

ENSC-891: Directed Studies

ns-BGP integration with ns-2.33

Summer 2008

Will Hrudey

whrudey@sfu.ca

 Page ii

1 Abstract
The border gateway protocol (BGP) is an inter-Autonomous System (AS) routing
protocol utilized as the core routing protocol in the Internet today. It was formally
proposed in Request For Comments (RFC) 1771 by the network working group within
the Internet Engineering Task Force (IETF). Primarily, BGP exchanges network
reachability information with other BGP systems. Since BGP performance is affected by
the dynamic nature of the Internet, ns-BGP was developed for the ns-2 network
simulator in 2003 to facilitate realistic, flexible BGP routing experimentation [1].

In parallel with the ns-BGP development, academic and research communities
continued to develop ns-2. Consequently, this led to an incompatible ns-BGP module
with current versions of the simulator. Therefore, in an effort to aid further BGP research
efforts, this project will integrate ns-BGP with the latest stable version of the simulator
thereby benefitting from core ns-2 feature enhancements and maintenance updates
over the past five years.

Table of Contents
1 ABSTRACT...II
2 INTRODUCTION..4

2.1 NS-2 OVERVIEW ..6
2.2 BGP OVERVIEW..7
2.3 NS-BGP OVERVIEW ..9

3 TECHNICAL ENVIRONMENT..11
4 NS-BGP ANALYSIS..14
5 INTEGRATION...15
6 VALIDATION..18
7 RELATED WORK ..19
8 FUTURE WORK ...19
9 CONCLUSION...19
10 REFERENCES...21
11 APPENDICES ..22

11.1 ACRONYMS ...22
11.2 PROJECT CHALLENGES..23
11.3 NS-BGP 2.0 FILES ...24
11.4 CODE INTEGRATION CHANGES..27
11.5 CODE COMPILATION CHANGES ...36
11.6 NS-BGP PATCH FILE ...36
11.7 INSTALLATION STEPS ..53

 Page ii

List of Figures
Figure 1. Project scope. ...4
Figure 2. Network architecture routing protocols. ..7
Figure 3. BGP peer message exchange. ...8
Figure 4. Unicast structure of ns-BGP. ...10
Figure 5. Fedora Core 2 virtual machine running ns-2.27. ..13
Figure 6. Fedora Core 8 virtual machine running ns-2.33. ..14
Figure 7. ns-BGP source file hierarchical structure. ...14

 Page iii

List of Tables
Table 1. System configurations...12
Table 2. Modified source files. ..16
Table 3. Compiler versions. ..17
Table 4. ns-BGP test script execution results. ..18

 Page 4

2 Introduction
The border gateway protocol (BGP) [2,5,8] is used to exchange routing details
between networks. It discovers multiple paths between networks using both
internal and external BGP speaker nodes and then selects the optimal path to be
configured in the routing table. This optimal path, which is influenced by
corporate policies, then propagates to external BGP peers accordingly. Since
BGP is a very robust and scalable routing protocol, it has become the de facto
inter-domain routing standard with universities, corporate enterprise networks
and Internet Service Providers (ISP).

Given the widespread adoption of BGP and the shear size of the Internet, BGP
simulations provide more practical, flexible experiments than both theoretical and
empirical studies [1]. Consequently, BGP support was developed for the widely
recognized network simulation tool, ns-2 [3]. The BGP module, ns-BGP, was
developed natively in ns-2.26 in 2003 [1]. This effort involved the port of BGP
version 4 as well as the socket layer from SSFNet [9], a Java-based simulator.

However, since this effort took place in 2003, ns-2 has seen continued
development by academic and research communities’ thereby preventing
transparent re-integration of ns-BGP into the latest ns-2 release. Consequently,
in an effort to aid further BGP research efforts, this project will integrate ns-BGP
with the latest stable version of the simulator that includes feature enhancements
and maintenance updates over the past five years. Figure 1 illustrates the
project scope.

Figure 1. Project scope.

The project is organized into various phases that are described below:

 Page 5

Ö Technology fundamentals and review phase
Given the low level integration required to achieve the stated project
objective, significant effort throughout this project has been allocated to
understanding the following technologies:
� C++ Object oriented programming language [6]
� Tcl/Tk [7]
� ns-2.33 network simulator [3,4]
� BGP-4 [2,5,8]

Ö Native ns-BGP development environment setup phase

This phase encapsulates the efforts required to provision an equivalent
development environment necessary to run ns-BGP 2.0 natively without
modification in ns-2.26 or ns-2.27. ns-BGP was originally developed and
tested in ns-2.26 and subsequently retested in ns-2.27. Tasks in this phase
include the systematic derivation of a compatible environment that
accommodates the compiler dependencies that ns-BGP was developed
against. It includes the iterative installation and configuration of a compatible
Linux operating system distribution, ns.2.26 / ns-2.27, and ns-BGP 2.0 until a
working configuration is identified.

Ultimately, this environment will serve as the functional benchmark in the
project validation stage to which the target, integrated ns-2.33 environment
will be compared against. Specifically, the output of each ns-BGP test script
in a ns-2.26/2.27 environment will be compared against the equivalent test
script output in ns-2.33.

Ö Target ns-BGP integration environment setup phase.
This phase encompasses the efforts required to provision the target ns-2.33
integration environment. Tasks in this phase include the installation and
configuration of the Fedora Core 8 Linux distribution and ns-2.33.

Ö ns-BGP release analysis phase
This phase involves the systematic inspection and analysis of the native ns-
BGP 2.0 software release archive [1]. The objective of this phase is to
understand the scope of the ns-BGP software implementation as well as the
source file set and file distribution across an ns-2 build environment.
Additionally, it identifies core ns-2 source file changes which will drive the
code integration stage.

Ö Code integration phase
This phase consists of two sub-phases. The first sub-phase manually
propagates non-overlapping ns-BGP source files to the target ns-2.33

 Page 6

integration environment. The second sub-phase involves the detailed
inspection and analysis of the code differences between overlapping core ns-
2 source files between ns-2.26/2.27 and ns-2.33. The resulting code
differences are then propagated to the equivalent source file in ns-2.33.

Ö Code compilation phase
This phase is comprised of the systematic compilation of ns-BGP in the newly
integrated ns-2.33 environment; the very nature of software integration
necessitates full recompilation of the entire ns-2 build environment. This
phase includes the inevitable iterative compile / fix / recompile sequence.

Ö Project validation phase
This key phase encompasses the steps required to validate the ns-BGP
integration into ns-2.33. Validation of the project will be achieved by way of
two discrete phases. First, the successful recompilation of the target
environment will validate the resulting integrated code syntax. Secondly, the
individual comparison of the ns-BGP test script outputs between the native
ns-2.26/2.27 and the target ns-2.33 environments will further validate the
BGP functional equivalency between the two systems.

Ö Project deliverables phase

This phase encompasses the tasks relating to the preparation of the project
report, presentation slides, and project software release contents.

2.1 ns-2 Overview
The network simulator version 2, more commonly referred to as ns-2, is a widely
recognized simulation tool in the academic and research communities. While it
dates back to 1989 as the REAL network simulator, it was a DARPA VINT project
in 1995 which was largely developed to study network protocol interactions and
scalability [3]. Consequently, it is open source and freely distributed thereby
nurturing and promoting continued development and maintenance. It is
comprised of approximately 200,000 lines of code. Moreover, it is packaged with
more than 200 test suites and examples; release target platforms include:
FreeBSD, Linux, Solaris, Windows and MAC.

In order to address simulation complexity and processing time while providing a
flexible configuration interface to accommodate ad-hoc, explorative simulation
scenarios, ns-2 was implemented in both C++ and OTcl. Detailed protocol
algorithms, packet generation and processing was written in C++ to exploit the
power of object oriented software construction while leveraging off the execution
speed of compiled logic. The configuration interface was written in OTcl which
exploits the real-time interactive interface of an interpreted language.

 Page 7

As a flexible simulation tool, ns-2 supports both wired and wireless technologies;
various routing algorithms, transport protocols (TCP, UDP, SCTP, RTP), traffic
sources, queuing disciplines, and quality of service (QoS) are natively supported.
Additionally, utilities including tracing, the visual network animator (nam), and
topology / traffic generators are packaged in the release. Standard UNIX text
parsing tools including sed, awk, and perl can be used to post-process ns-2
output files.

2.2 BGP Overview
The first version of BGP (BGP-1) was published in 1989 as RFC 1105. A second
revision to BGP was released as BGP-2 in 1990 and described in RFC 1163.
Almost a year and a half later, BGP-3 was released and described in RFC 1267.
The current version, BGP-4, was released in 1994 and 1995 and described in
RFC 1654 and 1771 respectively. Since then, several enhancements including
multi-protocol extensions and MPLS/VPN support has been added to the BGP
specification.

BGP is in itself a routing protocol which is primarily used to exchange network
layer reachability information (NLRI) between autonomous systems (AS). AS’s
are collections of routers under a single administration; they can be a single
network or multiple networks which use the same routing protocols called interior
gateway protocols (IGP). IGP is used to route packets within an AS. The
routing information protocol (RIP), open shortest path first (OSPF) and interior
gateway routing protocol (IGRP) are common IGP protocols. As an exterior
gateway protocol (EGP), BGP is used to route traffic between AS’s and
consequently uses the reliable transport services of TCP on port 179 for peer
connections. Figure 2 illustrates the AS interconnections and their
corresponding internal and external routing protocols.

Figure 2. Network architecture routing protocols.

 Page 8

BGP connections are established between two BGP speakers which are
essentially subsystems within a router that generate and process BGP specific
messages. The message exchange between BGP speakers is driven by routing
policies (announce and accept) which dictate which routes are used by a given
router and which routes are transmitted to other routers. The connection
between two BGP routers, known as BGP peering, involves the exchange of
connection parameters, the entire routing table (initially), as well as incremental
updates when the routing table changes.

This message information is communicated using the following message types:
� Open - first message sent by each BGP peer
� Keepalive - “ping” type message sent by each peer every 30 seconds
� Update - facilitate routing information to BGP peer
� Notification - sent by a peer when an error condition has occurred

The following message exchange presented in Figure 3 exemplifies a BGP peer
connection.

Figure 3. BGP peer message exchange.

 Page 9

The keepalive messages in Figure 3 are used to keep the connection alive. Full
updates flow in either direction, while notifications are used to indicate fatal
errors.

While BGP is an EGP, BGP is required within an AS to ensure reachability within
a network before propagating information to other AS’s. To make this distinction,
interior BGP (iBGP) describes the peering between routers within an AS and
exterior BGP (eBGP) describes the peering between routers from different AS’s.

BGP polices control and modify routing information; these policies determine the
conditions for redistributing routes from one protocol to another. “Accept”
policies handle incoming route selection and “Announce” policies dictate the
distribution of outgoing routes. These policies are configured into BGP rather
than being apart of the protocol itself. Additionally, BGP updates can be filtered
on route information, AS-path information, communities, AS-regular expression.

2.3 ns-BGP Overview
The ns-2 BGP module, formerly known as ns-BGP, was ported and adapted to
ns-2 in 2003 [1]. This effort involved the port of the BGP and TcpSocket modules
from SSFNet [9]. SSFNet is a Java-based network simulator which is comprised
of a simulation engine and a configuration language known as the Domain
Modeling Language (DML). Since SSFNet was implemented using object
oriented technology, its BGP module was a natural candidate for ns-2 integration.
Additionally, IPv4 addressing and packet forwarding was also incorporated into
ns-2 to accommodate the SSFNet BGP dependencies.

Within ns-2, unicast routing is achieved using forwarding and control planes
where the forwarding plane classifies and forwards packets to their destinations
nodes using classifier and routing modules while the control plane provisions the
route creation, computation, routing algorithms, and management of the routing
tables. Figure 4 illustrates the ns-BGP unicast structure which is based the
native ns-2 unicast architecture.

 Page 10

Figure 4. Unicast structure of ns-BGP.

As indicated in Figure 4, classifier modules such as address and port classifiers
either send incoming packets to its respective agent or to an outgoing link.
These modules are managed by the routing module. The control plane is
comprised of the following components: route logic, route object, route peer,
routing protocol. The central routing table is maintained by the routing logic
while routing objects are used in dynamic routing simulations. Routing peer
objects encapsulate the routing protocol by capturing and retaining attributes of
each route advertised. Lastly, specific routing algorithms are implemented by the
routing protocol components.

Moreover, since an ns-BGP node is derived from a ns-2 unicast node, Figure 4
denotes the inclusion of the BGP specific modules and TcpSocket modules. The
rtModule/BGP module manages the IPv4Classifer object while the new routing
protocol, rtProto/BGP, relies on the TcpSocket modules for packet transmission.
Peer entry objects, which are used to establish and exchange BGP messages
and close peer sessions, are allocated for each BGP peer.

Four key classes used in the BGP implementation are: TcpSocket, IPv4Classifer,
rtModule/BGP, and rtProto/BGP. The TcpSocket class implements a UNIX-like
socket application programming interface (API) which includes standard calls
such as bind(), connect(), listen(), close(), read(), and write(). Additionally, it also
provisions data queuing and callback functions. It is added to the modified
FullTcpAgent which encapsulates the TCP services into a socket interface. The
IPv4Classifier class is used to classify incoming packets by observing the
destination address and forward it accordingly based on the routing table. It is
implemented using a dual class whereby the class specification is defined in both
C++ and OTcl. The rtModule/BGP provisions a registration interface to which
active route modules must register with when a node is created. This module is

 Page 11

written exclusively in Tcl and it replaces the existing basic routing module.
Finally the rtProto/BGP module implements the BGP-4 protocol as a dual class in
both C++ and OTcl. Protocol operations include peer connection establishment,
path selection, routing table updates, finite state machine (FSM) management.

