
Solving the multi-agent shepherding problem
harnessing complex systems for control

Mario di Bernardo

University of Naples Federico II & Scuola Superiore Meridionale, Italy

Joint IEEE CSS & CASS Chapters, Vancouver – 25th September 2024



• Controlling complex systems

• Shepherding as a paradigmatic control task

• A brief overview of existing solutions

• Removing some strong assumptions

• Herdability of a complex multiagent system

• A machine learning approach

• Conclusions, perspectives and applications

Outline

© F. Auletta



• From power grids and swarm robotics to biology and epidemiology

• Often, we wish to control the emerging collective behaviour of complex system

• E.g. avoid or induce synchronization, pattern formation, prevent undesired 
cascading phenomena, achieve crowd control etc

Taming complexity

Can we orchestrate in real-time the collective behaviour of a complex system?



• Attention has focussed on the problem of controlling a complex network..

Control and complex systems

R. De Souza, MdB, YY Liu, “Controlling complex systems with complex nodes”, Nature Reviews Physics, 2023



• Can we orchestrate in real-time the collective behaviour of a complex system?

1. Whom do we sense? observability

2. Whom do we control? controllability

3. What do we compute? controller design

• We want the control strategy to be distributed and to be 
computed in real-time as a function of the sensed 
variables

The key ingredients

Feedback Control = Sense + Compute + Actuate



• We need to ”close the loop” across different scales

Control and Complex Systems

Nature Reviews Physics | Volume 5 | April 2023 | 250–262 255

Perspective

Control theory approaches
Control theory approaches were traditionally developed for analys-
ing and steering the behaviour of a specified system. Regardless, the 
problem in control can be distilled into determining what needs to 
be sensed, what needs to be controlled and how the information being 
sensed should be used to achieve the desired goal. Thus, the three 
key ingredients of any control design are sensing, computation and 
actuation14. Some methods are summarized in Table 2.

Typical control goals in multi-agent systems include consen-
sus63–71, which is the convergence of all units towards a common equi-
librium point, and synchronization72–75, which is the convergence to an 
asymptotic time-varying solution. They also include, among others, 
formation control76–78, pattern formation79 and coordinated motion 
of agents (such as flocking)80. The goal is often formulated in terms of 
performance (focused on transient properties such as settling time, 
rise time and overshoot, for example), stability (such as convergence 
to an equilibrium or a manifold in state space) and robustness to noise 
and external perturbations14.

Starting from a mathematical (or data-driven) model of the sys-
tem and a control goal, one can attempt to: establish controllability 
and observability of the system of interest; devise a control strategy and 
certify that the control strategy guarantees convergence and stability 
of the desired behaviour by means of appropriate rigorous proofs of 
these properties in the closed-loop network system (Fig. 5). Typically, 
when dealing with multi-agent systems, the focus is on devising strate-
gies that are distributed and decentralized so that sensing, actuation 
and control inputs do not need to be decided in a centralized manner. 
Open-loop strategies, which do not rely on feedback from the sensors, 
are also a solution to some control problems, but typically fail to fulfil 
stability and performance requirements in the presence of perturba-
tions and therefore lack robustness. Thus, we focus on closed-loop 
feedback strategies in this Perspective.

The controllability problem is an existence problem aimed at 
establishing which nodes need to be controlled to steer the collective 
behaviour, given the network structure, the dynamics of agents and 
the interaction protocol on the edges. Approaches to solve this prob-
lem in the context of complex networks include the use of structural 
controllability and the use of controllability Gramians81–85, for example. 

Despite notable advances in the past decade, many open problems 
remain. Examples include understanding controllability in networks 
of nonlinear or time-varying systems or when the network structure 
evolves in time or as a function of the dynamics taking place over it 
(state-dependent network evolution).

The observability problem is aimed at understanding which vari-
ables carry enough information such that the whole system behaviour 
can be reconstructed from their measurement. Assessing observability 
becomes cumbersome when applied to large-scale complex networks 
as it entails deciding which behaviours of agents must be measured to 
reconstruct the overall network dynamics. Again, approaches from 
control such as structural observability theory have been used to this 
aim82,86–88. But many problems remain open, such as studying observ-
ability in time-varying network structures of nonlinear dynamical 
systems.

Controllability and observability criteria for complex networks 
have a twist compared with those of more traditional control theoretic 
approaches, in that graph-theoretical tools can be used to comple-
ment and enhance criteria on the basis of algebra or geometry. This 
crucial direction was first recognized in the early work by Šiljak16 in 
the late 1970s and further developed in later work82; it can provide a 
viable option for dealing with large numbers of interacting dynami-
cal variables. (We note that using graph-theoretical methods to study 
network problems dates back at least to the mathematical sociology 
community in the 1960s89).

