes and the tcl scripts that
required to be copied under ns-2.34 sub-directory. Overall, there are 104 source files
including: 41 C++ files (.cc), 46 header files (.h), 16 tcl files, and one patch file gets
copied under the ns tree structure. There is a Readme.txt that gets extracted into /bgp sub-
directory.

The second sub-phase required incorporating or changing ns code to be compatible with
ns-BGP. This sub-phase needed extra attention to the logic of the overlapping codes
implemented in ns-2.33-BGP in order to retain the functionality of the classes and the
procedures in ns-2.34.BGP in tact. The extracted patch file, ns-2.34-bgp_2.0_patch,
contains modification of 37 files. The 16 files are merged with the logic of ns-BGP,
which are listed in Table 1. The Merging Complexity column indicates the amount of
work spent on each file.

14

Table 1: Complexity of the Merging file in the Patch.

The 21 files in the patch file are related to the logic of BGP. They are modified because
they caused a compile error. Table2 lists the files and amount of work spent on each file.

15

Table 2: Complexity of fixing the files in the Patch that caused error.

6. Validation

In order to validate and verify the functionality of ns-2.34-BGP to ensure the behaviour is
identical to the previous version, ns-2.33-BGP, significant amount of work spent on the
project. This was absolutely critical to make sure the tedious job of code integration was
correct and the result of the two ns-BGP are the same. There are 12 Tcl scripts test cases
under ~/ns-allinone-2.34/ns-2.34/tcl/bgp/test directory that examine the basic functions of
BGP. Table 3 lists these scripts along with the result of the execution of each for ns-2.33-
BGP and ns-2.34-BGP. I noticed that reflection2.tcl causes core dump for both ns-2.33-
BGP and ns-2.34-BGP.

Table 3: ns-BGP Execution Results.

Here is the output and the core dump on screen.

REFLECTION2 VALIDATION TEST:

Three ASes(AS0, AS1 and AS2) connected in a line, the middle one(AS0) containing eight BGP routers,
the others just one each. AS0 has two clusters: cluster 1000 and 2000. Cluster 1000 has two reflectors: n0
and n1. n2, n3 and n4 are reflection clients of both n0 and n1. Cluster 2000 contains one reflector n5, which
has n6 and n7 as its reflection clients.

 AS 1 AS 0 AS 2
 n8 }------{ n0-7 }------{ n9

Simulation starts ...

time: 0.23
cbr0 starts to send UDP segments to n10.

classifier _o36
0 offset
0 shift
2147483647 mask
0 slots

--- Classfier::no-slot{} default handler (tcl/lib/ns-lib.tcl) ---

16

 _o36: no target for slot -1
 _o36 type: Classifier/IPv4
content dump:
---------- Finished standard no-slot{} default handler ----------

The test script files generate output on standard screen and in a nam file. Table 4 shows
the results of comparison of standard output and nam files for both ns-2.33-BGP and ns-
2.34-BGP. The result of both comparisons is identical.

Table 4: ns-BGP Output Comparison.

7. Related Work

Many different BGP capable simulators exist in the community. Some them are
commercial such as OPNET while others are implemented by academic and research
communities and follow an open source policy standard. SSFNet (Scalable Simulation
Framework Net) is a public-domain standard for discrete-event simulation of large,
complex systems in Java and C++ [11]. SSFNet supports BGP; in fact ns-BGP ported the
BGP logic from SSFNet. C-BGP is a dedicated BGP solver rather than simulator [12].
GNU Zebra BGP daemon was integrated into ns-2 almost at the same time ns-BGP was
initially developed [13]. BGP++ [14] is a BGP module for ns-2 and GTNetS network
simulators. It is actually a port of the Zebra BGP daemon and adapted to a C++
environment [5].

8. Future Work

The future work can be categorized in the following notes:
 Address the problem making reflection2.tcl causing core dump
 Incorporate the ns-2.34-BGP code in ns-2 distribution
 Add route flap damping
 Add adaptive minimal route advertisement interval (MRAI)
 Add policy routing
 Incorporate the ns-BGP code in ns-3 distribution

17

9. Conclusion

I have reached the objective of the project to integrate ns-BGP to the current release of
the simulator: ns-2.34 conditioned on all of subsequent enhancement, development, and
bug fixes that have taken place in ns build be retained. However, I discovered that one of
twelve script tests, reflection2.tcl, causes core dump in both ns-2.33-BGP and ns-2.34-
BGP. In order to proceed with the described future work, the first vital step would be to
address the logical problem causing the core dump.

18

10. APPENDICES

10.1. Acronyms

API Application Programming Interface
AS Autonomous System
BGP Border Gateway Protocol
DARPA Defense Advanced Research Projects Agency
DML Domain Modeling Language
EGP Exterior Gateway Protocol
EIGRP Enhanced Interior Gateway Routing Protocol
FSM Finite State Machine
IETF Internet Engineering Task Force
IBGP Interior Border Gateway Protocol
IGP Interior Gateway Protocol
IGRP Interior Gateway Routing Protocol
IP Internet Protocol
IS-IS Intermediate System to Intermediate System
ISP Internet Service Providers
ns-2 Network Simulator 2
ns-3 Network Simulator 3
ns-BGP Network Simulator-Border Gateway Protocol
NLRI Network Layer Reachability Information
OSPF Open Shortest Path First
OTcl Object Tool Command Language
RFC Request for Comments
RIP Routing Information Protocol
RTP Real Time Protocol
SSFNet Scalable Simulation Framework Network
SSFNet.OS.BGP4 SSFNet’s BGP model
STL Standard Template Library
Tcl Tool Command Language
TCP Transmission Control Protocol
Tk Tool kit
UDP User Datagram Protocol
VINT Virtual Internetwork Testbed

10.2. ns-2.33-BGP files

The initial ns-2.33-BGP release archive contents are:

19

ns-2.33/
ns-2.33/bgp/
ns-2.33/bgp/classifier-ipv4src.cc
ns-2.33/bgp/Readme.txt
ns-2.33/bgp/peer-entry.cc
ns-2.33/bgp/routeinfo.cc
ns-2.33/bgp/ribelement.cc
ns-2.33/bgp/rtProtoBGP.cc
ns-2.33/bgp/Util/
ns-2.33/bgp/Util/ipaddress.h
ns-2.33/bgp/Util/bitstring.cc
ns-2.33/bgp/Util/stringmanip.h
ns-2.33/bgp/Util/stringmanip.cc
ns-2.33/bgp/Util/radixtree.h
ns-2.33/bgp/Util/radixtreenode.h
ns-2.33/bgp/Util/bit.h
ns-2.33/bgp/Util/bitstring.h
ns-2.33/bgp/Util/ipaddress.cc
ns-2.33/bgp/locrib.cc
ns-2.33/bgp/rtProtoBGP.h
ns-2.33/bgp/routeinfo.h
ns-2.33/bgp/adjribin.h
ns-2.33/bgp/classifier-ipv4.cc
ns-2.33/bgp/locrib.h
ns-2.33/bgp/route.cc
ns-2.33/bgp/adjribout.h
ns-2.33/bgp/Comm/
ns-2.33/bgp/Comm/bgpmessage.h
ns-2.33/bgp/Comm/startstopmessage.h
ns-2.33/bgp/Comm/transportmessage.h
ns-2.33/bgp/Comm/openmessage.h
ns-2.33/bgp/Comm/transportmessage.cc
ns-2.33/bgp/Comm/openmessage.cc
ns-2.33/bgp/Comm/notificationmessage.h
ns-2.33/bgp/Comm/updatemessage.h
ns-2.33/bgp/Comm/bgpmessage.cc
ns-2.33/bgp/Comm/updatemessage.cc
ns-2.33/bgp/Comm/startstopmessage.cc
ns-2.33/bgp/Comm/keepalivemessage.cc
ns-2.33/bgp/Comm/keepalivemessage.h
ns-2.33/bgp/Comm/notificationmessage.cc
ns-2.33/bgp/global.h
ns-2.33/bgp/peer-entry.h
ns-2.33/bgp/route.h
ns-2.33/bgp/adjribout.cc
ns-2.33/bgp/adjribin.cc

20

ns-2.33/bgp/Timing/
ns-2.33/bgp/Timing/bgp_timer.h
ns-2.33/bgp/Timing/mraitimer.cc
ns-2.33/bgp/Timing/bgp_timer.cc
ns-2.33/bgp/Timing/mraitimer.h
ns-2.33/bgp/Timing/timeoutmessage.cc
ns-2.33/bgp/Timing/timeoutmessage.h
ns-2.33/bgp/Timing/mraiperpeertimer.cc
ns-2.33/bgp/Timing/mraiperpeertimer.h
ns-2.33/bgp/ribelement.h
ns-2.33/bgp/Path/
ns-2.33/bgp/Path/localpref.h
ns-2.33/bgp/Path/originatorid.h
ns-2.33/bgp/Path/atomicaggregate.cc
ns-2.33/bgp/Path/aggregator.cc
ns-2.33/bgp/Path/attribute.h
ns-2.33/bgp/Path/attribute.cc
ns-2.33/bgp/Path/aspath.h
ns-2.33/bgp/Path/clusterlist.cc
ns-2.33/bgp/Path/origin.h
ns-2.33/bgp/Path/clusterlist.h
ns-2.33/bgp/Path/segment.cc
ns-2.33/bgp/Path/med.h
ns-2.33/bgp/Path/origin.cc
ns-2.33/bgp/Path/nexthop.cc
ns-2.33/bgp/Path/nexthop.h
ns-2.33/bgp/Path/aggregator.h
ns-2.33/bgp/Path/community.h
ns-2.33/bgp/Path/atomicaggregate.h
ns-2.33/bgp/Path/segment.h
ns-2.33/bgp/Path/med.cc
ns-2.33/bgp/Path/localpref.cc
ns-2.33/bgp/Path/originatorid.cc
ns-2.33/bgp/Path/community.cc
ns-2.33/bgp/Path/aspath.cc
ns-2.33/bgp/classifier-ipv4.h
ns-2.33/bgp/classifier-ipv4src.h
ns-2.33/tcl/
ns-2.33/tcl/bgp/
ns-2.33/tcl/bgp/ns-bgp-node.tcl
ns-2.33/tcl/bgp/ns-rtProtoBGP.tcl
ns-2.33/tcl/bgp/ns-bgp-peerentry.tcl
ns-2.33/tcl/bgp/test/
ns-2.33/tcl/bgp/test/reconnect.tcl
ns-2.33/tcl/bgp/test/keep-peer.tcl
ns-2.33/tcl/bgp/test/forwarding.tcl

21

ns-2.33/tcl/bgp/test/withdrawals.tcl
ns-2.33/tcl/bgp/test/ibgp.tcl
ns-2.33/tcl/bgp/test/route-distrib.tcl
ns-2.33/tcl/bgp/test/drop-peer2.tcl
ns-2.33/tcl/bgp/test/select.tcl
ns-2.33/tcl/bgp/test/drop-peer.tcl
ns-2.33/tcl/bgp/test/reflection.tcl
ns-2.33/tcl/bgp/test/propagation.tcl
ns-2.33/tcl/bgp/test/reflection2.tcl
ns-2.33/tcl/bgp/ns-tcpmaster.tcl
ns-2.33/tcp/
ns-2.33/tcp/receive_queue.cc
ns-2.33/tcp/send_queue.cc
ns-2.33/tcp/tcp_socket.cc
ns-2.33/tcp/tcp_data.cc
ns-2.33/tcp/tcp_data.h
ns-2.33/tcp/tcp_master.h
ns-2.33/tcp/continuation.h
ns-2.33/tcp/receive_queue.h
ns-2.33/tcp/tcp_master.cc
ns-2.33/tcp/send_queue.h
ns-2.33/tcp/tcp_socket.h
ns-2.33-bgp_2.0_patch

10.3. ns-2.34-BGP patch file

This Section contains the details of the changes in the ns-2.34-BGP patch file that is
required to alter ns-2.34 codes to make it compatible with ns-BGP.

diff -rc ns-2.34_original/common/node.cc ns-2.34/common/node.cc
*** ns-2.34_original/common/node.cc 2009-06-14 10:35:45.000000000 -0700
--- ns-2.34/common/node.cc 2009-10-12 18:30:52.000000000 -0700

*** 139,144 ****
--- 139,151 ----
 Node::command(int argc, const char*const* argv)
 {

Tcl& tcl = Tcl::instance();
+ // Merged by Will Hrudey, Reza Sahraei
+ // Modified by Tony Feng for BGP.
+ if (strcmp(argv[1], "as") == 0) {
+ as_num_ = atoi(argv[2]);
+ return TCL_OK;
+ }
+ // End Tony Feng
 if (argc == 2) {
 #ifdef HAVE_STL
 // Mods for Nix-Vector Routing