Overall, ns-BGP is RFC 1771 compliant but does not support multi-protocol
extensions. Optional features included in the release are:
� Multiple Exit Discriminator (MED)
� Aggregator
� Community
� Originator ID
� Cluster list path attributes
� Route reflections

Experimental features included in the release are:
� Sender-side loop detection
� Withdrawal rate limiting
� Unjittered minimum route advertisement interval timer
� Per-peer and per-destination rate limiting

3 Technical Environment
The initial computing platform used for this project was as follows:
� Toshiba Tecra S2 laptop
Ö Intel Pentium M processor 1.86 GHz
Ö 1 GB RAM
Ö 80 GB HDD
Ö Microsoft Windows XP Service Pack (SP) 3

However, approximately 75% through the project, the hardware was replaced by
the following:
� Dell D630 laptop
Ö Intel Duo core T7250 2.0 GHz processor
Ö 4 GB RAM
Ö 110 GB HDD
Ö Microsoft Vista Business Edition SP1

The following software components were utilized in this project:
� VMware Server 1.0.6
� Cygwin
� Fedora Core 2
� Fedora Core 4
� Fedora Core 8

 Page 12

� ns-2.26
� ns-2.27
� ns-2.33
� ns-BGP 2.0 (for ns-2.26 / ns-2.27)

The following configurations were derived over the course of this project. Initially
an environment using Cygwin was targeted given the convenience of switching
between different ns-2 releases within a single OS instance. However, over time,
it became evident that a given ns-2 release has significant dependencies on
compiler version it was developed with. Consequently, a native Linux
environment capable of running ns-2.26/2.27 became essential.

The Fedora Core (FC) distribution (formerly branded as Red Hat) was selected
given its widespread adoption in the Linux community. FC version 8 was the
current distribution release at the time the project commenced; this distribution
incorporated a Linux 2.6.23.1-42 kernel. Additionally, ns-2.33 was the current
release thereby defining the target integration environment of FC8 / ns-2.33 for
this project.

In order to validate the integration of ns-BGP 2.0 into the target environment, a
test environment was derived to recreate the ns-BGP development environment
to run the ns-BGP test scripts natively. The output of these test environment
scripts would then serve as the output reference to which the target environment
would be compared against. This effort consequently resulted in the systematic
downgrading of FC releases until a release that resulted in error-free compilation
of ns-2.27 was achieved. Table 1 details the configurations.

 V
is

ta
 B

us
in

es
s

E
di

tio
n

 V
M

W
ar

e
S

er
ve

r 1
.0

6

 W
in

X
P

 S
P

3
/ C

yg
w

in

 F
ed

or
a

C
or

e
2

 F
ed

or
a

C
or

e
4

 F
ed

or
a

C
or

e
8

 n
s-

2.
26

 n
s-

2.
27

 n
s-

2.
33

 n
s-

B
G

P
 2

.0
 (o

rig
in

al
 re

le
as

e)

Test-1 ▪ ▪ ▪ ▫ ▫ ▪ ▫
Test-2 (target integration environment) ▪ ▪ ▪ ▫ ▫ ▪ ▫
Test-3 ▪ ▪ ▪ ▫ ▫
Test-4 (native ns-BGP development environment) ▪ ▪ ▪ ▪ ▪ ▪

System Configurations
 Software

Derived configurations

Table 1. System configurations.

 Page 13

The ▪ symbol denotes the successful inclusion of a given software component
while the ▫ denotes the unsuccessful inclusion of a given component. Ultimately,
test-2 represents the target integration environment, while test-4 represents the
native ns-BGP test environment. Since ns-BGP was initially developed for ns-
2.26 and subsequently re-released for ns-2.27, this project attempted to
successfully compile both versions, with a bias to ns-2.27 given that it is more
recent than ns-2.26. Using VMware Server, these Linux environments are
running in virtual machines (VM). Figure 5 details an ns-2.27 session running in
the FC2 VM.

Figure 5. Fedora Core 2 virtual machine running ns-2.27.

Additionally, Figure 6 details an ns-2.33 session running in the FC8 VM

 Page 14

.
Figure 6. Fedora Core 8 virtual machine running ns-2.33.

4 ns-BGP Analysis
The ns-BGP 2.0 release is provisioned as a software “archive” comprised of a
series of source and header files distributed across a series of directories. See
Appendix 11.3 for a complete file listing. As illustrated in Figure 7 the file set is
organized into a series of directories and subdirectories.

Figure 7. ns-BGP source file hierarchical structure.

 Page 15

The notation used in Figure 7 is as follows:
� rounded rectangles represent directories
� integers in parenthesis (x / y / z)

⇒ x – all files and subdirectories in current directory and below
⇒ y – files in current directory only
⇒ z – subdirectories in current directory only

� angled rectangles represent core ns-BGP Tcl scripts
� rectangles ns-BGP test scripts

Not all the files could be graphically displayed in Figure 7 given the total number
of files. Overall, there were 104 source files categorized as: 41 C++ files, 46
header files, 16 Tcl files, and one patch file.

The release package is intended to be extracted into the ns-2 top level directory,
thereby performing the following tasks [1]:
� Creates a patch file in the top level directory
� Creates a bgp subdirectory with source files in the ns-2 subdirectory
� Adds new files for TcpSocket to the ns-2/tcp subdirectory
� Creates a bgp subdirectory under the tcl directory with all the test scripts

Then the patch file is processed to apply the appropriate patches to various core
ns-2 source files. Once the patches have been applied, ns-2 must be
recompiled.

5 Integration
The objective of the integration phase is to migrate the ns-BGP module, which
was designed and developed for ns-2.27, into the current version of the
simulator: ns-2.33. Additionally, all subsequent ns-2 enhancements and
maintenance updates that have occurred since ns-BGP was released must be
retained. In order to achieve the stated objectives, a two-stage approach was
devised, which was comprised of a code integration stage and a compilation
stage.

The code integration stage involved the careful propagation of logic contained in
new BGP specific files as well as logic changes to existing core ns-2 files
detailed in the patch file. As indicated in the ns-BGP analysis section, there
were 145 files in the release, of which 104 files were C++ code files, C++ header
files, and script files. The code migration strategy was to migrate the source files
and the Readme.txt file to their respective target ns-2.33 directory locations. The
dependency files (.Po) were not required. The patch file contained edits to 16
core ns-2 files as indicated in the merge column of Table 2. In the table, a
distinction is made between basic and moderate logic integration using x and X
respectively.

 Page 16

The ns-BGP patch file provisioned with the release was no longer valid given the
subsequent development between the initial ns-BGP ns-2 development version
(ns-2.27) and the current ns-2 version (ns-2.33). As a result, the context code
and code line numbers contained in the patch file, which were key to the correct
insertion of BGP logic, was well out of date. Consequently, in an effort to ensure
subsequent core ns-2 enhancements and bug fixes were retained as a part of the
integration phase, the specific ns-BGP logic edits to an ns-2.27 core source file
was identified and then migrated into the corresponding ns-2.33 target file.

Table 2. Modified source files.

As an example, packet.h defined various enumerated packet types in ns-2.27.
The ns-BGP development added several additional packet types accordingly.

enum packet_t {
 <… other packet types …>
 PT_RTPROTO_BGP,
 PT_TCPMASTER,
 PT_PEERENTRY,
 <… other packet types …>

 Page 17

};

However, with the subsequent ns-2 development, ns-2 designers changed these
enumerated packet types to unsigned integers with constant values in ns-2.33:

typedef unsigned int packet_t;
<… other packet types…>
static const packet_t PT_RTPROTO_BGP = 70;
static const packet_t PT_TCPMASTER = 71;
static const packet_t PT_PEERENTRY = 72;
<… other packet types …>

Consequently, further review and analysis of the source code was needed to
identify appropriate constants for BGP specific packet types which did not
overlap or create other “functional” issues. See Appendix 11.4 for further code
integration changes.

The second stage involved the compilation modifications required to recompile
the whole system accordingly. Specifically, there were several files as detailed in
Table 2 that presented significant compilation errors. Again, a distinction is made
between basic and moderate compilation errors using x and X respectively,
where the latter indication also encompasses the time necessary to research the
reported compiler error(s), the language syntax, and the context of the code logic
where the error occurred. Nonetheless, these files exhibited significant
dependencies on the compiler version furnished with the Linux distribution used
at the time of ns-BGP development. The compiler versions for both
environments are detailed in Table 3.

Table 3. Compiler versions.

One of the most complicated compilation issues was tied to the C++ Standard
Template Library (STL). Specifically, within the ns-BGP TCP module, the logic
used template library list containers to queue TCP data.

tcp/send_queue.cc: In member function ‘TcpData* SendQueue::get_data(int, int)’:
tcp/send_queue.cc:57: error: conversion from ‘int’ to non-scalar type ‘std::_List_iterator
<SendData>’ requested
tcp/send_queue.cc:71: error: no match for ‘operator==‘ in ‘targetIterator == 0’
/usr/lib/gcc/i386-redhat-linux/4.1.2/../../../../include/c++/4.1.2/bits/stl_list.h:169: note: candidates
are: bool std::_List_iterator<_Tp>::operator==(const std::_List_iterator <_Tp>&) const [with _Tp =
SendData]
make: *** [tcp/send_queue.o] Error 1

 Page 18

While necessary code changes to overcome all the compilation issues was
achieved with type casting logic bolded below,

57: list<SendData>::iterator targetIterator= (list<SendData>::iterator) NULL;
71: if(targetIterator == (list<SendData>::iterator) NULL)

this issue proved to be quite time consuming as it necessitated research into STL
fundamentals to derive a suitable fix. Appendix 11.5 details the additional code
compilation changes.

6 Validation
In order to validate the integration efforts, a significant amount of time was
invested in provisioning a working native ns-BGP development environment
which would subsequently serve as the baseline reference point in terms of BGP
system functionality and outputs. Consequently, an ns-BGP environment
running on the native ns-2 release that it was developed on (ns-2.26 / ns-2.27)
was constructed. Within the ns-BGP 2.0 release, twelve Tcl test scripts were
included to test the ns-2 BGP simulator functionality and BGP RFC compliancy.

Integration validation of this project is addressed in two ways. Firstly, the
successful compilation of the detailed, manual code merges will validate the
resulting programmatical syntax. Secondly, the functional validation of the
resulting integration environment involves the execution and comparison of the
ns-BGP specific Tcl scripts included in the ns-BPG 2.0 release.

Table 4. ns-BGP test script execution results.

By observing Table 4, the ns-BGP module in ns-2.33 generated equivalent
output to ns-2.27 for all twelve test scripts. Specifically, each test script was
executed in the native development and target integration environments and then
compared using the UNIX diff utility. Moreover, the terminal output during the
execution of each test script was also captured and compared across the
environments; the output was identical for all twelve scripts.

 Page 19

While the validation process has confirmed syntactical and functional
equivalence of the ns-BGP module between ns-2.27 and ns-2.33, it should be
noted that the resulting ns-BGP functionality is that of the original ns-BGP
implementation. Therefore, any original ns-BGP software bugs and/or
computational inefficiencies will still exist. Moreover, any subsequent ns-BGP
enhancements by academic and research communities are not included in this
ns-2.33 ns-BGP release.

7 Related Work
Various research and commercial efforts have produced network BGP simulation
support of varying degrees. Not surprisingly, the commercial simulation tool,
OPNET Modeler [10] provides BGP support. The Modeler and ns-2 differ
significantly in implementation and architecture thereby negating any potential
porting efforts. SSFNet [9] provides BGP simulation support; in fact ns-BGP
reflects the port of BGP from SSFNet. Since ns-2 continues to be heavily used in
the academic and research communities, integrating ns-BGP in the current
version of ns-2 yields the additional benefits of continued development and
maintenance updates. SSFNet does not appear to have the same development
interests. C-BGP [11] is a dedicated BGP “solver” application. It is used to
compute the outcome of the BGP decision process, however it is a dedicated
application rather than a widely configurable network simulation tool.

The Zebra BGP daemon [12] was ported to ns-2 around the same time ns-BGP
was initially developed. It was written in C and provides features like BGP
graceful restart, community support, and TCP MD5 authentication support. The
last Zebra update was 2005. BGP++ [13] is a BGP module for ns-2 and GTNetS
network simulators. It is actually a port of the Zebra bgp daemon and adapted to
a C++ environment.

8 Future Work
The work conducted in this project focused on the integration of the ns-BGP 2.0
module developed in 2003 [1]. Subsequent enhancements to ns-BGP 2.0 could
include multi-protocol extensions, policy routing, and route flap dampening [14].

Additionally, future efforts could integrate and test the updated ns-BGP release
on Cygwin for Windows-based ns-2 simulations.

9 Conclusion
BGP is vital component of the Internet’s routing infrastructure as it propagates
NLRI between AS’s. Recognizing the key role of BGP in today’s Internet and
the value of BGP network simulations in continued BGP research, this project
has integrated the ns-BGP module originally developed for ns-2.26/ns-2.27 into

 Page 20

the current version of ns-2 (ns-2.33). By integrating the ns-BGP module into the
current version of ns-2, BGP simulations can leverage off the continued ns-2
development and maintenance updates over the past five years.

This project has achieved its stated objective and excerised the available
measures to demonstrate integration validity given the time constraints. While
further efforts could be allocated to more rigorious integration testing between the
two systems, the fact that the validation scripts generated identical output traces
to the elaborate BGP specific test sequences, we gain a high degree of
confidence in the resluting ns-BGP release integrity.

 Page 21

10 References

[1] T. D. Feng, R. Ballantyne, and Lj. Trajkovic, “Implementation of BGP in a network
simulator,” Applied Telecommunication Symposium, ATS '04, Arlington, Virginia, Apr.
2004, pp. 149-154.

[2] I.Beijnum, BGP. Sebastopol, CA: O’Reilly & Associates, 2002.

[3] ns-2 [Online]. Available: http://www.isi.edu/nsnam/ns (May 2008).

