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« Controlling complex systems
« Shepherding as a paradigmatic control task
« A brief overview of existing solutions

 Removing some strong assumptions

« Herdability of a complex multiagent system
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* A machine learning approach

« Conclusions, perspectives and applications




Taming complexity

 From power grids and swarm robotics to biology and epidemiology
« Often, we wish to control the emerging collective behaviour of complex system

« E.g. avoid or induce synchronization, pattern formation, prevent undesired
cascading phenomena, achieve crowd control etc

Can we orchestrate in real-time the collective behaviour of a complex system?




Control and complex systems

 Attention has focussed on the problem of controlling a complex network..
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@ R. De Souza, MdB, YY Liu, “Controlling complex systems with complex nodes”, Nature Reviews Physics, 2023




The key ingredients

« Can we orchestrate in real-time the collective behaviour of a complex system?

Feedback Control = Sense + Compute + Actuate

1. Whom do we sense? observability

2. Whom do we control? controllability

3. What do we compute? controller design

« We want the control strategy to be distributed and to be
computed in real-time as a function of the sensed
variables




Control and Complex Systems

* \We need to "close the loop” across different scales
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@ R. D’Souza, M. di Bernardo, YY Liu “Controlling complex networks with complex nodes”, Nature Reviews Physics, 2023




Complex systems for control

« What if the complex system acts as the controller rather than being the system we

wish to control?

« Can we “engineer” the collective behaviour of a complex system to perform a

control task?
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The shepherding control problem

* The shepherding problem is a paradigmatic example

* Here a group of agents, the herders, need to steer the collective dynamics of
another group of agents, the targets, in some desired way

© F. Auletta




Relevance

* Observed in biological systems (e.g dolphins hunting fish [Haque et al, 2071, Int.
J. Bio-Inspired Comp], ants collecting aphids [Oliver et al,2007,Proc. R. Soc. B])

« Technological applications: search & rescue, crowd control, oil cleanup
[Long et al, 2021, IEEE Emerging Comp applications]

« Swarm robotics and shepherding robots

» Active matter physics etc




The planar shepherding problem

* A group of agents, the herders, is tasked with the goal of collecting and coralling
another group of agents, the targets towards some desired goal region in the plane

¢ Herders

@® Targets

@ F. Auletta, D. Fiore et al , "Herding stochastic autonomous agents via local control rules and online global target selection strategies", Autonomous Robots, 2022



https://link.springer.com/article/10.1007/s10514-021-10033-6

A complex system performing a control task

* In Shepherding the emerging collective behaviour of a complex system of targets
must be controlled by driving the emerging behaviour of another complex system

(the herders)

 Atask also referred to as indirect control in the literature




The shepherding control problem

« The crucial problem is the design of the herders’ dynamics so as to achieve the
desired goal

» Herders must steer the target behaviour towards the \

: : . % l‘
desired region (coralling task)

» Also, they need to cooperate with each other and
collectively implement decision-making strategies
(target selection) v ®

« Herders can possess global or local information
according to their sensing regions
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D. Ko, E. Zuazua, Asymptotic behaviour and control of “a guidance by repulsion model”, Math Models Methods Appl Sci, 2020



Targets behaviour

« Targets usually have their own dynamics (fish schooling, crowds, animal groups..)

« Their motion being influenced by the presence of an herder within their region of

influence Er—— . '
. »
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Existing solutions

Many solutions are available in the case of 1 herder and 1 or many targets or
when the number of herders is equal to the number of targets.

* For more general cases, some of the earliest solutions involve path planning via a
global rule based approach (not easily scalable and computationally expensive!)
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Optimal “guidance by repulsion” models

* In the mathematics community the problem has been studied most notably by
Zuazua and coworkers [2020]

25

* The herders (or drivers) know and track the
barycenter of the flocking evaders

[0
=

* No collaborative strategy is set up between :
the herders just avoiding collisions

* The herder dynamics is the off-line solution
of open-loop optimal control problems

« Some feedback laws inspired by these solutions...