*** 214,220 ****

22

 }
 addNeighbor(node);
 return TCL_OK;
! }
 }
 return ParentNode::command(argc,argv);
 }
--- 221,237 ----
 }
 addNeighbor(node);
 return TCL_OK;
! // Merged by Will Hrudey, Reza Sahraei
! } // Modified by Tony Feng for BGP.
! else if (strcmp(argv[1], "add-AS-neighbor") == 0) {
! Node * node = (Node *)TclObject::lookup(argv[2]);
! if (node == 0) {
! tcl.resultf("Invalid node %s", argv[2]);
! return (TCL_ERROR);
! }
! ASnbs.push_back(node);
! return TCL_OK;
! } // End Tony Feng.
 }
 return ParentNode::command(argc,argv);
 }
diff -rc ns-2.34_original/common/node.h ns-2.34/common/node.h
*** ns-2.34_original/common/node.h 2009-06-14 10:35:45.000000000 -0700
--- ns-2.34/common/node.h 2009-10-12 18:49:07.000000000 -0700

*** 59,64 ****
--- 59,66 ----
 #include "energy-model.h"
 #include "location.h"
 #include "rtmodule.h"
+ // Merged by Will Hrudey, Reza Sahraei
+ #include <list>

 class NixNode;
 class LinkHead;

*** 130,135 ****
--- 132,139 ----

 inline int address() { return address_;}
 inline int nodeid() { return nodeid_;}
+ // Merged by Will Hrudey, Reza Sahraei
+ inline int as_number() { return as_num_; } //Added by Tony Feng
 inline bool exist_namchan() const { return (namChan_ != 0); }

 virtual int command(int argc, const char*const* argv);

*** 155,160 ****
--- 159,167 ----
 void addNeighbor(Node *node);

 static Node* get_node_by_address(nsaddr_t);

23

+ // Merged by Will Hrudey, Reza Sahraei
+ //AS neighbor list for BGP autoconfig, added by Tony Feng
+ list<Node*> ASnbs;

 //routines for supporting routing
 void route_notify (RoutingModule *rtm);

*** 168,173 ****
--- 175,182 ----
 LIST_ENTRY(Node) entry; // declare list entry structure
 int address_;
 int nodeid_; // for nam use
+ // Merged by Will Hrudey, Reza Sahraei
+ int as_num_; // Added by Tony Feng for BGP

 // Nam tracing facility
 Tcl_Channel namChan_;
diff -rc ns-2.34_original/common/packet.h ns-2.34/common/packet.h
*** ns-2.34_original/common/packet.h 2009-06-14 10:35:44.000000000 -0700
--- ns-2.34/common/packet.h 2009-10-12 21:29:17.000000000 -0700

*** 183,189 ****
 static const packet_t PT_AOMDV = 61;

 // insert new packet types here
! static packet_t PT_NTYPE = 62; // This MUST be the LAST one

 enum packetClass
 {
--- 183,194 ----
 static const packet_t PT_AOMDV = 61;

 // insert new packet types here
! // Merged by Will Hrudey, Reza Sahraei
! static const packet_t PT_RTPROTO_BGP = 62; // For bgp implementation, added by Tony Feng
! static const packet_t PT_TCPMASTER = 63;
! static const packet_t PT_PEERENTRY = 64; // end Tony Feng
!
! static packet_t PT_NTYPE = 65; // This MUST be the LAST one

 enum packetClass
 {

*** 303,308 ****
--- 308,317 ----
 name_[PT_RTCP]= "rtcp";
 name_[PT_RTP]= "rtp";
 name_[PT_RTPROTO_DV]= "rtProtoDV";
+ // Merged by Will Hrudey, Reza Sahraei
+ name_[PT_RTPROTO_BGP]= "rtProtoBGP"; // For bgp implementation, added by Tony
Feng
+ name_[PT_PEERENTRY]= "PeerEntry";
+ name_[PT_TCPMASTER]= "tcpmaster"; // end Tony Feng
 name_[PT_CtrMcast_Encap]= "CtrMcast_Encap";
 name_[PT_CtrMcast_Decap]= "CtrMcast_Decap";
 name_[PT_SRM]= "SRM";

24

diff -rc ns-2.34_original/common/simulator.cc ns-2.34/common/simulator.cc
*** ns-2.34_original/common/simulator.cc 2009-06-14 10:35:44.000000000 -0700
--- ns-2.34/common/simulator.cc 2009-10-12 21:32:01.000000000 -0700

*** 189,195 ****
 nh = rtobject_->lookup_flat(i, j);
 if (nh >= 0) {
 NsObject *l_head = get_link_head(nodelist_[i], nh);
! sprintf(tmp, "%d", j);
 nodelist_[i]->add_route(tmp, l_head);
 }
 }
--- 189,200 ----
 nh = rtobject_->lookup_flat(i, j);
 if (nh >= 0) {
 NsObject *l_head = get_link_head(nodelist_[i], nh);
! // Merged by Will Hrudey, Reza Sahraei
! // Modified by Tony Feng. We use the node address instead of
node_id.
! Tcl::instance().evalf("[Simulator instance] get-node-by-id %d",j);
! Node * node = (Node*) TclObject::lookup(Tcl::instance().result());
! sprintf(tmp, "%d", node->address());
! // End Tony Feng
 nodelist_[i]->add_route(tmp, l_head);
 }
 }
diff -rc ns-2.34_original/routing/route.cc ns-2.34/routing/route.cc
*** ns-2.34_original/routing/route.cc 2009-06-14 10:35:43.000000000 -0700
--- ns-2.34/routing/route.cc 2009-10-12 22:05:04.000000000 -0700

*** 393,406 ****
 {
 check(src);
 check(dst);
 adj_[INDEX(src, dst, size_)].cost = cost;
 }
 void RouteLogic::insert(int src, int dst, double cost, void* entry_)
 {
 check(src);
 check(dst);
! adj_[INDEX(src, dst, size_)].cost = cost;
! adj_[INDEX(src, dst, size_)].entry = entry_;
 }

 void RouteLogic::reset(int src, int dst)
--- 393,426 ----
 {
 check(src);
 check(dst);
+ // Merged by Will Hrudey, Reza Sahraei
+ // Modified by Tony Feng. check if src and dst come from the same as.
+ // Note that index = nodeid +1.
+ Tcl& tcl = Tcl::instance();
+ tcl.evalf("[[Simulator instance] get-node-by-id %d] set as_num_",src-1);
+ int as_num_src = atoi(tcl.result());
+ tcl.evalf("[[Simulator instance] get-node-by-id %d] set as_num_",dst-1);