[4] ns-2 manual [Online]. Available:
http://www.isi.edu/nsnam/ns/doc/index.html (May 2008).

[5] Y. Rekhter and T. Li, “A border gateway protocol 4 (BGP-4),” RFC 1771, March
1995.

[6] R. Johnsonbaugh and J. Kalin, Object-Oriented Programming in C++. Englewood
Cliffs, NJ: Prentice Hall, 1995.

[7] B. Welch, K. Jones, and J. Hobbs, Practical Programming in Tcl and Tk 4/e. Prentice
Hall, 2003.

[8] BGP For Internet Service Providers [Online]. Available:
http://www.cisco.com/public/cons/seminars/AfNOG3 (June 2008).

[9] SSFNet [Online]. Available:
http://www.ssfnet.org/homePage.html (May 2008).

[10] OPNET BGP [Online]. Available:
http://www.opnet.com (June 2008).

[11] C-BGP [Online]. Available:
http://cbgp.info.ucl.ac.be/wiki/index.php (June 2008).

[12] GNU Zebra BGP daemon [Online]. Available:
http://www.zebra.org/zebra/BGP.html#BGP (June 2008).

[13] BGP++ [Online]. Available:
http://www.ece.gatech.edu/research/labs/MANIACS/BGP++ (June 2008).

[14] W. Shen and Lj. Trajkovic, “BGP route flap damping algorithms,” Proc. SPECTS
2005, Philadelphia, PA, July 2005, pp. 488-495.

[15] N. Laskovic and Lj. Trajkovic, ``BGP with an adaptive minimal route advertisement
interval,'' Proc. 25th IEEE Int. Performance, Computing, and Communications
Conference, Phoenix, AZ, April 2006, pp. 135-142.

 Page 22

11 APPENDICES

11.1 Acronyms

API Application Programming Interface
AS Autonomous System
BGP Border Gateway Protocol
DARPA Defense Advanced Research Projects Agency
DML Domain Modeling Language
EBGP Exterior Border Gateway Protocol
EGP Exterior Gateway Protocol
FC Fedora Core
FSM Finite State Machine
GTNetS Georgia Tech Network Simulator
HDD Hard Disk Drive
IETF Internet Engineering Task Force
IBGP Interior Border Gateway Protocol
IGP Interior Gateway Protocol
IGRP Interior Gateway Routing Protocol
IP Internet Protocol
ISP Internet Service Providers
MD5 Message Digest 5
MED Multiple Exit Discriminator
MPLS Multi-Protocol Label Switching
ns-2 Network Simulator 2
ns-BGP Network Simulator-Border Gateway Protocol
NLRI Network Layer Reachability Information
OSPF Open Shortest Path First
OTcl Object Tool Command Language
QoS Quality of Service
RFC Request for Comments
RIP Routing Information Protocol
RTP Real Time Protocol
SP Service Pack
SSFNet Scalable Simulation Framework Network
SSFNet.OS.BGP4 SSFNet’s BGP model
STL Standard Template Library
Tcl Tool Command Language
TCP Transmission Control Protocol
Tk Tool kit
UDP User Datagram Protocol
VINT Virtual Internetwork Testbed
VM Virtual Machine
VPN Virtual Private Network

 Page 23

11.2 Project Challenges
Various challenges have surfaced throughout this project. The primary challenge
is the steep learning curve associated with learning the ns-2 internals along with
the ns-BGP code module.

Moreover, the ability to install older Linux distributions to successfuly compile the
ns-BGP module in its native ns-2 development release proved to be challenging
due to limited hardware / software resources. To demonstrate, an attempt to
compile ns-2.26 on Cygwin reported the following cryptic library errors:

gcc -pipe -c -O -Wall -Wconversion -Wno-implicit-int -I./../generic -I. -
DHAVE_UNISTD_H=1 -DHAVE_LIMITS_H=1 -DHAVE_GETCWD=1 -DHAVE_OPENDIR=1 -
DHAVE_STRSTR=1 -DHAVE_STRTOL=1 -DHAVE_TMPNAM=1 -DHAVE_WAITPID=1 -DNO_VALUES_H=1
-DHAVE_UNISTD_H=1 -DHAVE_SYS_PARAM_H=1 -DUSE_TERMIOS=1 -DHAVE_SYS_TIME_H=1 -
DTIME_WITH_SYS_TIME=1 -DHAVE_TZNAME=1 -DHAVE_TIMEZONE_VAR=1 -DHAVE_ST_BLKSIZE=1
-DSTDC_HEADERS=1 -DNO_UNION_WAIT=1 -DNEED_MATHERR=1 -DHAVE_SIGNED_CHAR=1 -
DHAVE_SYS_IOCTL_H=1 -DSTATIC_BUILD=1 -DTCL_SHLIB_EXT=\"\"
./../unix/tclAppInit.c
gcc -pipe tclAppInit.o –L ns-allinone-2.26/tcl8.3.2/unix -ltcl8.3 -lc \
 -o tclsh
fu000001.o:(.idata$2+0xc): undefined reference to `_libc_iname'
Info: resolving __timezone by linking to __imp___timezone (auto-import)
collect2: ld returned 1 exit status
make: *** [tclsh] Error 1
tcl8.3.2 make failed! Exiting ...
For problems with Tcl/Tk see http://www.scriptics.com
ns-allinone-2.26:$

An attempt to retry the same release as above but on FC 8 Linux revealed the
following compilation errors:

g++ -c -DNO_TK -DNDEBUG -DUSE_SHM -DHAVE_LIBOTCL1_0A8 -DHAVE_OTCL_H -
DHAVE_LIBTK8_3 -DHAVE_TK_H -DHAVE_LIBTCL8_3 -DHAVE_TCL_H -DSTDC_HEADERS=1 -
DHAVE_STRING_H=1 -DHAVE_SNPRINTF=1 -DSTDC_HEADERS=1 -DHAVE_STRTOQ=1 -
DHAVE_STRTOLL=1 -DHAVE_SYS_TYPES_H=1 -DHAVE_SYS_STAT_H=1 -DHAVE_STDLIB_H=1 -
DHAVE_STRING_H=1 -DHAVE_MEMORY_H=1 -DHAVE_STRINGS_H=1 -DHAVE_INTTYPES_H=1 -
DHAVE_STDINT_H=1 -DHAVE_UNISTD_H=1 -DSIZEOF_LONG=4 -DHAVE_INT64=1 -
DHAVE_TCL_H=1 -DHAVE_LIBTCL8_3=1 -DHAVE_TK_H=1 -DHAVE_LIBTK8_3=1 -
DHAVE_OTCL_H=1 -DHAVE_LIBOTCL1_0A8=1 -I. -I/home/whrudey/ns-allinone-
2.26/otcl-1.0a8 -I/home/whrudey/ns-allinone-2.26/include -I/home/whrudey/ns-
allinone-2.26/include -o Tcl.o Tcl.cc
tclcl-mappings.h: In static member function â:
tclcl-mappings.h:51: error: incomplete type â used in nested name specifier
tclcl-mappings.h:52: error: invalid use of undefined type â
tclcl-mappings.h:41: error: forward declaration of â
tclcl-mappings.h:57: error: invalid use of undefined type â
tclcl-mappings.h:41: error: forward declaration of â
make: *** [Tcl.o] Error 1
tclcl-1.0b13 make failed! Exiting ...
See http://www.isi.edu/nsnam/ns/ns-problems.html for problems
RFLab: /home/whrudey/ns-allinone-2.26$

Moreover, ns-2.27 compilation attempts on FC8 and FC4 reported these cryptic
errors tied to incompatible Linux kernel header files:

 Page 24

g++ -c -DTCP_DELAY_BIND_ALL -DNO_TK -DTCLCL_CLASSINSTVAR -DNDEBUG -
DLINUX_TCP_HEADER -DUSE_SHM -DHAVE_LIBTCLCL -DHAVE_TCLCL_H -DHAVE_LIBOTCL1_8 -
DHAVE_OTCL_H -DHAVE_LIBTK8_4 -DHAVE_TK_H -DHAVE_LIBTCL8_4 -DHAVE_TCL_H -
DHAVE_CONFIG_H -DNS_DIFFUSION -DSMAC_NO_SYNC -DCPP_NAMESPACE=std -
DUSE_SINGLE_ADDRESS_SPACE -Drng_test -I. -I/home/whrudey/ns-allinone-
2.27/tclcl-1.15 -I/home/whrudey/ns-allinone-2.27/otcl-1.8 -I/home/whrudey/ns-
allinone-2.27/include -I/home/whrudey/ns-allinone-2.27/include -
I/usr/include/pcap -I./tcp -I./sctp -I./common -I./link -I./queue -I./adc -
I./apps -I./mac -I./mobile -I./trace -I./routing -I./tools -I./classifier -
I./mcast -I./diffusion3/lib/main -I./diffusion3/lib -I./diffusion3/lib/nr -
I./diffusion3/ns -I./diffusion3/filter_core -I./asim/ -I./qs -o
diffusion3/ns/difftimer.o diffusion3/ns/difftimer.cc
/usr/lib/gcc/i386-redhat-
linux/4.1.2/../../../../include/c++/4.1.2/bits/stl_bvector.h: In member
function â:
/usr/lib/gcc/i386-redhat-
linux/4.1.2/../../../../include/c++/4.1.2/bits/stl_bvector.h:542: error:
expected unqualified-id before â token
/usr/lib/gcc/i386-redhat-
linux/4.1.2/../../../../include/c++/4.1.2/bits/stl_bvector.h: In member
function â:
/usr/lib/gcc/i386-redhat-
linux/4.1.2/../../../../include/c++/4.1.2/bits/stl_bvector.h:897: error:
expected unqualified-id before â token
/usr/lib/gcc/i386-redhat-
linux/4.1.2/../../../../include/c++/4.1.2/bits/vector.tcc: In member function
â:
/usr/lib/gcc/i386-redhat-
linux/4.1.2/../../../../include/c++/4.1.2/bits/vector.tcc:353: error: expected
unqualified-id before â token
/usr/lib/gcc/i386-redhat-
linux/4.1.2/../../../../include/c++/4.1.2/bits/vector.tcc: In member function
â:
/usr/lib/gcc/i386-redhat-
linux/4.1.2/../../../../include/c++/4.1.2/bits/vector.tcc:452: error: expected
unqualified-id before â token
make: *** [diffusion3/ns/difftimer.o] Error 1

With continued perseverance and significant effort allocated to executing
unsuccessful “patch-like” fixes to FC8 and FC4 ns-2 environments, I was finally
able to compile ns-2.26 and ns-2.27 on FC2. This breakthrough had a significant
positive impact on my ability to validate the integration process.

11.3 ns-BGP 2.0 files
The initial ns-BGP 2.0 release archive contents are listed below:

ns-2.27/bgp/
ns-2.27/bgp/Util/
ns-2.27/bgp/Util/.deps/
ns-2.27/bgp/Util/.deps/stringmanip.Po
ns-2.27/bgp/Util/.deps/bitstring.Po
ns-2.27/bgp/Util/.deps/bit.Po
ns-2.27/bgp/Util/.deps/ipaddress.Po
ns-2.27/bgp/Util/bitstring.cc
ns-2.27/bgp/Util/radixtree.h
ns-2.27/bgp/Util/radixtreenode.h
ns-2.27/bgp/Util/stringmanip.h

 Page 25

ns-2.27/bgp/Util/stringmanip.cc
ns-2.27/bgp/Util/ipaddress.h
ns-2.27/bgp/Util/ipaddress.cc
ns-2.27/bgp/Util/bitstring.h
ns-2.27/bgp/Util/bit.h
ns-2.27/bgp/Path/.deps/atomicaggregate.Po
ns-2.27/bgp/Path/.deps/originatorid.Po
ns-2.27/bgp/Path/.deps/community.Po
ns-2.27/bgp/Path/.deps/med.Po
ns-2.27/bgp/Path/.deps/localpref.Po
ns-2.27/bgp/Path/.deps/segment.Po
ns-2.27/bgp/Path/.deps/aspath.Po
ns-2.27/bgp/Path/.deps/nexthop.Po
ns-2.27/bgp/Path/.deps/aggregator.Po
ns-2.27/bgp/Path/.deps/clusterlist.Po
ns-2.27/bgp/Path/.deps/origin.Po
ns-2.27/bgp/Path/.deps/attribute.Po
ns-2.27/bgp/Path/atomicaggregate.h
ns-2.27/bgp/Path/aggregator.cc
ns-2.27/bgp/Path/clusterlist.cc
ns-2.27/bgp/Path/aggregator.h
ns-2.27/bgp/Path/clusterlist.h
ns-2.27/bgp/Path/origin.h
ns-2.27/bgp/Path/community.cc
ns-2.27/bgp/Path/segment.cc
ns-2.27/bgp/Path/originatorid.h
ns-2.27/bgp/Path/med.cc
ns-2.27/bgp/Path/localpref.cc
ns-2.27/bgp/Path/attribute.cc
ns-2.27/bgp/Path/aspath.cc
ns-2.27/bgp/Path/originatorid.cc
ns-2.27/bgp/Path/nexthop.h
ns-2.27/bgp/Path/aspath.h
ns-2.27/bgp/Path/nexthop.cc
ns-2.27/bgp/Path/attribute.h
ns-2.27/bgp/Path/segment.h
ns-2.27/bgp/Path/med.h
ns-2.27/bgp/Path/community.h
ns-2.27/bgp/Path/origin.cc
ns-2.27/bgp/Path/atomicaggregate.cc
ns-2.27/bgp/Path/localpref.h
ns-2.27/bgp/Timing/.deps/
ns-2.27/bgp/Timing/.deps/timeoutmessage.Po
ns-2.27/bgp/Timing/.deps/scheduler.Po
ns-2.27/bgp/Timing/.deps/bgp_timer.Po
ns-2.27/bgp/Timing/.deps/timerhandler.Po
ns-2.27/bgp/Timing/mraiperpeertimer.cc
ns-2.27/bgp/Timing/bgp_timer.cc
ns-2.27/bgp/Timing/bgp_timer.h
ns-2.27/bgp/Timing/mraiperpeertimer.h
ns-2.27/bgp/Timing/mraitimer.h
ns-2.27/bgp/Timing/timeoutmessage.h
ns-2.27/bgp/Timing/timeoutmessage.cc
ns-2.27/bgp/Timing/mraitimer.cc
ns-2.27/bgp/Comm/.deps/
ns-2.27/bgp/Comm/.deps/notificationmessage.Po
ns-2.27/bgp/Comm/.deps/startstopmessage.Po
ns-2.27/bgp/Comm/.deps/openmessage.Po
ns-2.27/bgp/Comm/.deps/keepalivemessage.Po
ns-2.27/bgp/Comm/.deps/updatemessage.Po
ns-2.27/bgp/Comm/.deps/message.Po
ns-2.27/bgp/Comm/.deps/transportmessage.Po
ns-2.27/bgp/Comm/updatemessage.cc

