ENSC-891 Directed Studies

Summer 2008

ns-BGP Integration with ns-2.33

Will Hrudey (whrudey@sfu.ca)

Roadmap

- Introduction
- Related work
- Hardware platform
- ns-BGP analysis
- Integration of ns-BGP with ns-2.33
- Validation of ns-2.33-BGP
- Conclusions and future work
- References

Project motivation

- BGP performance is affected by the dynamic nature of the Internet¹
 - simulations can facilitate realistic, flexible BGP routing experimentation
- Aid further BGP research
- ns-2 BGP simulations can enjoy increased simulator reliability, robustness, and feature set
 - updated ns-BGP will benefit from continued ns-2 development and maintenance patches by academic and research communities over the past 5 years

¹ T. D. Feng, R. Ballantyne, and Lj. Trajkovic, "Implementation of BGP in a network simulator," *Applied Telecommunication Symposium, ATS '04*, Arlington, Virginia, Apr. 2004, pp. 149-154.

Project objective

Integrate the ns-BGP module into the current version of the ns-2 network simulator

ns-2 overview

- What is ns-2?
 - Widely recognized network simulation tool in academic and research communities
 - 1989 known as REAL network simulator
 - 1995 known as DARPA VINT project
 - 200,000 lines of code
 - Written in C++, OTcl, Tcl / Tk
 - Supported in FreeBSD, Linux, Solaris, Windows, and MAC

ns-2 overview

- Supports wired and wireless technologies^{1,2}
- Provides:
 - routing algorithms
 - transport protocols
 - queuing disciplines
 - traffic sources
 - topology and traffic generators
 - tracing
 - visualization
 - utilities

¹ ns-2 [Online]. Available: http://www.isi.edu/nsnam/ns (May 2008).

² ns-2 manual [Online]. Available: http://www.isi.edu/nsnam/ns/doc/index.html (May 2008).

BGP overview

- What is BGP?
 - 1989 BGP-1 published as RFC 1105
 - Current version is BGP-4 published as RFC 1771¹
 - De facto inter-domain routing protocol²
 - Exchanges network layer reachability information (NLRI) between autonomous systems (AS)
 - Path vector protocol
 - Layered over TCP

¹Y. Rekhter and T. Li, "A border gateway protocol 4 (BGP-4)," RFC 1771, March 1995.

² I.Beijnum, *BGP*. Sebastopol, CA: O'Reilly & Associates, 2002.

BGP overview

- Peer connections established between BGP speakers
- Message exchange driven by routing policies
 - includes connection parameters and routing table updates
- Message types^{1,2,3}
 - open, keepalive, notification, notification
- Policies control and modify the routing table
 - determine the conditions for redistributing routes

¹ I.Beijnum, *BGP*. Sebastopol, CA: O'Reilly & Associates, 2002.

² Y. Rekhter and T. Li, "A border gateway protocol 4 (BGP-4)," RFC 1771, March 1995.

³ BGP For Internet Service Providers [Online]. Available: http://www.cisco.com/public/cons/seminars/AfNOG3 (June 2008).

ns-BGP overview

- What is ns-BGP?
 - Implements BGP-4 in ns-2¹
 - BGP module ported from SSFNet
 - IPv4 addressing, TCP sockets, packet forwarding added
 - ns-BGP node derived from ns-2 unicast node
 - Routing achieved through forwarding and control planes:
 - forwarding plane classifies and forwards packets
 - control plane handles route creation, computation, routing algorithms, routing table management

¹ T. D. Feng, R. Ballantyne, and Lj. Trajkovic, "Implementation of BGP in a network simulator," *Applied Telecommunication Symposium, ATS '04*, Arlington, Virginia, Apr. 2004, pp. 149-154.

ns-BGP overview

- Four primary classes used in implementation¹
 - TcpSocket: UNIX-like socket programming interface
 - IPv4Classifier: classifies incoming packets
 - rtModule/BGP: replaces existing routing module
 - rtProto/BGP: implements BPG-4 using dual classes

¹ T. D. Feng, R. Ballantyne, and Lj. Trajkovic, "Implementation of BGP in a network simulator," *Applied Telecommunication Symposium, ATS '04*, Arlington, Virginia, Apr. 2004, pp. 149-154.

ns-BGP unicast node1

¹ T. D. Feng, R. Ballantyne, and Lj. Trajkovic, "Implementation of BGP in a network simulator," *Applied Telecommunication Symposium, ATS '04*, Arlington, Virginia, Apr. 2004, pp. 149-154.