25

+ int as_num_dst = atoi(tcl.result());
+ if (as_num_src == as_num_dst)
+ // End Tony Feng.
 adj_[INDEX(src, dst, size_)].cost = cost;
 }
 void RouteLogic::insert(int src, int dst, double cost, void* entry_)
 {
 check(src);
 check(dst);
! // Merged by Will Hrudey, Reza Sahraei
! // Modified by Tony Feng. check if src and dst come from the same AS.
! Tcl& tcl = Tcl::instance();
! tcl.evalf("[[Simulator instance] get-node-by-id %d] set as_num_",src-1);
! int as_num_src = atoi(tcl.result());
! tcl.evalf("[[Simulator instance] get-node-by-id %d] set as_num_",dst-1);
! int as_num_dst = atoi(tcl.result());
! if (as_num_src == as_num_dst) {
! adj_[INDEX(src, dst, size_)].cost = cost;
! adj_[INDEX(src, dst, size_)].entry = entry_;
! }
! // End Tony Feng.
 }

 void RouteLogic::reset(int src, int dst)
diff -rc ns-2.34_original/routing/rtmodule.cc ns-2.34/routing/rtmodule.cc
*** ns-2.34_original/routing/rtmodule.cc 2009-06-14 10:35:43.000000000 -0700
--- ns-2.34/routing/rtmodule.cc 2009-10-14 21:15:40.000000000 -0700

*** 142,147 ****
--- 142,158 ----
 bind("classifier_", (TclObject**)&classifier_);
 }

+ // Merged by Will Hrudey, Reza Sahraei
+ // Added by Tony Feng for BGP.
+ static class BGPRoutingModuleClass : public TclClass {
+ public:
+ BGPRoutingModuleClass() : TclClass("RtModule/BGP") {}
+ TclObject* create(int, const char*const*) {
+ return (new BGPRoutingModule);
+ }
+ } class_bgp_module;
+ // End Tony Feng.
+
 int RoutingModule::command(int argc, const char*const* argv)
 {
 Tcl& tcl = Tcl::instance();

*** 509,511 ****
--- 520,546 ----
 next_rtm_->add_route(dst, target);
 }

+ // Merged by Will Hrudey, Reza Sahraei
+ // Added by Tony Feng for BGP.
+ BGPRoutingModule::BGPRoutingModule() { }

26

+
+ int BGPRoutingModule::command(int argc, const char*const* argv) {
+ Tcl& tcl = Tcl::instance();
+ if (argc == 3) {
+ if (strcmp(argv[1], "route-notify") == 0) {
+ Node *node = (Node *)(TclObject::lookup(argv[2]));
+ if (node == NULL) {
+ tcl.add_errorf("Invalid node object %s", argv[2]);
+ return TCL_ERROR;
+ }
+ if (node != n_) {
+ tcl.add_errorf("Node object %s different from n_", argv[2]);
+ return TCL_ERROR;
+ }
+ n_->route_notify(this);
+ return TCL_OK;
+ }
+ }
+ return (RoutingModule::command(argc, argv));
+ }
+ // End Tony Feng.
diff -rc ns-2.34_original/routing/rtmodule.h ns-2.34/routing/rtmodule.h
*** ns-2.34_original/routing/rtmodule.h 2009-06-14 10:35:43.000000000 -0700
--- ns-2.34/routing/rtmodule.h 2009-10-14 21:19:04.000000000 -0700

*** 67,73 ****
 class Node;
 class VirtualClassifier;
 class DestHashClassifier;
!

 class RoutingModule : public TclObject {
 public:
--- 67,77 ----
 class Node;
 class VirtualClassifier;
 class DestHashClassifier;
! // Merged by Will Hrudey
! // Added by Tony Feng for BGP.
! class IPv4Classifier;
! class rtProtoBGP;
! // End Tony Feng.

 class RoutingModule : public TclObject {
 public:

*** 178,181 ****
--- 182,197 ----
 virtual void add_route(char *dst, NsObject *target){}
 };

+ // Merged by Will Hrudey, Reza Sahraei
+ // Added by Tony Feng for BGP.
+ class BGPRoutingModule : public RoutingModule {
+ public:
+ BGPRoutingModule();

27

+ virtual const char* module_name() const {return "BGP";}
+ virtual int command (int argc, const char* const * argv);
+ protected:
+ IPv4Classifier *classifier_;
+ rtProtoBGP *bgp_agent_;
+ };
+ // End Tony Feng.
 #endif // ns_rtmodule_h
diff -rc ns-2.34_original/tcl/lib/ns-default.tcl ns-2.34/tcl/lib/ns-default.tcl
*** ns-2.34_original/tcl/lib/ns-default.tcl 2009-06-14 10:35:41.000000000 -0700
--- ns-2.34/tcl/lib/ns-default.tcl 2009-10-14 21:21:14.000000000 -0700

*** 1345,1350 ****
--- 1345,1370 ----
 Agent/rtProto/DV set INFINITY [Agent set ttl_]
 Agent/rtProto/DV set advertInterval 2

+ # Merged by Will Hrudey, Reza Sahraei
+ # Added by Tony Feng for BGP
+ Agent/rtProto/BGP set connretry_interval_ 120
+ Agent/rtProto/BGP set masoi_ 15
+ Agent/rtProto/BGP set cluster_num 0
+ Agent/rtProto/BGP set bgp_id_ 0
+ Agent/rtProto/BGP set as_num_ 0
+ Agent/rtProto/BGP set auto_config_ false
+ Agent/rtProto/BGP set preference_ 80
+
+ # PeerEntry
+ Agent/PeerEntry set ipaddr_ 0
+ Agent/PeerEntry set as_num_ 0
+ Agent/PeerEntry set bgp_id_ 0
+ Agent/PeerEntry set return_ipaddr_ 0
+ Agent/PeerEntry set hold_time_ 90
+ Agent/PeerEntry set keep_alive_interval_ 30
+ Agent/PeerEntry set mrai_ 30
+ # End Tony Feng
+
 Agent/Encapsulator set status_ 1
 Agent/Encapsulator set overhead_ 20

diff -rc ns-2.34_original/tcl/lib/ns-lib.tcl ns-2.34/tcl/lib/ns-lib.tcl
*** ns-2.34_original/tcl/lib/ns-lib.tcl 2009-06-14 10:35:41.000000000 -0700
--- ns-2.34/tcl/lib/ns-lib.tcl 2009-10-21 23:12:39.000000000 -0700