 Page 26

ns-2.27/bgp/Comm/bgpmessage.cc
ns-2.27/bgp/Comm/openmessage.cc
ns-2.27/bgp/Comm/notificationmessage.h
ns-2.27/bgp/Comm/transportmessage.h
ns-2.27/bgp/Comm/keepalivemessage.cc
ns-2.27/bgp/Comm/notificationmessage.cc
ns-2.27/bgp/Comm/startstopmessage.h
ns-2.27/bgp/Comm/keepalivemessage.h
ns-2.27/bgp/Comm/startstopmessage.cc
ns-2.27/bgp/Comm/transportmessage.cc
ns-2.27/bgp/Comm/updatemessage.h
ns-2.27/bgp/Comm/openmessage.h
ns-2.27/bgp/Comm/bgpmessage.h
ns-2.27/bgp/route.cc
ns-2.27/bgp/route.h
ns-2.27/bgp/classifier-ipv4.cc
ns-2.27/bgp/peer-entry.h
ns-2.27/bgp/classifier-ipv4src.h
ns-2.27/bgp/adjribout.cc
ns-2.27/bgp/adjribin.cc
ns-2.27/bgp/global.h
ns-2.27/bgp/classifier-ipv4.h
ns-2.27/bgp/ribelement.h
ns-2.27/bgp/routeinfo.cc
ns-2.27/bgp/rtProtoBGP.h
ns-2.27/bgp/rtProtoBGP.cc
ns-2.27/bgp/locrib.h
ns-2.27/bgp/locrib.cc
ns-2.27/bgp/routeinfo.h
ns-2.27/bgp/classifier-ipv4src.cc
ns-2.27/bgp/ribelement.cc
ns-2.27/bgp/adjribin.h
ns-2.27/bgp/adjribout.h
ns-2.27/bgp/peer-entry.cc
ns-2.27/bgp/Readme.txt
ns-2.27/tcl/bgp/test/
ns-2.27/tcl/bgp/test/route-distrib.tcl
ns-2.27/tcl/bgp/test/reflection2.tcl
ns-2.27/tcl/bgp/test/drop-peer2.tcl
ns-2.27/tcl/bgp/test/propagation.tcl
ns-2.27/tcl/bgp/test/keep-peer.tcl
ns-2.27/tcl/bgp/test/forwarding.tcl
ns-2.27/tcl/bgp/test/withdrawals.tcl
ns-2.27/tcl/bgp/test/drop-peer.tcl
ns-2.27/tcl/bgp/test/reflection.tcl
ns-2.27/tcl/bgp/test/ibgp.tcl
ns-2.27/tcl/bgp/test/reconnect.tcl
ns-2.27/tcl/bgp/test/select.tcl
ns-2.27/tcl/bgp/ns-bgp-peerentry.tcl
ns-2.27/tcl/bgp/ns-tcpmaster.tcl
ns-2.27/tcl/bgp/ns-rtProtoBGP.tcl
ns-2.27/tcl/bgp/ns-bgp-node.tcl
ns-2.27/tcp/receive_queue.cc
ns-2.27/tcp/send_queue.h
ns-2.27/tcp/send_queue.cc
ns-2.27/tcp/continuation.h
ns-2.27/tcp/tcp_socket.cc
ns-2.27/tcp/tcp_master.h
ns-2.27/tcp/tcp_data.h
ns-2.27/tcp/receive_queue.h
ns-2.27/tcp/tcp_socket.h
ns-2.27/tcp/tcp_master.cc
ns-2.27/tcp/tcp_data.cc

 Page 27

ns-bgp_2.0_patch

11.4 Code Integration Changes
The following section details the code integration changes necessary to migrate
ns-BGP to ns-2.33 in this project.

diff -w 233_original/Makefile.in 233_merged_final/Makefile.in
318a319,332
> tcp/tcp_data.o tcp/receive_queue.o tcp/send_queue.o tcp/tcp_master.o
tcp/tcp_socket.o \
> bgp/Util/bitstring.o bgp/Util/ipaddress.o bgp/Util/stringmanip.o \
> bgp/Comm/bgpmessage.o bgp/Comm/keepalivemessage.o
bgp/Comm/notificationmessage.o \
> bgp/Comm/openmessage.o bgp/Comm/startstopmessage.o
bgp/Comm/transportmessage.o \
> bgp/Comm/updatemessage.o \
> bgp/Timing/bgp_timer.o bgp/Timing/timeoutmessage.o bgp/Timing/mraitimer.o
bgp/Timing/mraiperpeertimer.o \
> bgp/Path/aggregator.o bgp/Path/aspath.o bgp/Path/atomicaggregate.o \
> bgp/Path/attribute.o bgp/Path/clusterlist.o bgp/Path/community.o \
> bgp/Path/localpref.o bgp/Path/med.o bgp/Path/nexthop.o \
> bgp/Path/originatorid.o bgp/Path/origin.o bgp/Path/segment.o \
> bgp/route.o bgp/routeinfo.o \
> bgp/ribelement.o bgp/adjribin.o bgp/adjribout.o bgp/locrib.o \
> bgp/classifier-ipv4.o bgp/classifier-ipv4src.o bgp/peer-entry.o
bgp/rtProtoBGP.o \
509a524,528
> tcl/bgp/ns-bgp-node.tcl \
> tcl/bgp/ns-bgp-peerentry.tcl \
> tcl/bgp/ns-rtProtoBGP.tcl \
> tcl/bgp/ns-tcpmaster.tcl \

diff -w 233_original/node.cc 233_merged_final/node.cc
141a142,148
> // Merged by Will Hrudey
> // Modified by Tony Feng for BGP.
> if (strcmp(argv[1], "as") == 0) {
> as_num_ = atoi(argv[2]);
> return TCL_OK;
> }
> // End Tony Feng
216a224,230
> // Merged by Will Hrudey
> } // Modified by Tony Feng for BGP.
> else if (strcmp(argv[1], "add-AS-neighbor") == 0) {
> Node * node = (Node *)TclObject::lookup(argv[2]);
> if (node == 0) {
> tcl.resultf("Invalid node %s", argv[2]);
> return (TCL_ERROR);
217a232,234
> ASnbs.push_back(node);
> return TCL_OK;
> } // End Tony Feng.

diff -w 233_original/node.h 233_merged_final/node.h
61a62,63
> // Merged by Will Hrudey

 Page 28

> #include <list>
132a135,136
> // Merged by Will Hrudey
> inline int as_number() { return as_num_; } //Added by Tony Feng
157a162,164
> // Merged by Will Hrudey
> //AS neighbor list for BGP autoconfig, added by Tony Feng
> list<Node*> ASnbs;
170a178,179
> // Merged by Will Hrudey
> int as_num_; // Added by Tony Feng for BGP

diff -w 233_original/ns-default.tcl 233_merged_final/ns-default.tcl
1346a1347,1365
> # Merged by Will Hrudey
> # Added by Tony Feng for BGP
> Agent/rtProto/BGP set connretry_interval_ 120
> Agent/rtProto/BGP set masoi_ 15
> Agent/rtProto/BGP set cluster_num 0
> Agent/rtProto/BGP set bgp_id_ 0
> Agent/rtProto/BGP set as_num_ 0
> Agent/rtProto/BGP set auto_config_ false
> Agent/rtProto/BGP set preference_ 80
>
> # PeerEntry
> Agent/PeerEntry set ipaddr_ 0
> Agent/PeerEntry set as_num_ 0
> Agent/PeerEntry set bgp_id_ 0
> Agent/PeerEntry set return_ipaddr_ 0
> Agent/PeerEntry set hold_time_ 90
> Agent/PeerEntry set keep_alive_interval_ 30
> Agent/PeerEntry set mrai_ 30
> # End Tony Feng

diff -w 233_original/ns-lib.tcl 233_merged_final/ns-lib.tcl
231a232,240
> # Mergedy by Will Hrudey
> # Added by Tony Feng for BGP
> source ../bgp/ns-bgp-node.tcl
> source ../bgp/ns-rtProtoBGP.tcl
> source ../bgp/ns-bgp-peerentry.tcl
>
> #TCPMaster
> source ../bgp/ns-tcpmaster.tcl
> # End Tony Feng
397a407,418
> # Merged by Will Hrudey
> # Added by Tony Feng for BGP
> Simulator instproc BGP { val } {
> if { $val == "ON" } {
> Node enable-module BGP
> Node disable-module Base
> } else {
> Node disable-module BGP
> Node enable-module Base
> }
> }
> # End Tony Feng
1104a1126,1133
> # Merged by Will Hrudey
> # Added by Tony Feng for BGP.

 Page 29

> if { [$n1 set as_num_] != [$n2 set as_num_] } {
> # n1 and n2 reside in different AS, add a route to n2 in n1's classifier.
> $n1 add-route [$n2 set address_] [[set link_($sid:$did)] set
head_]
> $n1 cmd add-AS-neighbor $n2
> }
> # End Tony Feng.

diff -w 233_original/ns-node.tcl 233_merged_final/ns-node.tcl
69c69
< nodetype_ multiPath_ ns_ rtnotif_ ptnotif_

> nodetype_ multiPath_ ns_ rtnotif_ ptnotif_ as_num_
74a75,76
> # Merged by Will Hrudey
> # Modified by Tony Feng for BGP
76c78,88
< set address_ [lindex $args 0]

> if {[llength $args] == 1} {
> set arg_0 [lindex $args 0]
> if { [scan $arg_0 "%s"] != -1 } {
> # create node with arg_0 of [as_num:ipaddr] format
> $self parse-addr $arg_0
> } else {
> # create node with arg_0 of int value
> set address_ $arg_0
> set as_num_ 0
> }
> }
78a91
> set as_num_ 0
79a93
> # End Tony Feng

diff -w 233_original/packet.h 233_merged_final/packet.h
102a103,106
> // Merged by Will Hrudey
> static const packet_t PT_RTPROTO_BGP = 70; // For bgp implementation, added
by Tony Feng
> static const packet_t PT_TCPMASTER = 71;
> static const packet_t PT_PEERENTRY = 72; // end Tony Feng
302a307,310
> // Merged by Will Hrudey
> name_[PT_RTPROTO_BGP]= "rtProtoBGP"; // For bgp implementation,
added by Tony Feng
> name_[PT_PEERENTRY]= "PeerEntry";
> name_[PT_TCPMASTER]= "tcpmaster"; // end Tony Feng

diff -w 233_original/route.cc 233_merged_final/route.cc
395a396,405
> // Merged by Will Hrudey
> // Modified by Tony Feng. check if src and dst come from the same as.
> // Note that index = nodeid +1.
> Tcl& tcl = Tcl::instance();
> tcl.evalf("[[Simulator instance] get-node-by-id %d] set as_num_",src-1);
> int as_num_src = atoi(tcl.result());
> tcl.evalf("[[Simulator instance] get-node-by-id %d] set as_num_",dst-
1);
> int as_num_dst = atoi(tcl.result());

 Page 30

> if (as_num_src == as_num_dst)
> // End Tony Feng.
401a412,420
> // Merged by Will Hrudey
> // Modified by Tony Feng. check if src and dst come from the same AS.
> Tcl& tcl = Tcl::instance();
> tcl.evalf("[[Simulator instance] get-node-by-id %d] set as_num_",src-1);
> int as_num_src = atoi(tcl.result());
> tcl.evalf("[[Simulator instance] get-node-by-id %d] set as_num_",dst-
1);
> int as_num_dst = atoi(tcl.result());
> if (as_num_src == as_num_dst) {
> // End Tony Feng.
404a424
> }

diff -w 233_original/rq.cc 233_merged_final/rq.cc
300a301
> // Merged by Will Hrudey
302c303
< ReassemblyQueue::add(TcpSeq start, TcpSeq end, TcpFlag tiflags, RqFlag
rqflags)

> ReassemblyQueue::add(TcpSeq start, TcpSeq end, TcpFlag tiflags, RqFlag
rqflags, AppData* data)
330a332,333
> // Merged by Will Hrudey
> head_->data = data; //Added by Zheng Wang for
BGP
502a506,508
> // Merged by Will Hrudey
> n->data = data; //Added by Zheng Wang for BGP
>
531a538,539
> // Merged by Will Hrudey
> toReceiveQueue->enqueue((TcpData*)(q->data)); //Added by Zheng
Wang for BGP

diff -w 233_original/rq.h 233_merged_final/rq.h
70a71,72
> // Merged by Will Hrudey
> #include "receive_queue.h" //Added by Zheng Wang for BGP
101a104,105
> // Merged by Will Hrudey
> AppData* data; // Added by Zheng Wang for BGP
108c112,113
< int add(TcpSeq sseq, TcpSeq eseq, TcpFlag pflags, RqFlag rqflags = 0);