ns-BGP overview

- Optional features included:
 - multiple exit discriminator
 - aggregator
 - community
 - originator ID
 - cluster list path attributes
 - route reflections
- Experimental features included:
 - sender side loop detection
 - withdrawal, per-peer, per-destination rate limiting
 - unjittered minimum route advertisement timer

Roadmap

- Introduction
- Related work
- Hardware platform
- ns-BGP analysis
- Integration of ns-BGP with ns-2.33
- Validation of ns-2.33-BGP
- Conclusions and future work
- References

Related work

- OPNET BGP [Online]. Available: http://www.opnet.com (June 2008).
 - Implementation greatly differs from ns-2
- SSFNet [Online]. Available: http://www.ssfnet.org/homePage.html (May 2008).
 - Simulation tool not as widely adopted as ns-2.
 - ns-BGP was ported from SSFNet and adapted accordingly
- C-BGP [Online]. Available: http://cbgp.info.ucl.ac.be/wiki/index.php (June 2008).
 - Dedicated BGP solver rather than flexible network simulator
- GNU Zebra BGP daemon [Online]. Available: http://www.zebra.org/zebra/BGP.html#BGP (June 2008).
 - Ported to ns-2 around same time as ns-BGP
 - Written in C
- BGP++ [Online]. Available: http://www.ece.gatech.edu/research/labs/MANIACS/BGP++ (June 2008).
 - Written for ns-2 and GTNetS simulators
 - Actually a port of Zebra BGP adapted to C++ environment

Roadmap

- Introduction
- Related work
- Hardware platform
- ns-BGP analysis
- Integration of ns-BGP with ns-2.33
- Validation of ns-2.33-BGP
- Conclusions and future work
- References

Hardware platform

- Project kickoff:
 - Toshiba Tecra S2 laptop
 - Intel Pentium M processor / 1GB RAM
 - Windows XP service pack 2 (host OS)
- Hardware replaced at 75% project completion point:
 - Dell D630 laptop
 - Intel duo core T7250 2.0 GHz processor / 4GB RAM
 - Vista Business Edition service pack 1 (host OS)

Multiple environments

- Virtual machines (VM):
 - VMware Server 1.0.6
 - Accommodate multiple guest OS's (i.e. Linux)
 - Target integration environment:
 - current Fedora Core (FC) distribution
 - current ns-2 release
 - Native ns-BGP development environment:
 - most recent Fedora distribution able to run ns-2.27
 - iterative, systematic "downgrading" of FC distribution version

Derived configurations

	Software components									
Derived configurations		VMWare Server 1.06	WinXP SP3 / Cygwin	Fedora Core 2	Fedora Core 4	Fedora Core 8	ns-2.26	ns-2.27	ns-2.33	ns-BGP 2.0 (original release)
Test-1	•	•	•						•	
Test-2 (target integration environment)	·	•				•		_	•	
Test-3	•	•			•		_			
Test-4 (native ns-BGP development environment)				•			•	•		•

- denotes the successful inclusion of a given software component
- denotes the unsuccessful inclusion of a given software component

Fedora Core 2 virtual machine

ns-2.27 session running in Fedora Core 2 VM within VMware Server

Fedora Core 8 virtual machine

ns-2.33 session running in Fedora Core 8 VM within VMware Server

Roadmap

- Introduction
- Related work
- Hardware platform
- ns-BGP analysis
- Integration of ns-BGP with ns-2.33
- Validation of ns-2.33-BGP
- Conclusions and future work
- References

ns-BGP release details

- Software release format
 - 110 KB compressed tar ball / 1.64 MB uncompressed
- 145 files in release:
 - 104 source files:
 - 46 C++ header files (.h)
 - 41 C++ code files (.cc)
 - 16 Tcl files (.tcl)
 - patch file (contains edits to 16 core ns-2 files)
 - 27 dependency files (.Po)
 - 13 subdirectories
 - 1 readme file (.txt)

ns-BGP analysis

Roadmap

- Introduction
- Related work
- Hardware platform
- ns-BGP analysis
- Integration of ns-BGP with ns-2.33
- Validation of ns-2.33-BGP
- Conclusions and future work
- References

Integration strategy

Objectives:

- Integrate the ns-BGP module, which was designed and developed for ns-2.27, into the current version of simulator: ns-2.33
- Retain all subsequent ns-2 enhancements and maintenance updates that have occurred since ns-BGP was released