If the fundamental properties of the system of interest have been 
analysed, a feedback control strategy (that is, a closed-loop strategy) 
can then be devised to achieve the control goal by exploiting the sensed 
information from the network and attempting to steer the system via 
control inputs. A fundamental issue in validating the control strategy 
is to analyse and prove convergence of the controlled network system 
starting from different initial conditions (stability) and under external 
perturbations (robustness). Approaches to study stability and robust-
ness of complex networks of dynamical systems have been developed 
or extended from those available for homogeneous systems (for a 
review of some available methods, see refs. 17,21–23,90–95).

With respect to stability, approaches to study local or global sta-
bility of a given complex network system include those in which the 
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Fig. 4 | Closing the feedback loop in complex 
networks entails sensing, computing and 
actuating at different scales. Sensing and actuation 
can be performed at any of the scales depicted in 
the diagram. In this figure, we depict a centralized 
control strategy for simplicity; however, when 
dealing with network systems, the control strategy 
will typically be distributed and decentralized. Note 
r is the reference signal representing the desired 
behaviour of the system. Figure courtesy of Marco 
Coraggio.

R. D’Souza, M. di Bernardo, YY Liu “Controlling complex networks with complex nodes”, Nature Reviews Physics, 2023



• What if the complex system acts as the controller rather than being the system we 
wish to control?

• Can we “engineer” the collective behaviour of a complex system to perform a 
control task?

Complex systems for control 7



• The shepherding problem is a paradigmatic example

• Here a group of agents, the herders, need to steer the collective dynamics of 
another group of agents, the targets, in some desired way

The shepherding control problem

© F. Auletta



• Observed in biological systems (e.g dolphins hunting fish [Haque et al, 2011,Int. 
J. Bio-Inspired Comp], ants collecting aphids [Oliver et al,2007,Proc. R. Soc. B])

• Technological applications: search & rescue, crowd control, oil cleanup
[Long et al, 2021, IEEE Emerging Comp applications]

• Swarm robotics and shepherding robots

• Active matter physics etc

Relevance



• A group of agents, the herders, is tasked with the goal of collecting and coralling 
another group of agents, the targets towards some desired goal region in the plane

The planar shepherding problem

F. Auletta, D. Fiore et al , "Herding stochastic autonomous agents via local control rules and online global target selection strategies", Autonomous Robots, 2022
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FIG. 1. Representative snapshots of the system configuration
(with herders represented by blue diamonds and targets by
magenta circles) at (a) the initial time t = 0 with the agents
uniformly distributed in ⌦0 (yellow shaded disk), (b) at an in-
termediate time during shepherding control when herders sur-
round all targets and (c) when the task is successfully achieved
with all the targets in ⌦G (dark blue circle). (d) Schematic
of the herders’ and targets’ sensing (magenta shaded disks)
and repulsion (blue shaded disk) regions of radius ⇠ and �

respectively. The solid black arrows represent the direction of
motion of the herders when moving in the absence of nearby
targets (H1), selecting the target to chase T⇤ with the largest
distance from to goal (H2), or when the herder pushes a se-
lected target towards the goal region (H3).

ature on control and controllability of complex systems
(see e.g. [21] and references therein).

We consider the shepherding problem in R2 (see Fig.
1a), where N herders have to corral M targets to a goal
region ⌦G. We assume that both the herders and the
targets are initially randomly and uniformly distributed
in a circle ⌦0 of radius R, and that the ⌦G region is a
circle of radius r⇤ < R; both ⌦0 and ⌦G being centered
around the origin. Let H 2 R2N be the vector of the
herders’ positions H = [H1, H2, ..., HN ] with Hi 2 R2

being the Cartesian coordinates of the i-th herder, i =
1, ..., N , and T 2 R2M the vector of the targets’ positions
T = [T1, T2, ..., TM ], with Ta 2 R2 being the Cartesian
coordinates of target a, a = 1, ...,M .

We assume the targets do not exhibt any type of cohe-
sive collective behaviour with their dynamics being de-
scribed by the following overdamped Langevin equation:

Ṫa =
p
2DN + �

X

i2Na

(�� |dia|) d̂ia (1)

where, analogously to what typically considered in the lit-
erature on soft matter, e.g. [18, 19, 22], N is white Gaus-
sian noise, � and D are positive constants, dia = Hi�Ta

is the vector of the di↵erence between the position of
herder i and target a, � > 0 is the radius of the region
where targets are repelled by nearby herders, andNa rep-
resents the set of indexes of all the herders, if any, whose
positions are such that |dia|  �. Note that �� ⌘ vT is
the maximum escaping speed of a target due to the pres-
ence of a nearby herder and that we assume ��2 � D
so that the harmonic repulsive action eventually exerted
by the herders onto the targets dominates over their own
Brownian dynamics
We model the dynamics of the herders as made of two

mutually exclusive terms, one capturing their own dy-
namics and the other their interaction with the targets,
see e.g. [23]. Specifically, we set