> // Merged by Will Hrudey
> int add(TcpSeq sseq, TcpSeq eseq, TcpFlag pflags, RqFlag rqflags = 0,
AppData* data = 0); //Modified by Zheng Wang for BGP
123a129,130
> // Merged by Will Hrudey
> void connRevQueue(ReceiveQueue* revQueue){toReceiveQueue = revQueue;}
//Added by Zheng Wang for BGP
145a153,155
> // Merged by Will Hrudey
> ReceiveQueue* toReceiveQueue; //Added by Zheng Wang for BGP
>

 Page 31

diff -w 233_original/rtmodule.cc 233_merged_final/rtmodule.cc
144a145,155
> // Merged by Will Hrudey
> // Added by Tony Feng for BGP.
> static class BGPRoutingModuleClass : public TclClass {
> public:
> BGPRoutingModuleClass() : TclClass("RtModule/BGP") {}
> TclObject* create(int, const char*const*) {
> return (new BGPRoutingModule);
> }
> } class_bgp_module;
> // End Tony Feng.
>
511a523,546
> // Merged by Will Hrudey
> // Added by Tony Feng for BGP.
> BGPRoutingModule::BGPRoutingModule() { }
>
> int BGPRoutingModule::command(int argc, const char*const* argv) {
> Tcl& tcl = Tcl::instance();
> if (argc == 3) {
> if (strcmp(argv[1], "route-notify") == 0) {
> Node *node = (Node *)(TclObject::lookup(argv[2]));
> if (node == NULL) {
> tcl.add_errorf("Invalid node object %s", argv[2]);
> return TCL_ERROR;
> }
> if (node != n_) {
> tcl.add_errorf("Node object %s different from n_",
argv[2]);
> return TCL_ERROR;
> }
> n_->route_notify(this);
> return TCL_OK;
> }
> }
> return (RoutingModule::command(argc, argv));
> }
> // End Tony Feng.

diff -w 233_original/rtmodule.h 233_merged_final/rtmodule.h
69a70,74
> // Merged by Will Hrudey
> // Added by Tony Feng for BGP.
> class IPv4Classifier;
> class rtProtoBGP;
> // End Tony Feng.
180a186,197
> // Merged by Will Hrudey
> // Added by Tony Feng for BGP.
> class BGPRoutingModule : public RoutingModule {
> public:
> BGPRoutingModule();
> virtual const char* module_name() const {return "BGP";}
> virtual int command (int argc, const char* const * argv);
> protected:
> IPv4Classifier *classifier_;
> rtProtoBGP *bgp_agent_;
> };
> // End Tony Feng.

 Page 32

diff -w 233_original/scoreboard-rq.cc 233_merged_final/scoreboard-rq.cc
87c87,88
< rq_.add(tcph->sa_left(i), tcph->sa_right(i), 0);

> // Merged by Will Hrudey
> rq_.add(tcph->sa_left(i), tcph->sa_right(i), 0, NULL);

diff -w 233_original/simulator.cc 233_merged_final/simulator.cc
192c192,197
< sprintf(tmp, "%d", j);

> // Merged by Will Hrudey
> // Modified by Tony Feng. We use the node
address instead of node_id.
> Tcl::instance().evalf("[Simulator
instance] get-node-by-id %d",j);
> Node * node = (Node*)
TclObject::lookup(Tcl::instance().result());
> sprintf(tmp, "%d", node->address());
> // End Tony Feng.

diff -w 233_original/tcp-full.cc 233_merged_final/tcp-full.cc
343a344,365
> // Merged by Will Hrudey
> /*
> * send a string of nBytes, added by Zheng Wang for BGP
> */
> void
> FullTcpAgent::advance_bytes(int nBytes, const char* const data, Continuation*
caller)
> {
> if (writeCont != NULL){
> printf("write error - socket already in blocking write\n");
> if (caller != NULL)
> caller->failure();
> return;
> }
> if(toSendQueue==NULL) {
> toSendQueue = new SendQueue();
> }
> if (data!=NULL) {
> writeCont = caller;
> toSendQueue->enqueue(nBytes,data);
> }
> advance_bytes(nBytes);
> }
466a489,491
> // Merged by Will Hrudey
> if(mySocket) // added by Tony Feng, informs the socket
that tcp closed successfully
> mySocket->disconnected();
470a496,498
> // Merged by Will Hrudey
> if(mySocket) // added by Tony Feng, informs the socket
that tcp closed successfully
> mySocket->disconnected();
717a746,748
> // Merged by Will Hrudey
> AppData* data = pkt->userdata(); //Added by Zheng Wang for BGP
>
726,727c757,758

 Page 33

<
< flags = rq_.add(start, end, tiflags, 0);

> // Merged by Will Hrudey
> flags = rq_.add(start, end, tiflags, 0, data); //Modified by Zheng Wang
for BGP
750a782,825
> // Merged by Will Hrudey
> //Added by Zheng Wang for BGP
> void FullTcpAgent::read(char* buffer, int nbytes, Continuation* caller)
> {
> if (readCont != NULL){
> printf("read error - socket already in blocking read\n");
> if (caller != NULL)
> caller->failure();
> return;
> }
>
> // if requested data is in the buffer, get it from buffer
> // We use the fact that a data object arrives in the first TCP segment.
> if(nbytes <= dataReceived) {
> dataReceived -= nbytes;
> if(toReceiveQueue->is_empty()) {
> printf("receive queue is empty, exit\n");
> return;
> }
> toReceiveQueue->retrieve_data(nbytes,buffer);
> caller->success();
> } else {
> inbuffer = buffer;
> readCont = caller;
> readSize = nbytes;
> }
> }
>
> void FullTcpAgent::recvBytes(int bytes)
> {
> dataReceived+= bytes;
> if((readCont != NULL) && (dataReceived >= readSize)) {
> toReceiveQueue->retrieve_data(readSize,inbuffer);
> mySocket->appCallWaiting = false;
> //mySocket->app_call_waiting = NULL;
> dataReceived -= readSize;
> Continuation* rc = readCont;
> readCont = NULL;
> rc->success();
>
> }
> Agent::recvBytes(bytes);
> }
> // End Zheng Wang
909a985,996
> // Merged by Will Hrudey
> //Added by Zheng Wang for BGP
> //Set data field
> if(toSendQueue)
> {
> if(!toSendQueue->is_empty())
> {
> TcpData* pData = toSendQueue-
>get_data(seqno,datalen);
> p->setdata(pData);
> }

 Page 34

> }
> //End Zheng Wang
1285a1373,1381
> // Merged by Will Hrudey
> // Added by Tony Feng for Socket::wirte()
> if(writeCont != NULL) {
> Continuation * app_call_waiting = writeCont;
> writeCont = NULL;
> mySocket->appCallWaiting = false;
> app_call_waiting->success();
> }
> // End Tony Feng
1625a1722,1723
> // Merged by Will Hrudey
> toReceiveQueue->enqueue((TcpData*)pkt->userdata()); //
Added by Zheng Wang for BGP
1707a1806,1813
> // Merged by Will Hrudey
> //Modified by Zheng Wang
> if(mySocket!=NULL && mySocket->isListening) {
> hdr_ip* iph1 = hdr_ip::access(pkt);
> //Received SYN for listening tcp, we create a new
reading socket.
> tcpMaster->newInComing(pkt,mySocket);
> return;
> } else {
1708a1815,1816
> }
> // End Zheng Wang
1795a1904,1908
> // Merged by Will Hrudey
> //Added by Zheng Wang
> if (mySocket)
> mySocket->connected();
> //End Zheng Wang
2027a2141,2142
> // Merged by Will Hrudey
> mySocket->listeningSocket->addConnection(mySocket);
//Added by Zheng Wang for BGP
2278a2394,2399
> // Merged by Will Hrudey
> // Added by Tony Feng for BGP
> if(mySocket) {
> mySocket->disconnected(); // Informs the
socket that tcp closed successfully
> }
> // End Tony Feng
2291a2413,2418
> // Merged by Will Hrudey
> // Added by Tony Feng for BGP
> if(mySocket) {
> mySocket->disconnected(); // Informs the
socket that tcp closed successfully
> }
> // End Tony Feng
2579c2706,2707
< if (state_ == TCPS_LISTEN) {

> // Merged by Will Hrudey
> if (state_ == TCPS_LISTEN && (mySocket==NULL || !mySocket->isListening))
{ // Modified by Tony Feng for BGP

 Page 35

diff -w 233_original/tcp-full.h 233_merged_final/tcp-full.h
41a42,49
> // Merged by Will Hrudey
> //Added by Zheng Wang
> #include "send_queue.h"
> #include "receive_queue.h"
> #include "tcp_socket.h"
> #include "tcp_master.h"
> #include "continuation.h"
> //End Zheng Wang
116a125,126
> // Merged by Will Hrudey
> friend class TcpMaster;
123c133,142
< last_state_(TCPS_CLOSED), rq_(rcv_nxt_), last_ack_sent_(-1) { }

> // Merged by Will Hrudey
> last_state_(TCPS_CLOSED), rq_(rcv_nxt_), last_ack_sent_(-1)
> { // Modified by Zheng Wang for BGP
> toSendQueue = new SendQueue();
> toReceiveQueue = new ReceiveQueue();
> rq_.connRevQueue(toReceiveQueue);
> dataReceived = 0;
> readCont = NULL;
> writeCont = NULL;
> }
125c144,151
< ~FullTcpAgent() { cancel_timers(); rq_.clear(); }

> ~FullTcpAgent()
> { cancel_timers();
> rq_.clear();
> if(toSendQueue)
> delete toSendQueue;
> if(toReceiveQueue)
> delete toReceiveQueue;
> } // End Zheng Wang
130a157,162
> // Merged by Will Hrudey
> // Added by Zheng Wang for BGP
> void advance_bytes(int nBytes, const char* const data, Continuation*
caller);
> void recvBytes(int bytes); // Overrides Agent's recvBytes();
> void read(char* buffer, int nbytes, Continuation* caller);
> // End Zheng Wang
134a167,172
> // Merged by Will Hrudey
> // Added by Zheng Wang
> ReceiveQueue* getRevQueue() {return toReceiveQueue;}
> TcpSocket* mySocket;
> TcpMaster* tcpMaster;
> // End Zheng Wang
240a279,289
> // Merged by Will Hrudey
> // Added by Zheng Wang for BGP
> SendQueue* toSendQueue;
> ReceiveQueue* toReceiveQueue;
> int dataReceived;
> Continuation* readCont;
> Continuation* writeCont;
> int readSize;
> int writeSize;
> char* inbuffer;

 Page 36

> // End Zheng Wang

11.5 Code Compilation Changes
The following section details the code changes necessary to successfully
compile ns-BGP in ns-2.33 after the code integration phase.

diff -w 233_compilation_issues/ipaddress.cc 233_compilation_final/ipaddress.cc
18a19,20
> // Modified by Will Hrudey
> #include <math.h>

diff -w 233_compilation_issues/ipaddress.h 233_compilation_final/ipaddress.h
49c49,51
< boolVector IPaddress::str2bin(string str);

> // Modified by Will Hrudey
> //boolVector IPaddress::str2bin(string str);
> boolVector str2bin(string str);

diff -w 233_compilation_issues/send_queue.cc
233_compilation_final/send_queue.cc
55c55,59
< list<SendData>::iterator targetIterator=NULL;

>
> // Modified by Will Hrudey
> // list<SendData>::iterator targetIterator= NULL;
> list<SendData>::iterator targetIterator= (list<SendData>::iterator) NULL;
>
66c70,72
< if(targetIterator == NULL)

> // Modified by Will Hrudey
> // if(targetIterator == NULL)
> if(targetIterator == (list<SendData>::iterator) NULL)

11.6 ns-BGP Patch File
The following section details the resulting project ns-BGP patch file required to
patch the ns-BGP 2.0 release in the ns-2.33 environment:

diff -rc ns-2.33.orig/common/node.cc ns-2.33/common/node.cc
*** ns-2.33.orig/common/node.cc 2008-03-31 19:00:25.000000000 -0700
--- ns-2.33/common/node.cc 2008-07-26 20:38:10.000000000 -0700

*** 139,144 ****
--- 139,151 ----
 Node::command(int argc, const char*const* argv)
 {
 Tcl& tcl = Tcl::instance();
+ // Merged by Will Hrudey
+ // Modified by Tony Feng for BGP.
+ if (strcmp(argv[1], "as") == 0) {
+ as_num_ = atoi(argv[2]);

 Page 37

+ return TCL_OK;
+ }
+ // End Tony Feng
 if (argc == 2) {
 #ifdef HAVE_STL
 // Mods for Nix-Vector Routing

*** 214,220 ****
 }
 addNeighbor(node);
 return TCL_OK;
! }
 }
 return ParentNode::command(argc,argv);
 }
--- 221,237 ----
 }
 addNeighbor(node);
 return TCL_OK;
! // Merged by Will Hrudey
! } // Modified by Tony Feng for BGP.
! else if (strcmp(argv[1], "add-AS-neighbor") == 0) {
! Node * node = (Node *)TclObject::lookup(argv[2]);
! if (node == 0) {
! tcl.resultf("Invalid node %s", argv[2]);
! return (TCL_ERROR);
! }
! ASnbs.push_back(node);
! return TCL_OK;
! } // End Tony Feng.
 }
 return ParentNode::command(argc,argv);
 }
diff -rc ns-2.33.orig/common/node.h ns-2.33/common/node.h
*** ns-2.33.orig/common/node.h 2008-03-31 19:00:25.000000000 -0700
--- ns-2.33/common/node.h 2008-07-26 20:38:14.000000000 -0700

*** 59,64 ****
--- 59,66 ----
 #include "energy-model.h"
 #include "location.h"
 #include "rtmodule.h"
+ // Merged by Will Hrudey
+ #include <list>

 class NixNode;
 class LinkHead;