Two stage integration approach

- Code integration:
 - migrate new ns-BGP source files (non-overlapping) to target ns-2.33 directories
 - integrate logic changes in patch file pertaining to existing core ns-2.27 source files to ns-2.33
- Compilation modifications
 - resolve dependencies tied to native development compiler

Code integration details

- File types to migrate to ns-2.33:
 - C++ code files (.cc)
 - C++ header files (.h)
 - Tcl script files (.tcl)
 - Readme.txt file
- Propagate patch file code edits to core ns-2.33 files
- File types that don't require migration
 - Dependency files (.Po)

Summary of modified source files

Files	Changes					
Files	Merge	Compilation				
ns-2.33/common/node.cc	0					
ns-2.33/common/node.h	0					
ns-2.33/common/packet.h	Χ					
ns-2.33/common/simulator.cc	Х					
ns-2.33/Makefile.in	0					
ns-2.33/routing/route.cc	0					
ns-2.33/routing/rtmodule.cc	0					
ns-2.33/routing/rtmodule.h	0					
ns-2.33/tcl/lib/ns-default.tcl	0					
ns-2.33/tcl/lib/ns-lib.tcl	0					
ns-2.33/tc1/lib/ns-node.tc1	Х					
ns-2.33/tcp/rq.cc	0					
ns-2.33/tcp/rq.h	0					
ns-2.33/tcp/scoreboard-rq.cc	0					
ns-2.33/tcp/tcp-full.cc	Х					
ns-2.33/tcp/tcp-full.h	Х					
ns-2.33/bgp/Util/ipaddress.cc		X				
ns-2.33/bgp/Util/ipaddress.h		X				
ns-2.33/tcp/send_queue.cc		Х				

Files listed in the merge column reflect core ns-2 files to be patched with logic edits detailed in ns-BGP patch file

Files listed in compilation column reflect files that required modification to compile successfully

o denotes basic complexity X denotes moderate complexity

Code integration example

- Enumerated packet types in ns-2.27 were changed by ns-2 designers to unsigned integers in ns-2.33 to allow dynamic packet types:
 - ns-2.27 packet.h "code snippet"

```
enum packet_t {
    PT_RTPROTO_BGP,
    PT_TCPMASTER,
    PT_PEERENTRY,
};
```

ns-2.33 packet.h "code snippet"

```
typedef unsigned int packet_t;
static const packet_t PT_RTPROTO_BGP = 70;
static const packet_t PT_TCPMASTER = 71;
static const packet_t PT_PEERENTRY = 72;
```

Compilation error example

Standard Template Library - list container error

```
tcp/send_queue.cc: In member function `TcpData*
SendQueue::get_data(int, int)':
tcp/send_queue.cc:57: error: conversion from `int' to non-
scalar type `std::_List_iterator <SendData>' requested
tcp/send_queue.cc:71: error: no match for `operator==` in
`targetIterator == 0'
/usr/lib/gcc/i386-redhat-linux/4.1.2/../../../include/c++/4.1.2/bits/stl_list.h:169:
note: candidates are: bool
std::_List_iterator<_Tp>::operator==(const
std::_List_iterator <_Tp>&) const [with _Tp = SendData]
make: *** [tcp/send_queue.o] Error 1
```

Resolution

```
57: list<SendData>::iterator targetIterator= (list<SendData>::iterator) NULL;
71: if(targetIterator == (list<SendData>::iterator) NULL)
```

ns-BGP limitations

- Functionality is that of original ns-BGP implementation
- Any original ns-BGP software bugs and/or computational inefficiencies will still exist
- Any subsequent ns-BGP enhancements by academic and research communities not included

Roadmap

- Introduction
- Related work
- Hardware platform
- ns-BGP analysis
- Integration of ns-BGP with ns-2.33
- Validation of ns-2.33-BGP
- Conclusions and future work
- References

Two stage validation approach

- Compilation phase
 - code syntax validated by successful compilation
- ns-BGP test scripts:
 - BGP-4 compliant tests
 - comparison of each ns-BGP test script's standard output and trace output across ns-2.27 and ns-2.33 environments