Ḣi = (1� ⌘i)Fi(Hi, r
⇤) + ⌘iIi(T,H, ⇠) (2)

where ⌘i = ⌘i(T,H, ⇠) is an indicator function activating
when herder i has at least one target to chase in its sens-
ing region of radius ⇠, Fi(Hi, r⇤) describes the herder’s
own dynamics when it is not chasing any targets while
Ii(T,H, ⇠) is a feedback term capturing the herder’s re-
action to the presence of targets in its sensing region.
Without loss of generality, we choose Fi(Hi, r⇤) so that

the herders, in the absence of nearby targets, converge
towards the origin if outside the goal region of radius r⇤;
namely we set

Fi(Hi, r
⇤) =

(
�vH bHi if |Hi| � r⇤

0 otherwise
(3)

As typically done in the control theoretic and robotics
literature, e.g. [12], we assume that at each time step,
herder i selects a target within its sensing region, say
T

⇤
i
= Ti(H,T, ⇠), to coral and chase. Then, we choose

Ii(T,H, ⇠) = �
h
↵
⇣
Hi � (T⇤

i
+ �bT

⇤
i
)
⌘i

vH

(4)

where � = �/2 is the distance at which the herder places
itself behind the chosen target to coral it towards the goal
region, ↵ is a positive dimensional constant and [·]vH is
a saturation operator that limits the herders’ maximum
speed to vH when chasing a target.
The target to chase T

⇤
i
is selected by herder i as the

target with the largest distance from the origin among
those, if any, within the sensing radius of herder i. Fur-
thermore, if herder i detects other herders Hj in its sens-
ing region (i.e. such that |Hj �Hi|  ⇠), it only consid-
ers those targets Ta for which |Ta � Hi|  |Ta � Hj |.
Through this simple local rule, nearby herders e↵ectively
cooperate so as to decide which target to chase without
needing any global information on the positions of other
herders and targets.
We assume that the herders’ velocity vH > vT as typi-

cally done in the control literature [8] and to prevent the
formation of stable chasing patterns that can be observed
for vT . vH [24–26], and that can hinder the achievement

2

(a) (b)

(c) (d)

H1

⇠

H2
H3

�

⌦G

FIG. 1. Representative snapshots of the system configuration
(with herders represented by blue diamonds and targets by
magenta circles) at (a) the initial time t = 0 with the agents
uniformly distributed in ⌦0 (yellow shaded disk), (b) at an in-
termediate time during shepherding control when herders sur-
round all targets and (c) when the task is successfully achieved
with all the targets in ⌦G (dark blue circle). (d) Schematic
of the herders’ and targets’ sensing (magenta shaded disks)
and repulsion (blue shaded disk) regions of radius ⇠ and �

respectively. The solid black arrows represent the direction of
motion of the herders when moving in the absence of nearby
targets (H1), selecting the target to chase T⇤ with the largest
distance from to goal (H2), or when the herder pushes a se-
lected target towards the goal region (H3).

ature on control and controllability of complex systems
(see e.g. [21] and references therein).

We consider the shepherding problem in R2 (see Fig.
1a), where N herders have to corral M targets to a goal
region ⌦G. We assume that both the herders and the
targets are initially randomly and uniformly distributed
in a circle ⌦0 of radius R, and that the ⌦G region is a
circle of radius r⇤ < R; both ⌦0 and ⌦G being centered
around the origin. Let H 2 R2N be the vector of the
herders’ positions H = [H1, H2, ..., HN ] with Hi 2 R2

being the Cartesian coordinates of the i-th herder, i =
1, ..., N , and T 2 R2M the vector of the targets’ positions
T = [T1, T2, ..., TM ], with Ta 2 R2 being the Cartesian
coordinates of target a, a = 1, ...,M .