*** 229,234 ****
--- 229,243 ----
 }

 source ns-qsnode.tcl
+ # Mergedy by Will Hrudey, Reza Sahraei
+ # Added by Tony Feng for BGP
+ source ../bgp/ns-bgp-node.tcl
+ source ../bgp/ns-rtProtoBGP.tcl
+ source ../bgp/ns-bgp-peerentry.tcl
+
+ #TCPMaster

28

+ source ../bgp/ns-tcpmaster.tcl
+ # End Tony Feng

 # Obsolete modules
 #source ns-wireless-mip.tcl

*** 395,400 ****
--- 404,421 ----
 }

}

+ # Merged by Will Hrudey, Reza Sahraei
+ # Added by Tony Feng for BGP
+ Simulator instproc BGP { val } {
+ if { $val == "ON" } {
+ Node enable-module BGP
+ Node disable-module Base
+ } else {
+ Node disable-module BGP
+ Node enable-module Base
+ }
+ }
+ # End Tony Feng

 Simulator instproc PGM { val } {
 if { $val == "ON" } {

*** 1113,1118 ****
--- 1134,1147 ----
 # Register this simplex link in nam link list. Treat it as
 # a duplex link in nam
 $self register-nam-linkconfig $link_($sid:$did)
+ # Merged by Will Hrudey, Reza Sahraei
+ # Added by Tony Feng for BGP.
+ if { [$n1 set as_num_] != [$n2 set as_num_] } {
+ # n1 and n2 reside in different AS, add a route to n2 in n1's classifier.
+ $n1 add-route [$n2 set address_] [[set link_($sid:$did)] set head_]
+ $n1 cmd add-AS-neighbor $n2
+ }
+ # End Tony Feng.
 }

 #
diff -rc ns-2.34_original/tcl/lib/ns-node.tcl ns-2.34/tcl/lib/ns-node.tcl
*** ns-2.34_original/tcl/lib/ns-node.tcl 2009-06-14 10:35:41.000000000 -0700
--- ns-2.34/tcl/lib/ns-node.tcl 2009-10-14 21:32:24.000000000 -0700

*** 66,82 ****
 eval $self next $args

 $self instvar id_ agents_ dmux_ neighbor_ rtsize_ address_ \
! nodetype_ multiPath_ ns_ rtnotif_ ptnotif_

 set ns_ [Simulator instance]
 set id_ [Node getid]
 $self nodeid $id_ ;# Propagate id_ into c++ space

29

 if {[llength $args] != 0} {
! set address_ [lindex $args 0]
 } else {
 set address_ $id_
 }
 $self cmd addr $address_; # Propagate address_ into C++ space
 #$ns_ add-node $self $id_
 set neighbor_ ""
--- 66,97 ----
 eval $self next $args

 $self instvar id_ agents_ dmux_ neighbor_ rtsize_ address_ \
! nodetype_ multiPath_ ns_ rtnotif_ ptnotif_ as_num_

 set ns_ [Simulator instance]
 set id_ [Node getid]
 $self nodeid $id_ ;# Propagate id_ into c++ space

+ # Merged by Will Hrudey, Reza Sahraei
+ # Modified by Tony Feng for BGP
 if {[llength $args] != 0} {
! if {[llength $args] == 1} {
! set arg_0 [lindex $args 0]
! if { [scan $arg_0 "%s"] != -1 } {
! # create node with arg_0 of [as_num:ipaddr] format
! $self parse-addr $arg_0
! } else {
! # create node with arg_0 of int value
! set address_ $arg_0
! set as_num_ 0
! }
! }
 } else {
 set address_ $id_
+ set as_num_ 0
 }
+ # End Tony Feng
+
 $self cmd addr $address_; # Propagate address_ into C++ space
 #$ns_ add-node $self $id_
 set neighbor_ ""
diff -rc ns-2.34_original/tcp/rq.cc ns-2.34/tcp/rq.cc
*** ns-2.34_original/tcp/rq.cc 2009-06-14 10:35:44.000000000 -0700
--- ns-2.34/tcp/rq.cc 2009-10-14 21:37:39.000000000 -0700

*** 298,305 ****
 * last seq# number in the segment plus one
 */

 TcpFlag
! ReassemblyQueue::add(TcpSeq start, TcpSeq end, TcpFlag tiflags, RqFlag rqflags)
 {

 int needmerge = FALSE;
--- 298,306 ----

30

 * last seq# number in the segment plus one
 */

+ // Merged by Will Hrudey, Reza Sahraei
 TcpFlag
! ReassemblyQueue::add(TcpSeq start, TcpSeq end, TcpFlag tiflags, RqFlag rqflags, AppData* data)
 {

 int needmerge = FALSE;

*** 329,334 ****
--- 330,338 ----
 head_->rqflags_ = rqflags;
 head_->cnt_ = initcnt;

+ // Merged by Will Hrudey, Reza Sahraei
+ head_->data = data; //Added by Zheng Wang for BGP
+
 total_ = (end - start);

 //

*** 500,505 ****
--- 504,512 ----
 n->prev_ = p;
 n->next_ = q;

+ // Merged by Will Hrudey, Reza Sahraei
+ n->data = data; //Added by Zheng Wang for BGP
+
 push(n);

 if (p)

*** 530,535 ****
--- 537,545 ----
 rcv_nxt_ = end;
 }

+ // Merged by Will Hrudey, Reza Sahraei
+ toReceiveQueue->enqueue((TcpData*)(q->data)); //Added by Zheng Wang for BGP
+
 return tiflags;
 }
 }
diff -rc ns-2.34_original/tcp/rq.h ns-2.34/tcp/rq.h
*** ns-2.34_original/tcp/rq.h 2009-06-14 10:35:44.000000000 -0700
--- ns-2.34/tcp/rq.h 2009-10-14 21:44:31.000000000 -0700

*** 68,73 ****
--- 68,75 ----

 #include <stdio.h>
 #include <stdlib.h>
+ // Merged by Will Hrudey, Reza Sahraei
+ #include "receive_queue.h" //Added by Zheng Wang for BGP