Validation results

ns-BGP test scripts

Test Scripts	ns-2	.27	n	Equivalence		
	Output filename	Output filesize	Output filename	Output filename size	File	Standard Out
drop-peer.tcl	drop-peer.nam	19055	drop-peer.nam	19055	✓	✓
drop-peer2.tcl	drop-peer2.nam	37213	drop-peer2.nam	37213	✓	✓
	forwarding.nam		forwarding.nam	3210797	✓	✓
forwarding.tcl	forwarding.out		forwarding.out	1498410	✓	✓
ibgp.tcl	ibgp.nam	24528	ibgp.nam	24528	✓	✓
keep-peer.tcl	keep-peer.nam	23892	keep-peer.nam	23892	✓	✓
propagation.tcl	propagation.nam		propagation.nam	19779	✓	✓
re connect.tcl	reconnect.nam	39793	reconnect.nam	39793	✓	✓
reflection.tcl	reflection.nam	87614	reflection.nam	87614	✓	✓
reflection2.tcl	reflection2.nam	85405	reflection2.nam	85405	✓	✓
route-distrib.tcl	route-distrib.nam	11668	route-distrib.nam	11668	✓	✓
select.tcl	select.nam	31338	select.nam	31338	✓	✓
withdrawals.tcl	withdrawals.nam	15060	withdrawals.nam	15060	√	√

File equivalence indicates both file size (in bytes) and file contents match Standard out equivalence indicates script execution output to terminal match

Roadmap

- Introduction
- Related work
- Hardware platform
- ns-BGP analysis
- Integration of ns-BGP with ns-2.33
- Validation of ns-2.33-BGP
- Conclusions and future work
- References

Conclusions

- Project objective achieved
- ns-BGP integration challenges overcome:
 - Code merge ambiguities and complexities
 - Resolution to lengthy compilation errors
- Validation demonstrates integrity and equivalence:
 - ns-BGP trace output and standard output identical between ns-2.27 and ns-2.33
 - Within the given time constraints, validation provides a high degree of confidence in ns-BGP release integrity
- Integrated ns-2.33 release remains stable
 - No observed core dumps

Future work

- Challenges:
 - Learning curve with ns-2 internals, ns-BGP, C++, OTcl
 - Deriving ns-2.27 native development environment
- Future Work:
 - Add policy routing
 - Add route flap damping¹
 - Add adaptive minimal route advertisement interval²

¹ W. Shen and Lj. Trajkovic, "BGP route flap damping algorithms," *Proc. SPECTS 2005*, Philadelphia, PA, July 2005, pp. 488-495.

² N. Laskovic and Lj. Trajkovic, ``<u>BGP with an adaptive minimal route advertisement interval</u>," *Proc. 25th IEEE Int. Performance, Computing, and Communications Conference*, Phoenix, AZ, April 2006, pp. 135-142.

References

- T. D. Feng, R. Ballantyne, and Lj. Trajkovic, "Implementation of BGP in a network simulator," Applied Telecommunication Symposium, ATS '04, Arlington, Virginia, Apr. 2004, pp. 149-154.
- I.Beijnum, *BGP*. Sebastopol, CA: O'Reilly & Associates, 2002.
- ns-2 [Online]. Available: http://www.isi.edu/nsnam/ns (May 2008).
- ns-2 manual [Online]. Available: http://www.isi.edu/nsnam/ns/doc/index.html (May 2008).
- Y. Rekhter and T. Li, "A border gateway protocol 4 (BGP-4)," RFC 1771, March 1995.
- R. Johnsonbaugh and J. Kalin, Object-Oriented Programming in C++.
 Englewood Cliffs, NJ: Prentice Hall, 1995.
- B. Welch, K. Jones, and J. Hobbs, Practical Programming in Tcl and Tk 4/e.
 Prentice Hall, 2003.
- BGP For Internet Service Providers [Online]. Available: http://www.cisco.com/public/cons/seminars/AfNOG3 (June 2008).

References

- SSFNet [Online]. Available: http://www.ssfnet.org/homePage.html (May 2008).
- OPNET BGP [Online]. Available: http://www.opnet.com (June 2008).
- C-BGP [Online]. Available: http://cbgp.info.ucl.ac.be/wiki/index.php (June 2008).
- GNU Zebra BGP daemon [Online]. Available: http://www.zebra.org/zebra/BGP.html#BGP (June 2008).
- BGP++ [Online]. Available: http://www.ece.gatech.edu/research/labs/MANIACS/BGP++ (June 2008).
- W. Shen and Lj. Trajkovic, "BGP route flap damping algorithms," Proc. SPECTS 2005, Philadelphia, PA, July 2005, pp. 488-495.
- N. Laskovic and Lj. Trajkovic, "BGP with an adaptive minimal route advertisement interval," Proc. 25th IEEE Int. Performance, Computing, and Communications Conference, Phoenix, AZ, April 2006, pp. 135-142.