We assume the targets do not exhibt any type of cohe-
sive collective behaviour with their dynamics being de-
scribed by the following overdamped Langevin equation:
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is selected by herder i as the

target with the largest distance from the origin among
those, if any, within the sensing radius of herder i. Fur-
thermore, if herder i detects other herders Hj in its sens-
ing region (i.e. such that |Hj �Hi|  ⇠), it only consid-
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cally done in the control literature [8] and to prevent the
formation of stable chasing patterns that can be observed
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• In Shepherding the emerging collective behaviour of a complex system of targets 
must be controlled by driving the emerging behaviour of another complex system 
(the herders)

• A task also referred to as indirect control in the literature

A complex system performing a control task



• The crucial problem is the design of the herders’ dynamics so as to achieve the 
desired goal

• Herders must steer the target behaviour towards the
desired region (coralling task)

• Also, they need to cooperate with each other and 
collectively implement decision-making strategies 
(target selection)

• Herders can possess global or local information
according to their sensing regions

The shepherding control problem

A Pierson, M Schwager, Controlling noncooperative herds with robotic herders, IEEE Trans Robotics 2018
R.A. Licitra, Z Bell, W Dixon, Single-agent indirect herding of mutliple targets with uncertain dynamics”, IEEE Trans Robotics, 2019
D. Ko, E. Zuazua, Asymptotic behaviour and control of “a guidance by repulsion model”, Math Models Methods Appl Sci, 2020 



• Targets usually have their own dynamics (fish schooling, crowds, animal groups..)

• Their motion being influenced by the presence of an herder within their region of 
influence

• For instance, targets can be repelled from
(or attracted to) nearby herders

• Typically, targets are assumed to flock together
(selfish herd hypothesis)

• An assumption that is often unrealistic in some
circumstances

Targets behaviour
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• Many solutions are available in the case of 1 herder and 1 or many targets or 
when the number of herders is equal to the number of targets. 

• For more general cases, some of the earliest solutions involve path planning via a 
global rule based approach (not easily scalable and computationally expensive!)

Existing solutions
2.3. HERDING SOLUTION FOR MULTIPLE HERDERS (NH > 1)

walkable paths are represented as edges of a directed graph [168], to model the trajectories of herder

and target agents in an environment that contains obstacles. The roadmaps associated with the tar-

get agents were coupled through repulsive and attractive forces to the herders and to neighbouring

targets, respectively. For herder agents, instead, the solution entailed three different strategies to

approach the back of the herd, i.e., for them to reach one of the available nodes in the roadmap;

moving (i) towards the first available node, or (ii) towards the first node both available and closest,

or (iii) pairing herders and available nodes by solving a global minimisation problem with respect

to the distance to be travelled by the herders (see Figure 2.2).

Figure 2.2: Herding environment considered by Lien et al. with multiple herders choosing (a) the
first available node in the dynamic roadmap, (b) the first both available and closest and (c) by solving
a global minimisation problem. Image reproduced from [67]

As expected, numerical experiments proved that multiple herders (up to five) were more suc-

cessful than NH = 1 herder in coping with both increasing herd sizes and, of particular importance,

when environmental obstacles are present.

However, when, to test the robustness of the herding system developed, herders were tasked

to herd targets of varying flocking tendency, even the best combination of number of herders and

approaching strategy failed if faced with low flocking targets (similarly to [152]). To overcome such

correlation of herding effectiveness with targets flocking behaviour, in later work, two different ap-

proaches to design dynamic roadmaps were pursued; “human-in-the-loop” design [66] and proba-

bilistic motion planning techniques [160]. In the first case, human actors, equipped with laser point-

ers and a projected image of the environment, were asked to interactively modify the roadmap, gen-

erated by the algorithm, to help herders solve the task. In the second case, roadmaps were designed

by training Rapidly Exploring Random Trees (RRTs) and Expansive-Spaces Trees (ESTs) to achieve a

more extensive exploration of all the possible walkable paths. Numerical experiments showed that

herders following an interactive roadmap [66] performed better when the number of targets ex-

ceeded NT = 20 agents but the more extensive exploration of the environment, achieved through

the probabilistic roadmaps [160], resulted in higher success rates.

The research conducted by Lien et al. proved the effectiveness of adopting path planning tech-

niques to find the most suitable trajectory for the herders. However, the need for a priori knowledge
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• In the mathematics community the problem has been studied most notably by 
Zuazua and coworkers [2020]

• The herders (or drivers) know and track the 
barycenter of the flocking evaders 

• No collaborative strategy is set up between 
the herders just avoiding collisions

• The herder dynamics is the off-line solution 
of open-loop optimal control problems

• Some feedback laws inspired by these solutions…

• .. but “if the ensemble of evaders is separated and hard to flock together initially, 
then this strategy does not work”

Optimal “guidance by repulsion” models

D. Ko, E. Zuazua, Asymptotic behaviour and control of “a guidance by repulsion model”, Math Models Methods Appl Sci, 2020 
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Figure 1. The trajectories of (1) with 1 driver and 5 evaders. The square
and circle marks represent the initial and final positions, respectively. A
nonzero circumvention control κc1(t) = 1 for t ∈ [0, 15] leads to the rotational
motion eventually (left). By turning off the circumvention control at t = 10,
linear pursuit motion arises (right). In this way, we may steer the evaders
to a desired area.

in each mode. As in Figure 1, linear and rotational trajectories arise respectively in the
pursuit and the circumvention mode. These time-asymptotic convergences lead us to prove
the exact controllability of the evader’s position with a long enough time horizon.