.. but “if the ensemble of evaders is separated and hard to flock together initially,
then this strategy does not work”

D. Ko, E. Zuazua, Asymptotic behaviour and control of “a guidance by repulsion model”, Math Models Methods Appl Sci, 2020




Bio-inspired models

« Other solutions aimed at replicating behaviour observed in natural systems
(shepherds and sheepdogs, dolphins foraging etc) by assigning specific dynamics
for targets and herders
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multi-robot systems, International Journal of Bio-Inspired Computation, 3 (2011), pp. 213- tlenose dolphins, IFAC Proceedings Volumes, 42 (2009), pp. 262-267.
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Human-inspired models

* Recently, herding tasks have received growing attention in cognitive and
psychological sciences to study human decision-making, complex joint action and
team coordination

P. NALEPKA, R. W. KALLEN, A. CHEMERO, E. SALTZMAN, AND M. J. RICHARDSON, Herd Those

Sheep: Emergent Multiagent Coordination and Behavioral-Mode Switching, Psychological
Science, 28 (2017), pp. 630-650.




The “human” solution

Search and Rescue




Key limitations of current solutions

* The existing models suffer from one or more of the following limitations:

Ad-hoc modeling assumptions to replicate natural/human behaviour
Assumption of flocking or lack of own dynamics in the targets
Infinite sensing ability of the herders

Lack of scalability as the number of targets increase

Off-line (optimal) computation of the herders behaviour

o bk =

* More importantly, current solutions do not exploit a key feature of complex
systems: the ability of exhibiting emerging behaviour (e.g. oscillatory motion
observed in humans)

« Our ongoing work aims at finding solutions to overcome these limitations
systematically relaxing these assumptions




Key research questions

Can the emerging collective behaviour of a complex multiagent system
(the herders) solve a distributed control task?

Can local simpler feedback rules solve the shepherding problem
in the presence of non-cohesive targets?

Under what “herdability” conditions multiple herders can effectively
shepherd a group of targets if they only have limited sensing?




Removing cohesiveness from the targets

» We consider the herders as distributed feedback control P BN N
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Local control rules

* For the herders we choose (in polar coordinates)

i (£) = —byi(£) = R, 1
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« But this is not enough...




Herder cooperation

In the presence of multiple herders, it is necessary for herders to negotiate
what targets they select (target-selection)

Typically this is done by solving off-line or on-line optmization problems or by
using formation control (encirclement etc)

Herder
We want to find simple, yet effective, online L
target selection strategies... *UQ\A
9
...allowing herders to cooperatively select their targets..
Targets
.. without requiring any computationally expensive solution
of on-line optimization problems r/
' Goal ’

Herder ’~-




Simplest static strategies

Global search Static arena partitioning




Dynamic selection strategies

Leader-follower target selection strategy

At start, herders are labelled anticlockwise starting
from a randomly selected herder (the leader)

The plane is then partitioned dynamically in different
search regions of constant width for each herder
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As the leader chases a target, the other herders’ regions adjust dynamically




Peer-to-peer target selection strategy

* In this case the width of the sectors assigned
to each herder is also dynamically changing

- ¢ ¢
Qﬁi,j & (Qj — %, 9j‘|—%

as a function of the relative angular distance
between neighboring herders

* Note that in this case the herders can self-determine
their circular sector of interest by just observing
the relative positions of their neighbors

* Hence they dynamically cooperate to decide who herds whom!



The resulting herding strategy

« Qur strategy consists therefore of local control laws driving the dynamics of each
herder and a target selection strategy allowing them to somehow cooperate

Selection
Strategy

—1 Target 1

Herder | —» Herder | |—— — Target i

control

— Target Ny




Experimental validation

« We validated our herding strategy via both numerical simulation and experiments

10 + cov %
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Sean Wilson, et al., "The Robotarium [...]"in IEEE Control Systems Magazine, vol. 40, no. 1, pp. 26-44, Feb. 2020.



https://ieeexplore.ieee.org/abstract/document/8960572

Overview of the validation results
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Scalablility and Robustness

« Containment time
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To summarize

* \We were able to solve the herding problem via a set of simpler local rules driving
the individual herders’ behaviour..

« ..complemented by target selection rules Hj

« Still we assumed global rather than limited sensing @
of the herders

« What if the herders only possess limited sensing?