31

 /*
 * ReassemblyQueue: keeps both a stack and linked list of segments

*** 99,111 ****
 TcpFlag pflags_; // flags derived from tcp hdr
 RqFlag rqflags_;// book-keeping flags
 int cnt_; // refs to this block
 };

 public:
 ReassemblyQueue(TcpSeq& rcvnxt) :
 head_(NULL), tail_(NULL), top_(NULL), bottom_(NULL), hint_(NULL), total_(0),
rcv_nxt_(rcvnxt) { };
 int empty() { return (head_ == NULL); }
! int add(TcpSeq sseq, TcpSeq eseq, TcpFlag pflags, RqFlag rqflags = 0);
 int maxseq() { return (tail_ ? (tail_->endseq_) : -1); }
 int minseq() { return (head_ ? (head_->startseq_) : -1); }
 int total() { return total_; }
--- 101,116 ----
 TcpFlag pflags_; // flags derived from tcp hdr
 RqFlag rqflags_;// book-keeping flags
 int cnt_; // refs to this block
+ // Merged by Will Hrudey, Reza Sahraei
+ AppData* data; // Added by Zheng Wang for BGP
 };

 public:
 ReassemblyQueue(TcpSeq& rcvnxt) :
 head_(NULL), tail_(NULL), top_(NULL), bottom_(NULL), hint_(NULL), total_(0),
rcv_nxt_(rcvnxt) { };
 int empty() { return (head_ == NULL); }
! // Merged by Will Hrudey, Reza Sahraei
! int add(TcpSeq sseq, TcpSeq eseq, TcpFlag pflags, RqFlag rqflags = 0, AppData* data = 0);
//Modified by Zheng Wang for BGP
 int maxseq() { return (tail_ ? (tail_->endseq_) : -1); }
 int minseq() { return (head_ ? (head_->startseq_) : -1); }
 int total() { return total_; }

*** 121,126 ****
--- 126,133 ----
 return (clearto(rcv_nxt_));
 }
 void dumplist(); // for debugging
+ // Merged by Will Hrudey, Reza Sahraei
+ void connRevQueue(ReceiveQueue* revQueue){toReceiveQueue = revQueue;} //Added by
Zheng Wang for BGP

 // cache of allocated seginfo blocks
 static seginfo* newseginfo();

*** 143,148 ****
--- 150,158 ----
 // within TCP to set rcv_nxt and thus to set the ACK field. It is also
 // used in the SACK sender as sack_min_

32

+ // Merged by Will Hrudey, Reza Sahraei
+ ReceiveQueue* toReceiveQueue; //Added by Zheng Wang for BGP
+
 TcpSeq& rcv_nxt_; // start seq of next expected thing
 TcpFlag coalesce(seginfo*, seginfo*, seginfo*);
 void fremove(seginfo*); // remove from FIFO
diff -rc ns-2.34_original/tcp/scoreboard-rq.cc ns-2.34/tcp/scoreboard-rq.cc
*** ns-2.34_original/tcp/scoreboard-rq.cc 2009-06-14 10:35:44.000000000 -0700
--- ns-2.34/tcp/scoreboard-rq.cc 2009-10-14 21:46:11.000000000 -0700

*** 84,90 ****

 for(int i = 0 ; i < tcph->sa_length() ; i++){
 //printf("l: %i r: %i\n", tcph->sa_left(i), tcph->sa_right(i));
! rq_.add(tcph->sa_left(i), tcph->sa_right(i), 0);
 }
 changed_ = changed_ || (old_total != rq_.total());
 return 0;
--- 84,91 ----

 for(int i = 0 ; i < tcph->sa_length() ; i++){
 //printf("l: %i r: %i\n", tcph->sa_left(i), tcph->sa_right(i));
! // Merged by Will Hrudey, Reza Sahraei
! rq_.add(tcph->sa_left(i), tcph->sa_right(i), 0, NULL);
 }
 changed_ = changed_ || (old_total != rq_.total());
 return 0;
diff -rc ns-2.34_original/tcp/tcp-full.cc ns-2.34/tcp/tcp-full.cc
*** ns-2.34_original/tcp/tcp-full.cc 2009-06-14 10:35:44.000000000 -0700
--- ns-2.34/tcp/tcp-full.cc 2009-10-14 22:08:57.000000000 -0700

*** 342,347 ****
--- 342,370 ----
 return;
 }

+ // Merged by Will Hrudey, Reza Sahraei
+ /*
+ * send a string of nBytes, added by Zheng Wang for BGP
+ */
+ void
+ FullTcpAgent::advance_bytes(int nBytes, const char* const data, Continuation* caller)
+ {
+ if (writeCont != NULL){
+ printf("write error - socket already in blocking write\n");
+ if (caller != NULL)
+ caller->failure();
+ return;
+ }
+ if(toSendQueue==NULL) {
+ toSendQueue = new SendQueue();
+ }
+ if (data!=NULL) {
+ writeCont = caller;
+ toSendQueue->enqueue(nBytes,data);
+ }

33

+ advance_bytes(nBytes);
+ }
+
 /*
 * the byte-oriented interface: advance_bytes(int nbytes)
 */

*** 465,474 ****
--- 488,503 ----
 case TCPS_LISTEN:
 cancel_timers();
 newstate(TCPS_CLOSED);
+ // Merged by Will Hrudey, Reza Sahraei
+ if(mySocket) // added by Tony Feng, informs the socket that tcp closed successfully
+ mySocket->disconnected();
 finish();
 break;
 case TCPS_SYN_SENT:
 newstate(TCPS_CLOSED);
+ // Merged by Will Hrudey, Reza Sahraei
+ if(mySocket) // added by Tony Feng, informs the socket that tcp closed successfully
+ mySocket->disconnected();
 /* fall through */
 case TCPS_LAST_ACK:
 flags_ |= TF_NEEDFIN;

*** 721,726 ****
--- 750,758 ----
 int tiflags = tcph->flags();
 int fillshole = (start == rcv_nxt_);
 int flags;
+
+ // Merged by Will Hrudey, Reza Sahraei
+ AppData* data = pkt->userdata(); //Added by Zheng Wang for BGP

 // end contains the seq of the last byte of
 // in the packet plus one

*** 731,737 ****
 abort();
 }

! flags = rq_.add(start, end, tiflags, 0);

 //present:
 //
--- 763,770 ----
 abort();
 }

! // Merged by Will Hrudey, Reza Sahraei
! flags = rq_.add(start, end, tiflags, 0, data); //Modified by Zheng Wang for BGP