On the other hand, from a control perspective, we simulate optimal open-loop control
strategies on the multi-driver and multi-evader model. We use the gradient method to
find optimal controls and controlled trajectories. Among the simulations, a simple pattern
appears: the drivers start with the circumvention motion to steer the directions of the
evaders, and then switch smoothly to the pursuit motion toward the target point.

This pattern motivated us to build a feedback strategy, where each driver can decide
proper controls κpj (t) and κ

c
j(t) from the information of the target point, the barycenter of

evaders and the diameter of evaders. When there are more than one driver, this feedback
strategy naturally make the drivers to build a formation behind the herd of evaders and
push the evaders as a team.

1.2. Related works on the herding problem. As we introduced in the beginning, there
have been a lot of researches to understand the herding problem and simulate its dynamics.
In the viewpoint of control theory, here we list several related works:

• In [12, 21], a time-discrete model has been studied with one driver and many evaders
in order to explain the real-world data of shepherd dogs. The dog is designed to
track an abnormal sheep escaping from the herd, and force it to move toward the
center of sheep. This idea was extended to a multi-driver case in [13], where the
drivers try to control the nearest evader if the evaders keep close each other.

• In the context of automation design, in [15], they classify the configuration of the
evaders’ positions, and provide a specific strategy of one driver for each situation.
They suggest that the driver need to know the sight of evaders and should avoid
their personal space for herding.

• From the viewpoint of the large population limit of evaders, the optimal control of
the herding problem is formulated in [6, 18]. In these papers, the density function of



• Other solutions aimed at replicating behaviour observed in natural systems 
(shepherds and sheepdogs, dolphins foraging etc) by assigning specific dynamics 
for targets and herders

Bio-inspired models
CHAPTER 2. THE MULTI-AGENT HERDING TASK

targets. The velocities of the herders were regulated according to the estimated time t? necessary

for the targets to escape the region of influence, arranging themselves in two opposite rows or in a

carousel as in Figure 2.4. For example, when in carousel arrangement (Figure 2.4(b)), the j-th herder

dynamics (2.1) is modelled as

ẏ j (t ) =

8
>>>>><
>>>>>:

2r?
£?°µ
t?° t

if£?°µ > 0

2r?
2º+£?°µ

t?° t
otherwise

(2.9)

where £? and µ represent the desired and actual herders’ heading respectively. The regions of suc-

(a) (b)

(c) (d)

Figure 2.4: Multi agent herding system inspired by foraging techniques of dolphins consisting in (a)
forming two opposite rows or (c) creating a carousel around the herd. Panels (b)-(d) are an example
of how simulated herders replicates dolphins herding behaviour. Images reproduced from [53].

cessful containment were defined by optimising herders velocity on targets escaping time and dis-
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• Recently, herding tasks have received growing attention in cognitive and 
psychological sciences to study human decision-making, complex joint action and 
team coordination

Human-inspired models

2.3. HERDING SOLUTION FOR MULTIPLE HERDERS (NH > 1)

tance from a possible exit point. That is, for which initial positions of targets and herders, the latter

were able to contain the former.

Innovatively, the desired herding trajectory was not only designed assuming targets would es-

cape from herders, but would do so adopting the most efficient escape strategy. Indeed, to the best

of our knowledge, the work from Haque et al. is still the main research work considering targets able

to perform “smart” manoeuvres against the herders.

Recently, herding tasks have also received growing attention within the cognitive and psycho-

logical sciences [106, 107, 109, 110, 123, 129] with multi-player herding tasks being used as a repre-

sentative task for exploring the behavioural dynamics that underlie complex joint-action and team

perceptual-motor coordination. Most relevant here is the herding task explored in [106, 109, 129],

in which pairs of human players control virtual herder agents or avatars to corral a small herd of

virtual sheep or cattle (targets) into a specified containment area within a large game field. The task

can be played on a large tabletop display screen (as in Figure 2.5(a)) or in an immersive 3D virtual-

reality environment. The human-controlled herder agents essentially act as ‘sheepdogs’, with the

target agents repelled away from the herder agents when the targets come within a certain distance

of a herder. When not influenced by an herder agent, the target agents exhibit Brownian motion,

diffusely wandering around the game field.

(a) (b)

Figure 2.5: Herding task and experimental set-up (a) used in [106, 109, 129] to model the S&R and
oscillating behaviour (b) observed in human teams.