 How many targets can they shepherd? ﬁ




A minimal model of shepherding with limited sensing

« M targets, N herders initially randomly distributed
T, = V2DN
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@ A. Lama, MdB, “Shepherding control and Herdability in Complex Multiagent Systems”, Physical Review Research, 2024




Herders’ local dynamics

H; = (1 —n)F;(H;, r*) + n,1L;(T,H, €)

F (H *) — _UHIfIi if ’Hz’ > r*
17 iy T
0 otherwise

I,(T,H,¢) = — [oz (H (T + (ﬁ?j))] ﬁ

UVH

» At every step, herders make decisions on what target to chase

» Reciprocal interactions can also be added, e.g. collision avoidance




Target selection rule

» The target to chase is selected by an herder as the target with the largest distance
from the origin within its sensing region

« If an herder detects other herders in its sensing region
H; —Hi| < ¢

it will only considers those targets such that

T, - H;| < |T, — Hj]

* Nearby herders effectively cooperate through this
simple rule




Shepherding can be successful
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The herdability problem

« Under what conditions on the repulsion zone, the sensing area and the density of
the targets can we achieve herdability of a given number of targets?
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Herdability

« We define a group of M target agents as “herdable” by N herders if the latter can
guide a significant fraction of the former within a finite time towards the goal region

‘

 We look for the minimum number of herders § =00
N*(M) necessary to herd M targets

0.8

* The herdability chart for infinite sensing
shows: N*(M) o VM




Finite sensing effect

1

20 0.8
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Fewer targets do not necessarily ease the shepherding task!




Herdability conditions

 In general, in order to be successful herders need to:

1. Collectively sense all the targets which are random independent walkers

2. Counterbalance diffusion of the M targets with the transport flow they induce

* In the finite sensing case, meeting the first condition becomes harder and harder
as targets’ density decreases and targets become more sparse

* To explain the critical threshold we need to analyze how herders, using only local
information, can sense and corrall also distant targets



The herdabillity graph

« \We define the herdability graph
as the random geometric graph

Gab (T’ E) =1

iflTa_Tbl Sf

« A path in the graph indicates
the potential for a herder to
transition from sensing one target
to sensing another

@ A. Lama, MdiB, “"Shepherding and herdability in complex multiagent systems”, PRR, to appear
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Percolation of the herdability graph

 Namely if the graph is too sparse, (2) T (b) T/.

herders cannot navigate to
reach the furthermost

targets P.
| ~

* Hence, some targets will be lost °
* Hence, we proposed to estimate the ¢ ¢
critical threshold by studying . ~

percolation of the herdability graph
QG QG




Percolation analysis

« We study when G becomes initially 102 - S
connected when targets are randomly - \'-;'l
distributed in a circle of radius R ]

* We then expect - \

Mlow ~ R2/§2‘ E \Iﬂ]

* This aligns with our numerical findings >
explaining the observations and the 10"
scaling observed in the numerical E N
experiments -




To summarize

* In the presence of limited sensing, some herdability conditions must be satisfied

« As the number of targets increases
the problem becomes harder and harder

 More herders are needed to solve the
problem

 How dependent is this from the specific
rules and dynamics we selected?

« Can we find other (better) solutions to the
problem?

« To address this issue we started exploring
the use of learning-based approaches
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A computational approach

« Shepherding is a "multi-layer” control problem consisting of three layers
(coralling, target selection and herder cooperation)

Task Scenario
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Two RL driven cooperating herders
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Beyond two herders: the multiple herders case

 DQN has fixed structure: 2H-5T net previously trained is extended (validation only)

« Each herder only considers the 5 closest targets and the closest herder (topological sensing)

« Unbounded region (with |.C. in circle of radius 30m)

Fraction of captured targets y =0 Herdability chart
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Conclusions

« Complex systems can be exploited to solve
distributed control tasks

« Shepherding is a great paradigmatic example.. /

« ..where emerging behaviour needs to arise from a I
. |

complex system in order to solve a control task L/
|
\

Mesoscale \
\ |
’ >

I ‘é@ “~ \ :}
. . | Microscale ]
« We saw that a set of simple local rules coupled with \} /

appropriate target selection strategies is able to solve N\ W
the problem under certain assumptions \\[ Control ]/

« We studied the herdability of the targets when the herders’sensing is finite and
linked it to the percolation of a suitably defined herdability graph

» Finally, we discussed possible learning-based approaches to solve the problem




Perspectives and open problems

Many aspects of this problem remain
unsolved

How to prove convergence of a herding
policy in the presence of limited sensing?

Is it possible to give herdability
conditions for more general dynamics?

Can feedback rules be defined in
the continuum approximation,
e.g. PDE control?

What about herding in more realistic 3D scenarios where navigation and exploration
become essential parts of the problem?

Or where the targets have more realistic dynamics (schooling fish, crowds etc)

What about multi-agent reinforcement learning? How scalable?
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