 //present:
 //

34

*** 756,761 ****
--- 789,839 ----
 return (flags);
 }

+ // Merged by Will Hrudey, Reza Sahraei
+ //Added by Zheng Wang for BGP
+ void FullTcpAgent::read(char* buffer, int nbytes, Continuation* caller)
+ {
+ if (readCont != NULL){
+ printf("read error - socket already in blocking read\n");
+ if (caller != NULL)
+ caller->failure();
+ return;
+ }
+
+ // if requested data is in the buffer, get it from buffer
+ // We use the fact that a data object arrives in the first TCP segment.
+ if(nbytes <= dataReceived) {
+ dataReceived -= nbytes;
+ if(toReceiveQueue->is_empty()) {
+ printf("receive queue is empty, exit\n");
+ return;
+ }
+ toReceiveQueue->retrieve_data(nbytes,buffer);
+ caller->success();
+ } else {
+ inbuffer = buffer;
+ readCont = caller;
+ readSize = nbytes;
+ }
+ }
+
+ void FullTcpAgent::recvBytes(int bytes)
+ {
+ dataReceived+= bytes;
+ if((readCont != NULL) && (dataReceived >= readSize)) {
+ toReceiveQueue->retrieve_data(readSize,inbuffer);
+ mySocket->appCallWaiting = false;
+ //mySocket->app_call_waiting = NULL;
+ dataReceived -= readSize;
+ Continuation* rc = readCont;
+ readCont = NULL;
+ rc->success();
+
+ }
+ Agent::recvBytes(bytes);
+ }
+ // End Zheng Wang
+
 /*
 * utility function to set rcv_next_ during inital exchange of seq #s
 */

*** 915,920 ****
--- 993,1011 ----

35

 //prpkt(p);
 //}

+ // Merged by Will Hrudey, Reza Sahraei
+ //Added by Zheng Wang for BGP
+ //Set data field
+ if(toSendQueue)
+ {
+ if(!toSendQueue->is_empty())
+ {
+ TcpData* pData = toSendQueue->get_data(seqno,datalen);
+ p->setdata(pData);
+ }
+ }
+ //End Zheng Wang
+
 send(p, 0);

 return;

*** 1299,1304 ****
--- 1390,1404 ----

 if (ackno == maxseq_) {
 cancel_rtx_timer(); // all data ACKd
+ // Merged by Will Hrudey, Reza Sahraei
+ // Added by Tony Feng for Socket::wirte()
+ if(writeCont != NULL) {
+ Continuation * app_call_waiting = writeCont;
+ writeCont = NULL;
+ mySocket->appCallWaiting = false;
+ app_call_waiting->success();
+ }
+ // End Tony Feng
 } else if (progress) {
 set_rtx_timer();
 }

*** 1640,1645 ****
--- 1740,1749 ----
 // changes DELACK to ACKNOW and calls tcp_output()
 rcv_nxt_ += datalen;
 flags_ |= TF_DELACK;
+
+ // Merged by Will Hrudey, Reza Sahraei
+ toReceiveQueue->enqueue((TcpData*)pkt->userdata()); // Added by Zheng
Wang for BGP
+
 recvBytes(datalen); // notify application of "delivery"
 //
 // special code here to simulate the operation

*** 1722,1728 ****
 fid_ = iph->flowid();
 }

36

! newstate(TCPS_SYN_RECEIVED);
 goto trimthenstep6;

 /*
--- 1826,1842 ----
 fid_ = iph->flowid();
 }

! // Merged by Will Hrudey, Reza Sahraei
! //Modified by Zheng Wang
! if(mySocket!=NULL && mySocket->isListening) {
! hdr_ip* iph1 = hdr_ip::access(pkt);
! //Received SYN for listening tcp, we create a new reading socket.
! tcpMaster->newInComing(pkt,mySocket);
! return;
! } else {
! newstate(TCPS_SYN_RECEIVED);
! }
! // End Zheng Wang
 goto trimthenstep6;

 /*

*** 1832,1837 ****
--- 1946,1956 ----
 flags_ &= ~TF_NEEDFIN;
 tiflags &= ~TH_SYN;
 } else {
+ // Merged by Will Hrudey, Reza Sahraei
+ //Added by Zheng Wang
+ if (mySocket)
+ mySocket->connected();
+ //End Zheng Wang
 newstate(TCPS_ESTABLISHED);
 }

*** 2092,2097 ****
--- 2211,2218 ----
 newstate(TCPS_FIN_WAIT_1);
 flags_ &= ~TF_NEEDFIN;
 } else {
+ // Merged by Will Hrudey, Reza Sahraei
+ mySocket->listeningSocket->addConnection(mySocket); //Added by Zheng Wang for
BGP
 newstate(TCPS_ESTABLISHED);
 }

*** 2335,2340 ****
--- 2456,2467 ----
 case TCPS_CLOSING: /* simultaneous active close */;
 if (ourfinisacked) {
 newstate(TCPS_CLOSED);
+ // Merged by Will Hrudey, Reza Sahraei
+ // Added by Tony Feng for BGP

37

+ if(mySocket) {
+ mySocket->disconnected(); // Informs the socket that tcp closed successfully
+ }
+ // End Tony Feng
 cancel_timers();
 }
 break;

*** 2348,2353 ****
--- 2475,2486 ----
 // K: added state change here
 if (ourfinisacked) {
 newstate(TCPS_CLOSED);
+ // Merged by Will Hrudey, Reza Sahraei
+ // Added by Tony Feng for BGP
+ if(mySocket) {
+ mySocket->disconnected(); // Informs the socket that tcp closed successfully
+ }
+ // End Tony Feng
 finish(); // cancels timers, erc
 reset(); // for connection re-use (bug fix from ns-users list)
 goto drop;

*** 2635,2641 ****
 * Due to F. Hernandez-Campos' fix in recv(), we may send an ACK
 * while in the CLOSED state. -M. Weigle 7/24/01
 */
! if (state_ == TCPS_LISTEN) {
 // shouldn't be getting timeouts here
 if (debug_) {
 fprintf(stderr, "%f: FullTcpAgent(%s): unexpected timeout %d in state %s\n",
--- 2768,2775 ----
 * Due to F. Hernandez-Campos' fix in recv(), we may send an ACK
 * while in the CLOSED state. -M. Weigle 7/24/01
 */
! // Merged by Will Hrudey, Reza Sahraei
! if (state_ == TCPS_LISTEN && (mySocket==NULL || !mySocket->isListening)) { // Modified
by Tony Feng for BGP
 // shouldn't be getting timeouts here
 if (debug_) {
 fprintf(stderr, "%f: FullTcpAgent(%s): unexpected timeout %d in state %s\n",
diff -rc ns-2.34_original/tcp/tcp-full.h ns-2.34/tcp/tcp-full.h
*** ns-2.34_original/tcp/tcp-full.h 2009-06-14 10:35:44.000000000 -0700
--- ns-2.34/tcp/tcp-full.h 2009-10-14 22:16:07.000000000 -0700

*** 39,44 ****
--- 39,52 ----

 #include "tcp.h"
 #include "rq.h"
+ // Merged by Will Hrudey, Reza Sahraei
+ //Added by Zheng Wang
+ #include "send_queue.h"
+ #include "receive_queue.h"
+ #include "tcp_socket.h"
+ #include "tcp_master.h"