To complete the task successfully, human herders learned to adopt two modes of behavioural

coordination. The first, referred to as search-and-recover or S&R behaviour, involves human herders

dynamically dividing the game area (more-or-less) into two regions of responsibility and then cor-

ralling the targets that were approximately furthest from the containment area within their current

“sphere of responsibility”. In other words, during S&R behaviour human herders essentially moved

17
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The “human” solution

Search and Rescue Oscillatory confinement



• The existing models suffer from one or more of the following limitations:

1. Ad-hoc modeling assumptions to replicate natural/human behaviour
2. Assumption of flocking or lack of own dynamics in the targets
3. Infinite sensing ability of the herders
4. Lack of scalability as the number of targets increase
5. Off-line (optimal) computation of the herders behaviour

• More importantly, current solutions do not exploit a key feature of complex 
systems: the ability of exhibiting emerging behaviour (e.g. oscillatory motion 
observed in humans)

• Our ongoing work aims at finding solutions to overcome these limitations 
systematically relaxing these assumptions

Key limitations of current solutions



Key research questions

Can local simpler feedback rules solve the shepherding problem 
in the presence of non-cohesive targets?

Can the emerging collective behaviour of a complex multiagent system 
(the herders) solve a distributed control task?

Under what “herdability” conditions multiple herders can effectively 
shepherd a group of targets if they only have limited sensing?



• We consider the herders as distributed feedback control
system of the form

• To remove any assumption of flocking, 
we assume targets  diffuse randomly in the environment

• Control goal:

Removing cohesiveness from the targets4 Fabrizia Auletta et al.

Fig. 1 Illustration of the spatial arrangement in the herding
problem. The herder agent yj (yellow square), with polar co-
ordinates (rj , ✓j), must relocate the target agent xi (green
ball), with polar coordinates (⇢i, �i), in the containment re-
gion G (solid red circle) of centre x? and radius r?. The bu↵er
region B, of width �r?, is depicted as a dashed red circle.

is a 2-dimensional standard Wiener process and ↵b > 0
is a constant. We suppose the distance travelled by
the passive agents depends on how close the herder
agents are and model this e↵ect by considering a po-
tential field centred on the j-th herder given by vi,j =
1/(kxi � yjk), exerting on the passive agents an ac-
tion proportional to its gradient (Pierson and Schwa-
ger 2018). Specifically, the dynamics of the i-th passive
agent is influenced by all the herders through the reac-
tion term

Vr,i(t) = ↵r

NHX

j=1

@vi,j
@xi

= �↵r

NHX

j=1

xi(t)�yj(t)
kxi(t)�yj(t)k3 , (4)

where ↵r > 0 is a constant. Uncertainties on the repul-
sive reaction term (4) can be seen as being captured by
the additional noisy term in (3).

Notice that the velocity of all passive agents is com-
pletely determined by (3)-(4) and we do not assume
any upper bound on its maximum value. The position
of the i-th passive agent when it is targeted by the j-th
herder will be denoted as x̃i,j or in polar coordinates
as (⇢̃i,j , �̃i,j).

4 Herder dynamics and control rules

Our solution to the herding problem consists of two
layered strategies; (i) a local control law to drive the
motion of the herder towards the target it selected, and
to push it inside the goal region and (ii) a target selec-
tion strategy through which herders decide what target
to chase. When the herd are all gathered, the herders

switch back to an idling condition by keeping theirself
within the safety region surrounding the goal region.

4.1 Local control strategy

For the sake of comparison with the strategy presented
in Nalepka et al. (2017b, 2019), we express in polar
coordinates the control law we propose to drive each
herder. Albeit not resulting in the shortest possible
path travelled by the herders, the controller expressed
in polar coordinates ensures circumnavigation of the
goal region, avoiding passive agents already contained
therein from being scattered around. Specifically, the
control input to the j-th herder dynamics (1) is defined
as uj = ur,j r̂j + u✓,j ✓̂j , where ✓̂j = r̂?

j
are unit vec-

tors and r̂j = [cos ✓j , sin ✓j ]>, and its components are
chosen as

ur,j(t) = �br ṙj(t)�R(x̃i,j , t), (5)

u✓,j(t) = �b✓ ✓̇j(t)� T (x̃i,j , t), (6)

with br, b✓ > 0, and where the feedback termsR(x̃i,j , t)
and T (x̃i,j , t) are elastic forces that drive the herder to-
wards the target i and push it towards the containment
region G. Such forces are chosen as

R(x̃i,j , t) = ✏r
h
rj(t)� ⇠j(t) (⇢̃i,j(t) +�r?)

� (1� ⇠j(t)) (r
? +�r?)

i
,

(7)

T (x̃i,j , t) = ✏✓
h
✓j(t)� ⇠j(t)�̃i,j(t)

� (1� ⇠j(t)) (t)
i
.