*** 130,135 ****
--- 132,139 ----

 inline int address() { return address_;}
 inline int nodeid() { return nodeid_;}
+ // Merged by Will Hrudey
+ inline int as_number() { return as_num_; } //Added by Tony Feng
 inline bool exist_namchan() const { return (namChan_ != 0); }

 virtual int command(int argc, const char*const* argv);

*** 155,160 ****
--- 159,167 ----
 void addNeighbor(Node *node);

 Page 38

 static Node* get_node_by_address(nsaddr_t);
+ // Merged by Will Hrudey
+ //AS neighbor list for BGP autoconfig, added by Tony Feng
+ list<Node*> ASnbs;

 //routines for supporting routing
 void route_notify (RoutingModule *rtm);

*** 168,173 ****
--- 175,182 ----
 LIST_ENTRY(Node) entry; // declare list entry structure
 int address_;
 int nodeid_; // for nam use
+ // Merged by Will Hrudey
+ int as_num_; // Added by Tony Feng for BGP

 // Nam tracing facility
 Tcl_Channel namChan_;
diff -rc ns-2.33.orig/common/packet.h ns-2.33/common/packet.h
*** ns-2.33.orig/common/packet.h 2008-03-31 19:00:25.000000000 -0700
--- ns-2.33/common/packet.h 2008-07-26 20:38:24.000000000 -0700

*** 100,105 ****
--- 100,109 ----
 static const packet_t PT_RTCP = 14;
 static const packet_t PT_RTP = 15;
 static const packet_t PT_RTPROTO_DV = 16;
+ // Merged by Will Hrudey
+ static const packet_t PT_RTPROTO_BGP = 70; // For bgp implementation, added
by Tony Feng
+ static const packet_t PT_TCPMASTER = 71;
+ static const packet_t PT_PEERENTRY = 72; // end Tony Feng
 static const packet_t PT_CtrMcast_Encap = 17;
 static const packet_t PT_CtrMcast_Decap = 18;
 static const packet_t PT_SRM = 19;

*** 300,305 ****
--- 304,313 ----
 name_[PT_RTCP]= "rtcp";
 name_[PT_RTP]= "rtp";
 name_[PT_RTPROTO_DV]= "rtProtoDV";
+ // Merged by Will Hrudey
+ name_[PT_RTPROTO_BGP]= "rtProtoBGP"; // For bgp implementation,
added by Tony Feng
+ name_[PT_PEERENTRY]= "PeerEntry";
+ name_[PT_TCPMASTER]= "tcpmaster"; // end Tony Feng
 name_[PT_CtrMcast_Encap]= "CtrMcast_Encap";
 name_[PT_CtrMcast_Decap]= "CtrMcast_Decap";
 name_[PT_SRM]= "SRM";
diff -rc ns-2.33.orig/common/simulator.cc ns-2.33/common/simulator.cc
*** ns-2.33.orig/common/simulator.cc 2008-03-31 19:00:25.000000000 -0700
--- ns-2.33/common/simulator.cc 2008-07-26 20:38:33.000000000 -0700

*** 189,195 ****
 nh = rtobject_->lookup_flat(i, j);
 if (nh >= 0) {
 NsObject *l_head = get_link_head(nodelist_[i],
nh);
! sprintf(tmp, "%d", j);
 nodelist_[i]->add_route(tmp, l_head);
 }
 }
--- 189,200 ----

 Page 39

 nh = rtobject_->lookup_flat(i, j);
 if (nh >= 0) {
 NsObject *l_head = get_link_head(nodelist_[i],
nh);
! // Merged by Will Hrudey
! // Modified by Tony Feng. We use the node
address instead of node_id.
! Tcl::instance().evalf("[Simulator
instance] get-node-by-id %d",j);
! Node * node = (Node*)
TclObject::lookup(Tcl::instance().result());
! sprintf(tmp, "%d", node->address());
! // End Tony Feng.
 nodelist_[i]->add_route(tmp, l_head);
 }
 }
diff -rc ns-2.33.orig/Makefile.in ns-2.33/Makefile.in
*** ns-2.33.orig/Makefile.in 2008-03-31 19:00:08.000000000 -0700
--- ns-2.33/Makefile.in 2008-07-26 20:31:54.000000000 -0700

*** 18,23 ****
--- 18,25 ----
 # MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
 #
 # @(#) $Header: 2002/10/09 15:34:11
+ # Merged code @ lines 320 & 524 by Will Hrudey
+ #

 #
 # Various configurable paths (remember to edit Makefile.in, not Makefile)

*** 316,321 ****
--- 318,336 ----
 mcast/classifier-lms.o mcast/lms-agent.o mcast/lms-receiver.o \
 mcast/lms-sender.o \
 queue/delayer.o \
+ tcp/tcp_data.o tcp/receive_queue.o tcp/send_queue.o tcp/tcp_master.o
tcp/tcp_socket.o \
+ bgp/Util/bitstring.o bgp/Util/ipaddress.o bgp/Util/stringmanip.o \
+ bgp/Comm/bgpmessage.o bgp/Comm/keepalivemessage.o
bgp/Comm/notificationmessage.o \
+ bgp/Comm/openmessage.o bgp/Comm/startstopmessage.o
bgp/Comm/transportmessage.o \
+ bgp/Comm/updatemessage.o \
+ bgp/Timing/bgp_timer.o bgp/Timing/timeoutmessage.o bgp/Timing/mraitimer.o
bgp/Timing/mraiperpeertimer.o \
+ bgp/Path/aggregator.o bgp/Path/aspath.o bgp/Path/atomicaggregate.o \
+ bgp/Path/attribute.o bgp/Path/clusterlist.o bgp/Path/community.o \
+ bgp/Path/localpref.o bgp/Path/med.o bgp/Path/nexthop.o \
+ bgp/Path/originatorid.o bgp/Path/origin.o bgp/Path/segment.o \
+ bgp/route.o bgp/routeinfo.o \
+ bgp/ribelement.o bgp/adjribin.o bgp/adjribout.o bgp/locrib.o \
+ bgp/classifier-ipv4.o bgp/classifier-ipv4src.o bgp/peer-entry.o
bgp/rtProtoBGP.o \
 xcp/xcpq.o xcp/xcp.o xcp/xcp-end-sys.o \
 wpan/p802_15_4csmaca.o wpan/p802_15_4fail.o \
 wpan/p802_15_4hlist.o wpan/p802_15_4mac.o \

*** 507,512 ****
--- 522,531 ----
 tcl/lib/ns-srcrt.tcl \
 tcl/mcast/ns-lms.tcl \
 tcl/lib/ns-qsnode.tcl \

 Page 40

+ tcl/bgp/ns-bgp-node.tcl \
+ tcl/bgp/ns-bgp-peerentry.tcl \
+ tcl/bgp/ns-rtProtoBGP.tcl \
+ tcl/bgp/ns-tcpmaster.tcl \
 @V_NS_TCL_LIB_STL@

 $(GEN_DIR)ns_tcl.cc: $(NS_TCL_LIB)
diff -rc ns-2.33.orig/routing/route.cc ns-2.33/routing/route.cc
*** ns-2.33.orig/routing/route.cc 2008-03-31 19:00:28.000000000 -0700
--- ns-2.33/routing/route.cc 2008-07-26 20:39:07.000000000 -0700

*** 393,406 ****
--- 393,426 ----
 {
 check(src);
 check(dst);
+ // Merged by Will Hrudey
+ // Modified by Tony Feng. check if src and dst come from the same as.
+ // Note that index = nodeid +1.
+ Tcl& tcl = Tcl::instance();
+ tcl.evalf("[[Simulator instance] get-node-by-id %d] set as_num_",src-1);
+ int as_num_src = atoi(tcl.result());
+ tcl.evalf("[[Simulator instance] get-node-by-id %d] set as_num_",dst-
1);
+ int as_num_dst = atoi(tcl.result());
+ if (as_num_src == as_num_dst)
+ // End Tony Feng.
 adj_[INDEX(src, dst, size_)].cost = cost;
 }
 void RouteLogic::insert(int src, int dst, double cost, void* entry_)
 {
 check(src);
 check(dst);
+ // Merged by Will Hrudey
+ // Modified by Tony Feng. check if src and dst come from the same AS.
+ Tcl& tcl = Tcl::instance();
+ tcl.evalf("[[Simulator instance] get-node-by-id %d] set as_num_",src-1);
+ int as_num_src = atoi(tcl.result());
+ tcl.evalf("[[Simulator instance] get-node-by-id %d] set as_num_",dst-
1);
+ int as_num_dst = atoi(tcl.result());
+ if (as_num_src == as_num_dst) {
+ // End Tony Feng.
 adj_[INDEX(src, dst, size_)].cost = cost;
 adj_[INDEX(src, dst, size_)].entry = entry_;
+ }
 }

 void RouteLogic::reset(int src, int dst)
diff -rc ns-2.33.orig/routing/rtmodule.cc ns-2.33/routing/rtmodule.cc
*** ns-2.33.orig/routing/rtmodule.cc 2008-03-31 19:00:28.000000000 -0700
--- ns-2.33/routing/rtmodule.cc 2008-07-26 20:39:16.000000000 -0700

*** 142,147 ****
--- 142,158 ----
 bind("classifier_", (TclObject**)&classifier_);
 }

+ // Merged by Will Hrudey
+ // Added by Tony Feng for BGP.
+ static class BGPRoutingModuleClass : public TclClass {
+ public:
+ BGPRoutingModuleClass() : TclClass("RtModule/BGP") {}

 Page 41

+ TclObject* create(int, const char*const*) {
+ return (new BGPRoutingModule);
+ }
+ } class_bgp_module;
+ // End Tony Feng.
+
 int RoutingModule::command(int argc, const char*const* argv)
 {
 Tcl& tcl = Tcl::instance();

*** 509,511 ****
--- 520,546 ----
 next_rtm_->add_route(dst, target);
 }

+ // Merged by Will Hrudey
+ // Added by Tony Feng for BGP.
+ BGPRoutingModule::BGPRoutingModule() { }
+
+ int BGPRoutingModule::command(int argc, const char*const* argv) {
+ Tcl& tcl = Tcl::instance();
+ if (argc == 3) {
+ if (strcmp(argv[1], "route-notify") == 0) {
+ Node *node = (Node *)(TclObject::lookup(argv[2]));
+ if (node == NULL) {
+ tcl.add_errorf("Invalid node object %s", argv[2]);
+ return TCL_ERROR;
+ }
+ if (node != n_) {
+ tcl.add_errorf("Node object %s different from n_",
argv[2]);
+ return TCL_ERROR;
+ }
+ n_->route_notify(this);
+ return TCL_OK;
+ }
+ }
+ return (RoutingModule::command(argc, argv));
+ }
+ // End Tony Feng.
diff -rc ns-2.33.orig/routing/rtmodule.h ns-2.33/routing/rtmodule.h
*** ns-2.33.orig/routing/rtmodule.h 2008-03-31 19:00:28.000000000 -0700
--- ns-2.33/routing/rtmodule.h 2008-07-26 20:39:21.000000000 -0700

*** 67,72 ****
--- 67,77 ----
 class Node;
 class VirtualClassifier;
 class DestHashClassifier;
+ // Merged by Will Hrudey
+ // Added by Tony Feng for BGP.
+ class IPv4Classifier;
+ class rtProtoBGP;
+ // End Tony Feng.

 class RoutingModule : public TclObject {

*** 178,181 ****
--- 183,198 ----
 virtual void add_route(char *dst, NsObject *target){}
 };

 Page 42

+ // Merged by Will Hrudey
+ // Added by Tony Feng for BGP.
+ class BGPRoutingModule : public RoutingModule {
+ public:
+ BGPRoutingModule();
+ virtual const char* module_name() const {return "BGP";}
+ virtual int command (int argc, const char* const * argv);
+ protected:
+ IPv4Classifier *classifier_;
+ rtProtoBGP *bgp_agent_;
+ };
+ // End Tony Feng.
 #endif // ns_rtmodule_h
diff -rc ns-2.33.orig/tcl/lib/ns-default.tcl ns-2.33/tcl/lib/ns-default.tcl
*** ns-2.33.orig/tcl/lib/ns-default.tcl 2008-03-31 19:00:23.000000000 -0700
--- ns-2.33/tcl/lib/ns-default.tcl 2008-07-26 20:39:50.000000000 -0700

*** 1344,1349 ****
--- 1344,1368 ----
 Agent/rtProto/DV set INFINITY [Agent set ttl_]
 Agent/rtProto/DV set advertInterval 2

+ # Merged by Will Hrudey
+ # Added by Tony Feng for BGP
+ Agent/rtProto/BGP set connretry_interval_ 120
+ Agent/rtProto/BGP set masoi_ 15
+ Agent/rtProto/BGP set cluster_num 0
+ Agent/rtProto/BGP set bgp_id_ 0
+ Agent/rtProto/BGP set as_num_ 0
+ Agent/rtProto/BGP set auto_config_ false
+ Agent/rtProto/BGP set preference_ 80
+
+ # PeerEntry
+ Agent/PeerEntry set ipaddr_ 0
+ Agent/PeerEntry set as_num_ 0
+ Agent/PeerEntry set bgp_id_ 0
+ Agent/PeerEntry set return_ipaddr_ 0
+ Agent/PeerEntry set hold_time_ 90
+ Agent/PeerEntry set keep_alive_interval_ 30
+ Agent/PeerEntry set mrai_ 30
+ # End Tony Feng
 Agent/Encapsulator set status_ 1
 Agent/Encapsulator set overhead_ 20

diff -rc ns-2.33.orig/tcl/lib/ns-lib.tcl ns-2.33/tcl/lib/ns-lib.tcl
*** ns-2.33.orig/tcl/lib/ns-lib.tcl 2008-03-31 19:00:23.000000000 -0700
--- ns-2.33/tcl/lib/ns-lib.tcl 2008-07-26 20:39:58.000000000 -0700