38

+ #include "continuation.h"
+ //End Zheng Wang

 /*
 * most of these defines are directly from

*** 114,137 ****
 };

 class FullTcpAgent : public TcpAgent {
 public:
 FullTcpAgent() :
 closed_(0), pipe_(-1), rtxbytes_(0), fastrecov_(FALSE),
 last_send_time_(-1.0), infinite_send_(FALSE), irs_(-1),
 delack_timer_(this), flags_(0),
 state_(TCPS_CLOSED), recent_ce_(FALSE),
- last_state_(TCPS_CLOSED), rq_(rcv_nxt_), last_ack_sent_(-1) { }

! ~FullTcpAgent() { cancel_timers(); rq_.clear(); }
 virtual void recv(Packet *pkt, Handler*);
 virtual void timeout(int tno); // tcp_timers() in real code
 virtual void close() { usrclosed(); }
 void advanceby(int); // over-rides tcp base version
 void advance_bytes(int); // unique to full-tcp
 virtual void sendmsg(int nbytes, const char *flags = 0);
 virtual int& size() { return maxseg_; } //FullTcp uses maxseg_ for size_
 virtual int command(int argc, const char*const* argv);
 virtual void reset(); // reset to a known point
 protected:
 virtual void delay_bind_init_all();
 virtual int delay_bind_dispatch(const char *varName, const char *localName, TclObject *tracer);
--- 122,181 ----
 };

 class FullTcpAgent : public TcpAgent {
+ // Merged by Will Hrudey, Reza Sahraei
+ friend class TcpMaster;
 public:
 FullTcpAgent() :
 closed_(0), pipe_(-1), rtxbytes_(0), fastrecov_(FALSE),
 last_send_time_(-1.0), infinite_send_(FALSE), irs_(-1),
 delack_timer_(this), flags_(0),
 state_(TCPS_CLOSED), recent_ce_(FALSE),

! // Merged by Will Hrudey, Reza Sahraei
! last_state_(TCPS_CLOSED), rq_(rcv_nxt_), last_ack_sent_(-1)
! { // Modified by Zheng Wang for BGP
! toSendQueue = new SendQueue();
! toReceiveQueue = new ReceiveQueue();
! rq_.connRevQueue(toReceiveQueue);
! dataReceived = 0;
! readCont = NULL;
! writeCont = NULL;
! }
!
! ~FullTcpAgent()

39

! { cancel_timers();
! rq_.clear();
! if(toSendQueue)
! delete toSendQueue;
! if(toReceiveQueue)
! delete toReceiveQueue;
! } // End Zheng Wang
!
 virtual void recv(Packet *pkt, Handler*);
 virtual void timeout(int tno); // tcp_timers() in real code
 virtual void close() { usrclosed(); }
 void advanceby(int); // over-rides tcp base version
 void advance_bytes(int); // unique to full-tcp
+
+ // Merged by Will Hrudey, Reza Sahraei
+ // Added by Zheng Wang for BGP
+ void advance_bytes(int nBytes, const char* const data, Continuation* caller);
+ void recvBytes(int bytes); // Overrides Agent's recvBytes();
+ void read(char* buffer, int nbytes, Continuation* caller);
+ // End Zheng Wang
+
 virtual void sendmsg(int nbytes, const char *flags = 0);
 virtual int& size() { return maxseg_; } //FullTcp uses maxseg_ for size_

virtual int command(int argc, const char*const* argv);
 virtual void reset(); // reset to a known point
+
+ // Merged by Will Hrudey, Reza Sahraei
+ // Added by Zheng Wang
+ ReceiveQueue* getRevQueue() {return toReceiveQueue;}
+ TcpSocket* mySocket;
+ TcpMaster* tcpMaster;
+ // End Zheng Wang
+
 protected:
 virtual void delay_bind_init_all();
 virtual int delay_bind_dispatch(const char *varName, const char *localName, TclObject *tracer);

*** 243,248 ****
--- 287,304 ----
 double recent_; // ts on SYN written by peer
 double recent_age_; // my time when recent_ was set

+ // Merged by Will Hrudey, Reza Sahraei
+ // Added by Zheng Wang for BGP
+ SendQueue* toSendQueue;
+ ReceiveQueue* toReceiveQueue;
+ int dataReceived;
+ Continuation* readCont;
+ Continuation* writeCont;
+ int readSize;
+ int writeSize;
+ char* inbuffer;
+ // End Zheng Wang
+
 /*
 * setting iw, specific to tcp-full, called

40

 * by TcpAgent::reset()

41

11. REFERENCES

[1] Wikipedia, ns [Online]. Available: http://en.wikipedia.org/wiki/Ns_(simulator).
[2] D. Millis, "Exterior Gateway Protocol Formal Specification," RFC 904, BBN, April
1984.
[3] Y. Rekhter and T. Li, "A Border Gateway Protocol 4 (BGP-4)," RFC 1771, March
1995.
[4] T. D. Feng, R. Ballantyne, and Lj Trajkovic, "Implementation of BGP in a network
simulator," Proc. Applied Telecommunication Symposium, ATS '04, Arlington, Virginia,
Apr. 2004.
[5] ns-BGP integration with ns-2.33 [Online]. Available:
http://www.ensc.sfu.ca/~ljilja/cnl/projects/BGP-ns-2.33/ENSC-891_Summer08_report_
hrudey.pdf.
[6] BGP, Border Gateway Protocol [Online].

Available: http://www.networksorcery.com/enp/protocol/bgp.htm.
[7] P. Raines and J. Tranter, TCL/TK in a nutshell. O’Reilly, 1999.
[8] ns-2 [Online]. Available: http://www.isi.edu/nsnam/ns.
[9] ns-2 manual [Online]. Available: http://www.isi.edu/nsnam/ns/doc/index.html.
[10] S. Supittayapornpong Exploration [Online]. Available:
http://suchaxplore.blogspot.com/2008/07/install-ns2-allinone-233-on-ubuntu-804.html.
[11] SSFNet [Online]. Available: http://www.ssfnet.org/homePage.html.
[12] C-BGP’s Wiki [Online]: Available: http://cbgp.info.ucl.ac.be/wiki/index.php.
[13] GNU Zebra BGP [Online]. Available: http://www.zebra.org/zebra/BGP.html#BGP.
[14] BGP++ [Online]. Available:
http://www.ece.gatech.edu/research/labs/MANIACS/BGP++.