(8)

with ✏r, ✏✓ > 0, and where ⇠j regulates the switching
policy between collecting and idling behaviours. That
is, ⇠j = 1, if ⇢̃i,j � r?, and ⇠j = 0, if ⇢̃i,j < r?, so
that the herder is attracted to the position of the i-th
target x̃i,j (plus a radial o↵set �r?) when the current
target is outside the containment region (⇠j = 1) or
close to the boundary of the bu↵er region at the idling
position (r? +�r?,  ), in polar coordinates, otherwise
(⇠j = 0). The value of the idling angle  depends on
the specific choice of the target selection strategy em-
ployed, which are discussed next. Note that the con-
trol laws (5)-(6) are much simpler than those presented
by Nalepka et al. (2017b) as they do not contain any
higher order nonlinear term nor are complemented by
parameter adaptation rules (see Nalepka et al. (2017b)
for further details). Moreover, as for the passive agents,
we do not assume any upper bound on the maximum
velocity of the herders.

Herding stochastic autonomous agents via local control rules and online target selection strategies 3

With regard to a single herder agent gathering one-
by-one a group of passive agents, recent work by Licitra
et al. (2017) employed a backstepping control strategy
for the single herder to chase one target at a time, with
the herder switching among di↵erent targets and suc-
ceeding in collecting them within a goal region of in-
terest. This idea was further developed in Licitra et al.
(2018, 2019) where other control strategies and further
uncertainties in the herd’s dynamics were investigated.

1.2 Contributions of this paper

In this paper, we consider the case of a small group of
herders chasing a much larger group of passive agents
whose dynamics, as often happens with natural agents
such as fish, birds or bacteria, is stochastic and driven
by a random Brownian noise. However, contrary to what
is usually done in the rest of the literature (Haque et al.
2009; Lien et al. 2004; Pierson and Schwager 2018; Lee
and Kim 2017; Chipade and Panagou 2019), we do not
consider the presence of any flocking behaviour between
passive agents, making the problem more complicated
to solve as each target needs to be tracked and collected
independently from the others.

To solve the problem, we present a simple, yet ef-
fective, dynamic herding strategy consisting of local
feedback control laws for the herder agents and a set
of target selection rules that drive how herders make
decentralised decisions on what targets to follow. A
herder’s action is based on the global knowledge of the
environment and of the positions of all other agents.
With respect to other solutions in the literature (Lien
et al. 2004; Pierson and Schwager 2018; Chipade et al.
2021; Song et al. 2021), our approach does not involve
the use of ad hoc formation control strategies to force
the herders surround the herd, but we rather enforce
cooperation between herders by dynamically dividing
the plane among them by means of simple yet e↵ective
and robust rules that can be easily implemented in real
robots.

We then numerically analyse how robust these strate-
gies are to parameter perturbations, uncertainties and
unmodeled disturbances in passive agent dynamics. More-
over, we assess how di↵erent choices of the target selec-
tion rules a↵ect the overall e↵ectiveness of the method-
ology we propose. Finally, we test the e↵ectiveness of
the proposed strategies to solve the herding problem
firstly in simulations in ROS and then in experiments
on real robots conducted on the Robotarium platform
(Pickem et al. 2017; Wilson et al. 2020).

2 The herding problem

We consider the problem of controlling NH � 2 herder
agents in order for them to drive a group of NT > NH

passive agents in the plane (R2) towards a goal region
and contain them therein. We term yj the position in
Cartesian coordinates of the j-th herder in the plane
and xi that of the i-th passive agent. We denote as
(rj , ✓j) and (⇢i, �i) their respective positions in polar
coordinates as shown in Fig. 1. We assume the goal
of the herders is to drive the passive agents towards a
circular containment region G, of radius r? centred at
x?. Without loss of generality, we set x? to be the origin
of R2.

Assuming the herders have their own trivial dynam-
ics in the plane, the herding problem can be formulated
as the design of the control action u governing the dy-
namics of the herders given by
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,y1, . . . ,yNH
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where m denotes the mass of the herders assumed to be
unitary, so that the herders can influence the dynamics
of the passive agents (whose dynamics will be specified
in the next section) and guarantee that

kxi(t)� x?k  r?, 8i, 8t � tg, (2)

where k·k denotes the Euclidean norm; that is, all pas-
sive agents are contained, after some finite gathering
time tg, in the desired region G. A herding trial is said
to be successful in the time interval [0, T ] if condition
(2) holds for some tg 2 [0, T ]. We assume an annular
safety region B of width �r? exists surrounding the
goal region that the herders leave between themselves
and the region where targets are contained.