*** 229,234 ****
--- 229,243 ----
 }

 source ns-qsnode.tcl
+ # Mergedy by Will Hrudey
+ # Added by Tony Feng for BGP
+ source ../bgp/ns-bgp-node.tcl
+ source ../bgp/ns-rtProtoBGP.tcl
+ source ../bgp/ns-bgp-peerentry.tcl
+
+ #TCPMaster
+ source ../bgp/ns-tcpmaster.tcl
+ # End Tony Feng

 Page 43

 # Obsolete modules
 #source ns-wireless-mip.tcl

*** 395,400 ****
--- 404,421 ----
 }
 }

+ # Merged by Will Hrudey
+ # Added by Tony Feng for BGP
+ Simulator instproc BGP { val } {
+ if { $val == "ON" } {
+ Node enable-module BGP
+ Node disable-module Base
+ } else {
+ Node disable-module BGP
+ Node enable-module Base
+ }
+ }
+ # End Tony Feng

 Simulator instproc PGM { val } {
 if { $val == "ON" } {

*** 1102,1107 ****
--- 1123,1136 ----
 # Register this simplex link in nam link list. Treat it as
 # a duplex link in nam
 $self register-nam-linkconfig $link_($sid:$did)
+ # Merged by Will Hrudey
+ # Added by Tony Feng for BGP.
+ if { [$n1 set as_num_] != [$n2 set as_num_] } {
+ # n1 and n2 reside in different AS, add a route to n2 in n1's classifier.
+ $n1 add-route [$n2 set address_] [[set link_($sid:$did)] set
head_]
+ $n1 cmd add-AS-neighbor $n2
+ }
+ # End Tony Feng.
 }

 #
diff -rc ns-2.33.orig/tcl/lib/ns-node.tcl ns-2.33/tcl/lib/ns-node.tcl
*** ns-2.33.orig/tcl/lib/ns-node.tcl 2008-03-31 19:00:23.000000000 -0700
--- ns-2.33/tcl/lib/ns-node.tcl 2008-07-26 20:40:09.000000000 -0700

*** 66,82 ****
 eval $self next $args

 $self instvar id_ agents_ dmux_ neighbor_ rtsize_ address_ \
! nodetype_ multiPath_ ns_ rtnotif_ ptnotif_

 set ns_ [Simulator instance]
 set id_ [Node getid]
 $self nodeid $id_ ;# Propagate id_ into c++ space

 if {[llength $args] != 0} {
! set address_ [lindex $args 0]
 } else {
 set address_ $id_
 }
 $self cmd addr $address_; # Propagate address_ into C++ space
 #$ns_ add-node $self $id_
 set neighbor_ ""

 Page 44

--- 66,96 ----
 eval $self next $args

 $self instvar id_ agents_ dmux_ neighbor_ rtsize_ address_ \
! nodetype_ multiPath_ ns_ rtnotif_ ptnotif_ as_num_

 set ns_ [Simulator instance]
 set id_ [Node getid]
 $self nodeid $id_ ;# Propagate id_ into c++ space

+ # Merged by Will Hrudey
+ # Modified by Tony Feng for BGP
 if {[llength $args] != 0} {
! if {[llength $args] == 1} {
! set arg_0 [lindex $args 0]
! if { [scan $arg_0 "%s"] != -1 } {
! # create node with arg_0 of [as_num:ipaddr] format
! $self parse-addr $arg_0
! } else {
! # create node with arg_0 of int value
! set address_ $arg_0
! set as_num_ 0
! }
! }
 } else {
 set address_ $id_
+ set as_num_ 0
 }
+ # End Tony Feng
 $self cmd addr $address_; # Propagate address_ into C++ space
 #$ns_ add-node $self $id_
 set neighbor_ ""
diff -rc ns-2.33.orig/tcp/rq.cc ns-2.33/tcp/rq.cc
*** ns-2.33.orig/tcp/rq.cc 2008-03-31 19:00:28.000000000 -0700
--- ns-2.33/tcp/rq.cc 2008-07-26 20:40:44.000000000 -0700

*** 298,305 ****
 * last seq# number in the segment plus one
 */

 TcpFlag
! ReassemblyQueue::add(TcpSeq start, TcpSeq end, TcpFlag tiflags, RqFlag
rqflags)
 {

 int needmerge = FALSE;
--- 298,306 ----
 * last seq# number in the segment plus one
 */

+ // Merged by Will Hrudey
 TcpFlag
! ReassemblyQueue::add(TcpSeq start, TcpSeq end, TcpFlag tiflags, RqFlag
rqflags, AppData* data)
 {

 int needmerge = FALSE;

*** 328,333 ****
--- 329,336 ----
 head_->pflags_ = tiflags;
 head_->rqflags_ = rqflags;
 head_->cnt_ = initcnt;

 Page 45

+ // Merged by Will Hrudey
+ head_->data = data; //Added by Zheng Wang for
BGP

 total_ = (end - start);

*** 500,505 ****
--- 503,511 ----
 n->prev_ = p;
 n->next_ = q;

+ // Merged by Will Hrudey
+ n->data = data; //Added by Zheng Wang for BGP
+
 push(n);

 if (p)

*** 529,534 ****
--- 535,542 ----
 else if (rcv_nxt_ >= start) {
 rcv_nxt_ = end;
 }
+ // Merged by Will Hrudey
+ toReceiveQueue->enqueue((TcpData*)(q->data)); //Added by Zheng
Wang for BGP

 return tiflags;
 }
diff -rc ns-2.33.orig/tcp/rq.h ns-2.33/tcp/rq.h
*** ns-2.33.orig/tcp/rq.h 2008-03-31 19:00:28.000000000 -0700
--- ns-2.33/tcp/rq.h 2008-07-26 20:40:56.000000000 -0700

*** 68,73 ****
--- 68,75 ----

 #include <stdio.h>
 #include <stdlib.h>
+ // Merged by Will Hrudey
+ #include "receive_queue.h" //Added by Zheng Wang for BGP

 /*
 * ReassemblyQueue: keeps both a stack and linked list of segments

*** 99,111 ****
 TcpFlag pflags_; // flags derived from tcp hdr
 RqFlag rqflags_; // book-keeping flags
 int cnt_; // refs to this block
 };

 public:
 ReassemblyQueue(TcpSeq& rcvnxt) :
 head_(NULL), tail_(NULL), top_(NULL), bottom_(NULL), hint_(NULL),
total_(0), rcv_nxt_(rcvnxt) { };
 int empty() { return (head_ == NULL); }
! int add(TcpSeq sseq, TcpSeq eseq, TcpFlag pflags, RqFlag rqflags = 0);
 int maxseq() { return (tail_ ? (tail_->endseq_) : -1); }
 int minseq() { return (head_ ? (head_->startseq_) : -1); }
 int total() { return total_; }
--- 101,116 ----
 TcpFlag pflags_; // flags derived from tcp hdr
 RqFlag rqflags_; // book-keeping flags

 Page 46

 int cnt_; // refs to this block
+ // Merged by Will Hrudey
+ AppData* data; // Added by Zheng Wang for BGP
 };

 public:
 ReassemblyQueue(TcpSeq& rcvnxt) :
 head_(NULL), tail_(NULL), top_(NULL), bottom_(NULL), hint_(NULL),
total_(0), rcv_nxt_(rcvnxt) { };
 int empty() { return (head_ == NULL); }
! // Merged by Will Hrudey
! int add(TcpSeq sseq, TcpSeq eseq, TcpFlag pflags, RqFlag rqflags = 0,
AppData* data = 0); //Modified by Zheng Wang for BGP
 int maxseq() { return (tail_ ? (tail_->endseq_) : -1); }
 int minseq() { return (head_ ? (head_->startseq_) : -1); }
 int total() { return total_; }

*** 121,126 ****
--- 126,133 ----
 return (clearto(rcv_nxt_));
 }
 void dumplist(); // for debugging
+ // Merged by Will Hrudey
+ void connRevQueue(ReceiveQueue* revQueue){toReceiveQueue = revQueue;}
//Added by Zheng Wang for BGP

 // cache of allocated seginfo blocks
 static seginfo* newseginfo();

*** 143,148 ****
--- 150,158 ----
 // within TCP to set rcv_nxt and thus to set the ACK field. It is also
 // used in the SACK sender as sack_min_

+ // Merged by Will Hrudey
+ ReceiveQueue* toReceiveQueue; //Added by Zheng Wang for BGP
+
 TcpSeq& rcv_nxt_; // start seq of next expected thing
 TcpFlag coalesce(seginfo*, seginfo*, seginfo*);
 void fremove(seginfo*); // remove from FIFO
diff -rc ns-2.33.orig/tcp/scoreboard-rq.cc ns-2.33/tcp/scoreboard-rq.cc
*** ns-2.33.orig/tcp/scoreboard-rq.cc 2008-03-31 19:00:28.000000000 -0700
--- ns-2.33/tcp/scoreboard-rq.cc 2008-07-26 20:41:24.000000000 -0700

*** 84,90 ****

 for(int i = 0 ; i < tcph->sa_length() ; i++){
 //printf("l: %i r: %i\n", tcph->sa_left(i), tcph->sa_right(i));
! rq_.add(tcph->sa_left(i), tcph->sa_right(i), 0);
 }
 changed_ = changed_ || (old_total != rq_.total());
 return 0;
--- 84,91 ----

 for(int i = 0 ; i < tcph->sa_length() ; i++){
 //printf("l: %i r: %i\n", tcph->sa_left(i), tcph->sa_right(i));
! // Merged by Will Hrudey
! rq_.add(tcph->sa_left(i), tcph->sa_right(i), 0, NULL);
 }
 changed_ = changed_ || (old_total != rq_.total());
 return 0;
diff -rc ns-2.33.orig/tcp/tcp-full.cc ns-2.33/tcp/tcp-full.cc
*** ns-2.33.orig/tcp/tcp-full.cc 2008-03-31 19:00:28.000000000 -0700

 Page 47

--- ns-2.33/tcp/tcp-full.cc 2008-07-26 20:41:33.000000000 -0700

*** 341,346 ****
--- 341,368 ----
 return;
 }

+ // Merged by Will Hrudey
+ /*
+ * send a string of nBytes, added by Zheng Wang for BGP
+ */
+ void
+ FullTcpAgent::advance_bytes(int nBytes, const char* const data, Continuation*
caller)
+ {
+ if (writeCont != NULL){
+ printf("write error - socket already in blocking write\n");
+ if (caller != NULL)
+ caller->failure();
+ return;
+ }
+ if(toSendQueue==NULL) {
+ toSendQueue = new SendQueue();
+ }
+ if (data!=NULL) {
+ writeCont = caller;
+ toSendQueue->enqueue(nBytes,data);
+ }
+ advance_bytes(nBytes);
+ }
 /*
 * the byte-oriented interface: advance_bytes(int nbytes)
 */

*** 464,473 ****
--- 486,501 ----
 case TCPS_LISTEN:
 cancel_timers();
 newstate(TCPS_CLOSED);
+ // Merged by Will Hrudey
+ if(mySocket) // added by Tony Feng, informs the socket
that tcp closed successfully
+ mySocket->disconnected();
 finish();
 break;
 case TCPS_SYN_SENT:
 newstate(TCPS_CLOSED);
+ // Merged by Will Hrudey
+ if(mySocket) // added by Tony Feng, informs the socket
that tcp closed successfully
+ mySocket->disconnected();
 /* fall through */
 case TCPS_LAST_ACK:
 flags_ |= TF_NEEDFIN;

*** 715,720 ****
--- 743,751 ----
 int fillshole = (start == rcv_nxt_);
 int flags;

+ // Merged by Will Hrudey
+ AppData* data = pkt->userdata(); //Added by Zheng Wang for BGP
+

 Page 48

 // end contains the seq of the last byte of
 // in the packet plus one

*** 723,730 ****
 now(), name());
 abort();
 }
!
! flags = rq_.add(start, end, tiflags, 0);

 //present:
 //
--- 754,761 ----
 now(), name());
 abort();
 }
! // Merged by Will Hrudey
! flags = rq_.add(start, end, tiflags, 0, data); //Modified by Zheng Wang
for BGP

 //present:
 //

*** 748,753 ****
--- 779,828 ----

 return (flags);
 }
+ // Merged by Will Hrudey
+ //Added by Zheng Wang for BGP
+ void FullTcpAgent::read(char* buffer, int nbytes, Continuation* caller)
+ {
+ if (readCont != NULL){
+ printf("read error - socket already in blocking read\n");
+ if (caller != NULL)
+ caller->failure();
+ return;
+ }
+
+ // if requested data is in the buffer, get it from buffer
+ // We use the fact that a data object arrives in the first TCP segment.
+ if(nbytes <= dataReceived) {
+ dataReceived -= nbytes;
+ if(toReceiveQueue->is_empty()) {
+ printf("receive queue is empty, exit\n");
+ return;
+ }
+ toReceiveQueue->retrieve_data(nbytes,buffer);
+ caller->success();
+ } else {
+ inbuffer = buffer;
+ readCont = caller;
+ readSize = nbytes;
+ }
+ }
+
+ void FullTcpAgent::recvBytes(int bytes)
+ {
+ dataReceived+= bytes;
+ if((readCont != NULL) && (dataReceived >= readSize)) {
+ toReceiveQueue->retrieve_data(readSize,inbuffer);
+ mySocket->appCallWaiting = false;

 Page 49

+ //mySocket->app_call_waiting = NULL;
+ dataReceived -= readSize;
+ Continuation* rc = readCont;
+ readCont = NULL;
+ rc->success();
+
+ }
+ Agent::recvBytes(bytes);
+ }
+ // End Zheng Wang

 /*
 * utility function to set rcv_next_ during inital exchange of seq #s

*** 907,912 ****
--- 982,999 ----
 //printf("%f(%s)[state:%s]: sending pkt ", now(), name(), statestr(state_));
 //prpkt(p);
 //}
+ // Merged by Will Hrudey
+ //Added by Zheng Wang for BGP
+ //Set data field
+ if(toSendQueue)
+ {
+ if(!toSendQueue->is_empty())
+ {
+ TcpData* pData = toSendQueue-
>get_data(seqno,datalen);
+ p->setdata(pData);
+ }
+ }
+ //End Zheng Wang

 send(p, 0);

*** 1283,1288 ****
--- 1370,1384 ----

 if (ackno == maxseq_) {
 cancel_rtx_timer(); // all data ACKd
+ // Merged by Will Hrudey
+ // Added by Tony Feng for Socket::wirte()
+ if(writeCont != NULL) {
+ Continuation * app_call_waiting = writeCont;
+ writeCont = NULL;
+ mySocket->appCallWaiting = false;
+ app_call_waiting->success();
+ }
+ // End Tony Feng
 } else if (progress) {
 set_rtx_timer();
 }

*** 1623,1628 ****
--- 1719,1726 ----
 // changes DELACK to ACKNOW and calls tcp_output()
 rcv_nxt_ += datalen;
 flags_ |= TF_DELACK;
+ // Merged by Will Hrudey
+ toReceiveQueue->enqueue((TcpData*)pkt->userdata()); //
Added by Zheng Wang for BGP
 recvBytes(datalen); // notify application of "delivery"

 Page 50

 //
 // special code here to simulate the operation

*** 1705,1711 ****
--- 1803,1819 ----
 fid_ = iph->flowid();
 }

+ // Merged by Will Hrudey
+ //Modified by Zheng Wang
+ if(mySocket!=NULL && mySocket->isListening) {
+ hdr_ip* iph1 = hdr_ip::access(pkt);
+ //Received SYN for listening tcp, we create a new
reading socket.
+ tcpMaster->newInComing(pkt,mySocket);
+ return;
+ } else {
 newstate(TCPS_SYN_RECEIVED);
+ }
+ // End Zheng Wang
 goto trimthenstep6;

 /*

*** 1793,1798 ****
--- 1901,1911 ----
 flags_ &= ~TF_NEEDFIN;
 tiflags &= ~TH_SYN;
 } else {
+ // Merged by Will Hrudey
+ //Added by Zheng Wang
+ if (mySocket)
+ mySocket->connected();
+ //End Zheng Wang
 newstate(TCPS_ESTABLISHED);
 }

*** 2025,2030 ****
--- 2138,2145 ----
 newstate(TCPS_FIN_WAIT_1);
 flags_ &= ~TF_NEEDFIN;
 } else {
+ // Merged by Will Hrudey
+ mySocket->listeningSocket->addConnection(mySocket);
//Added by Zheng Wang for BGP
 newstate(TCPS_ESTABLISHED);
 }
 if (ecn_ && ect_ && ecn_syn_ && fh->ecnecho())

*** 2276,2281 ****
--- 2391,2402 ----
 case TCPS_CLOSING: /* simultaneous active close */;
 if (ourfinisacked) {
 newstate(TCPS_CLOSED);
+ // Merged by Will Hrudey
+ // Added by Tony Feng for BGP
+ if(mySocket) {
+ mySocket->disconnected(); // Informs the
socket that tcp closed successfully
+ }
+ // End Tony Feng
 cancel_timers();

 Page 51

 }
 break;

*** 2289,2294 ****
--- 2410,2421 ----
 // K: added state change here
 if (ourfinisacked) {
 newstate(TCPS_CLOSED);
+ // Merged by Will Hrudey
+ // Added by Tony Feng for BGP
+ if(mySocket) {
+ mySocket->disconnected(); // Informs the
socket that tcp closed successfully
+ }
+ // End Tony Feng
 finish(); // cancels timers, erc
 reset(); // for connection re-use (bug fix from ns-
users list)
 goto drop;

*** 2576,2582 ****
 * Due to F. Hernandez-Campos' fix in recv(), we may send an ACK
 * while in the CLOSED state. -M. Weigle 7/24/01
 */
! if (state_ == TCPS_LISTEN) {
 // shouldn't be getting timeouts here
 if (debug_) {
 fprintf(stderr, "%f: FullTcpAgent(%s): unexpected timeout
%d in state %s\n",
--- 2703,2710 ----
 * Due to F. Hernandez-Campos' fix in recv(), we may send an ACK
 * while in the CLOSED state. -M. Weigle 7/24/01
 */
! // Merged by Will Hrudey
! if (state_ == TCPS_LISTEN && (mySocket==NULL || !mySocket->isListening))
{ // Modified by Tony Feng for BGP
 // shouldn't be getting timeouts here
 if (debug_) {
 fprintf(stderr, "%f: FullTcpAgent(%s): unexpected timeout
%d in state %s\n",
diff -rc ns-2.33.orig/tcp/tcp-full.h ns-2.33/tcp/tcp-full.h
*** ns-2.33.orig/tcp/tcp-full.h 2008-03-31 19:00:28.000000000 -0700
--- ns-2.33/tcp/tcp-full.h 2008-07-26 20:41:40.000000000 -0700

*** 39,44 ****
--- 39,52 ----

 #include "tcp.h"
 #include "rq.h"
+ // Merged by Will Hrudey
+ //Added by Zheng Wang
+ #include "send_queue.h"
+ #include "receive_queue.h"
+ #include "tcp_socket.h"
+ #include "tcp_master.h"
+ #include "continuation.h"
+ //End Zheng Wang

 /*
 * most of these defines are directly from

*** 114,137 ****
 };

 Page 52

 class FullTcpAgent : public TcpAgent {
 public:
 FullTcpAgent() :
 closed_(0), pipe_(-1), rtxbytes_(0), fastrecov_(FALSE),
 last_send_time_(-1.0), infinite_send_(FALSE), irs_(-1),
 delack_timer_(this), flags_(0),
 state_(TCPS_CLOSED), recent_ce_(FALSE),
! last_state_(TCPS_CLOSED), rq_(rcv_nxt_), last_ack_sent_(-1) { }
!
! ~FullTcpAgent() { cancel_timers(); rq_.clear(); }
 virtual void recv(Packet *pkt, Handler*);
 virtual void timeout(int tno); // tcp_timers() in real code
 virtual void close() { usrclosed(); }
 void advanceby(int); // over-rides tcp base version
 void advance_bytes(int); // unique to full-tcp
 virtual void sendmsg(int nbytes, const char *flags = 0);
 virtual int& size() { return maxseg_; } //FullTcp uses maxseg_ for
size_
 virtual int command(int argc, const char*const* argv);
 virtual void reset(); // reset to a known point
 protected:
 virtual void delay_bind_init_all();
 virtual int delay_bind_dispatch(const char *varName, const char
*localName, TclObject *tracer);
--- 122,175 ----
 };

 class FullTcpAgent : public TcpAgent {
+ // Merged by Will Hrudey
+ friend class TcpMaster;
 public:
 FullTcpAgent() :
 closed_(0), pipe_(-1), rtxbytes_(0), fastrecov_(FALSE),
 last_send_time_(-1.0), infinite_send_(FALSE), irs_(-1),
 delack_timer_(this), flags_(0),
 state_(TCPS_CLOSED), recent_ce_(FALSE),
! // Merged by Will Hrudey
! last_state_(TCPS_CLOSED), rq_(rcv_nxt_), last_ack_sent_(-1)
! { // Modified by Zheng Wang for BGP
! toSendQueue = new SendQueue();
! toReceiveQueue = new ReceiveQueue();
! rq_.connRevQueue(toReceiveQueue);
! dataReceived = 0;
! readCont = NULL;
! writeCont = NULL;
! }
!
! ~FullTcpAgent()
! { cancel_timers();
! rq_.clear();
! if(toSendQueue)
! delete toSendQueue;
! if(toReceiveQueue)
! delete toReceiveQueue;
! } // End Zheng Wang
 virtual void recv(Packet *pkt, Handler*);
 virtual void timeout(int tno); // tcp_timers() in real code
 virtual void close() { usrclosed(); }
 void advanceby(int); // over-rides tcp base version
 void advance_bytes(int); // unique to full-tcp
+ // Merged by Will Hrudey
+ // Added by Zheng Wang for BGP

 Page 53

+ void advance_bytes(int nBytes, const char* const data, Continuation*
caller);
+ void recvBytes(int bytes); // Overrides Agent's recvBytes();
+ void read(char* buffer, int nbytes, Continuation* caller);
+ // End Zheng Wang
 virtual void sendmsg(int nbytes, const char *flags = 0);
 virtual int& size() { return maxseg_; } //FullTcp uses maxseg_ for
size_
 virtual int command(int argc, const char*const* argv);
 virtual void reset(); // reset to a known point
+ // Merged by Will Hrudey
+ // Added by Zheng Wang
+ ReceiveQueue* getRevQueue() {return toReceiveQueue;}
+ TcpSocket* mySocket;
+ TcpMaster* tcpMaster;
+ // End Zheng Wang
 protected:
 virtual void delay_bind_init_all();
 virtual int delay_bind_dispatch(const char *varName, const char
*localName, TclObject *tracer);

*** 238,243 ****
--- 276,292 ----
 int last_ack_sent_; /* ackno field from last segment we sent */
 double recent_; // ts on SYN written by peer
 double recent_age_; // my time when recent_ was set
+ // Merged by Will Hrudey
+ // Added by Zheng Wang for BGP
+ SendQueue* toSendQueue;
+ ReceiveQueue* toReceiveQueue;
+ int dataReceived;
+ Continuation* readCont;
+ Continuation* writeCont;
+ int readSize;
+ int writeSize;
+ char* inbuffer;
+ // End Zheng Wang

 /*
 * setting iw, specific to tcp-full, called

11.7 Installation Steps
The following installation steps must be followed to install, compile, and run ns-
2.33 with ns-BGP 2.0:

1. Download the ns-2.33 release from the ns-2 homepage: ns-allinone-2.33.tar.gz

2. Unpack the ns-2 software archive into your home directory:

$ gzip -dc ns-allinone-2.33.tar.gz | (cd ; tar xvf –)

This will create a ns-allinone-2.33 directory within your home directory.

3. Run the ns-2 installation script and validate the installation:

$ cd ~/ns-allinone-2.33 ; ./install

 Page 54

$ cd ns-2.33; ./validate (optional)

Refer to the ns-2 installation README file and the website for further
installation details if necessary.

4. Once the installation is complete, the following output is displayed, requesting

the configuration of two environment variables. You may also optionally
update your PATH variable:

IMPORTANT NOTICES:

(1) You MUST put /home/<user>/ns-allinone-2.33/otcl-1.13, /home/<user>/ns-allinone-
2.33/lib,
 into your LD_LIBRARY_PATH environment variable.
 If it complains about X libraries, add path to your X libraries
 into LD_LIBRARY_PATH.
 If you are using csh, you can set it like:
 setenv LD_LIBRARY_PATH <paths>
 If you are using sh, you can set it like:
 export LD_LIBRARY_PATH=<paths>

(2) You MUST put /home/<user>/ns-allinone-2.33/tcl8.4.18/library into your TCL_LIBRARY
environmental variable. Otherwise ns/nam will complain during startup.

After these steps, you can now run the ns validation suite with
cd ns-2.33; ./validate

For trouble shooting, please first read ns problems page
http://www.isi.edu/nsnam/ns/ns-problems.html. Also search the ns mailing list archive
for related posts.

5. Unpack the ns-2.33-BGP software archive into the ns-allinone-2.33 directory.

$ gzip -dc ns-2.33-bgp_2.0.tgz | (cd ~/ns-allinone-2.33; tar xvf –)

This will create a patch file ns-2.33-bgp_2.0_patch in the ns-allinone-2.33
directory along with the core ns-bgp source sub-directories and files.

6. Apply the ns-BGP patch file:

$ cd ~/ns-allinone-2.33 ; patch –p0 < ns-2.33-bgp_2.0_patch

The command sequence will patch 16 files with the necessary integration
logic.

$ patch -p0 < ns-2.33-bgp_2.0_patch
patching file ns-2.33/common/node.cc
patching file ns-2.33/common/node.h
patching file ns-2.33/common/packet.h
patching file ns-2.33/common/simulator.cc

 Page 55

patching file ns-2.33/Makefile.in
patching file ns-2.33/routing/route.cc
patching file ns-2.33/routing/rtmodule.cc
patching file ns-2.33/routing/rtmodule.h
patching file ns-2.33/tcl/lib/ns-default.tcl
patching file ns-2.33/tcl/lib/ns-lib.tcl
patching file ns-2.33/tcl/lib/ns-node.tcl
patching file ns-2.33/tcp/rq.cc
patching file ns-2.33/tcp/rq.h
patching file ns-2.33/tcp/scoreboard-rq.cc
patching file ns-2.33/tcp/tcp-full.cc
patching file ns-2.33/tcp/tcp-full.h

7. Compile the environment

$ cd ~/ns-allinone-2.33/ns-2.33
$./configure
$ make clean ; make

The compilation should complete successfully with the final entries as follows:

<…>
make[1]: Leaving directory `/home/<user>/nsTest/3/ns-allinone-
2.33/ns-2.33/indep-utils/webtrace-conv/epa'
make[1]: Entering directory `/home/<user>/nsTest/3/ns-allinone-
2.33/ns-2.33/indep-utils/webtrace-conv/nlanr'
make[1]: Nothing to be done for `all'.
make[1]: Leaving directory `/home/<user>/nsTest/3/ns-allinone-
2.33/ns-2.33/indep-utils/webtrace-conv/nlanr'
make[1]: Entering directory `/home/<user>/nsTest/3/ns-allinone-
2.33/ns-2.33/indep-utils/webtrace-conv/ucb'
make[1]: Nothing to be done for `all'.
make[1]: Leaving directory `/home/<user>/nsTest/3/ns-allinone-
2.33/ns-2.33/indep-utils/webtrace-conv/ucb'