In what follows, we will assume that (i) herder and
passive agents can move freely in R2; (iii) herder agents
have global knowledge of the environment and of the
positions of the other agents therein.

3 Target dynamics

Taking inspiration from Nalepka et al. (2017b), we as-
sume that, when interacting with the herders, passive
agents are repelled from them and move away in the
opposite direction, while in the absence of any external
interaction, they randomly di↵use in the plane. Specif-
ically, we assume passive agents move according to the
following stochastic dynamics

dxi(t) = Vr,i(t)dt+ ↵bdWi(t), (3)

where Vr,i describes the repulsion exerted by all the
herders on the i-th passive agent, Wi = [Wi,1 , Wi,2]>
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3 Target dynamics

Taking inspiration from Nalepka et al. (2017b), we assume
that, when interacting with the herders, passive agents are
repelled from them and move away in the opposite direction,
while in the absence of any external interaction, they ran-
domly diffuse in the plane. Specifically, we assume passive
agents move according to the following stochastic dynamics

dxi (t) = Vr ,i (t)dt + αbdWi (t), (3)

where Vr ,i describes the repulsion exerted by all the herders
on the i-th passive agent, Wi = [Wi,1, Wi,2]⊤ is a 2-
dimensional standard Wiener process and αb > 0 is a
constant. We suppose the distance travelled by the passive
agents depends on how close the herder agents are andmodel
this effect by considering a potential field centred on the j-th
herder given by vi, j = 1/(∥xi − y j∥), exerting on the pas-
sive agents an action proportional to its gradient (Pierson and
Schwager 2018). Specifically, the dynamics of the i-th pas-
sive agent is influenced by all the herders through the reaction
term

Vr ,i (t) = αr

NH∑

j=1

∂vi, j

∂xi
= −αr

NH∑

j=1

xi (t)−y j (t)
∥xi (t)−y j (t)∥3 , (4)

where αr > 0 is a constant. Uncertainties on the repulsive
reaction term (4) can be seen as being captured by the addi-
tional noisy term in (3).

Notice that the velocity of all passive agents is completely
determined by (3)–(4) andwedo not assume any upper bound
on its maximum value. The position of the i-th passive agent
when it is targeted by the j-th herder will be denoted as x̃i, j
or in polar coordinates as (ρ̃i, j , φ̃i, j ).

4 Herder dynamics and control rules

Our solution to the herding problem consists of two layered
strategies; (i) a local control law to drive the motion of the
herder towards the target it selected, and to push it inside the
goal region and (ii) a target selection strategy through which
herders decide what target they need to chase.When the herd
are all gathered, the herders switch back to an idling condition
by keeping theirself within the safety region surrounding the
goal region.

4.1 Local control strategy

For the sake of comparison with the strategy presented in
Nalepka et al. (2017b), Nalepka et al. (2019), we derive

in polar coordinates the control law we propose to drive
each herder. Albeit not resulting in the shortest possible path
travelled by the herders, the controller expressed in polar
coordinates ensures circumnavigation of the goal region,
avoiding passive agents already contained therein from being
scattered around. Specifically, the control input to the j-th
herder dynamics (1) is defined as u j = ur , j r̂ j + uθ, j θ̂ j ,
where θ̂ j = r̂⊥

j are unit vectors and r̂ j = [cos θ j , sin θ j ]⊤,
and its components are chosen as

ur , j (t) = −br ṙ j (t) − R(x̃i, j , t), (5)

uθ, j (t) = −bθ θ̇ j (t) − T (x̃i, j , t), (6)

with br , bθ > 0, and where the feedback terms R(x̃i, j , t)
and T (x̃i, j , t) are elastic forces that drive the herder towards
the target i and push it towards the containment region G.
Such forces are chosen as

R(x̃i, j , t) = ϵr

[
r j (t) − ξ j (t) (ρ̃i, j (t)+ ∆r⋆)

− (1 − ξ j (t)) (r⋆ + ∆r⋆)
]
,

(7)

T (x̃i, j , t) = ϵθ

[
θ j (t) − ξ j (t)φ̃i, j (t)

− (1 − ξ j (t))ψ(t)
]
.

(8)

with ϵr , ϵθ > 0, and where ξ j regulates the switching policy
between collecting and idling behaviours. That is, ξ j = 1,
if ρ̃i, j ≥ r⋆, and ξ j = 0, if ρ̃i, j < r⋆, so that the herder is
attracted to the position of the i-th target x̃i, j (plus a radial
offset∆r⋆) when the current target is outside the containment
region (ξ j = 1) or close to the boundary of the buffer region
at the idling position (r⋆+∆r⋆, ψ), in polar coordinates, oth-
erwise (ξ j = 0). The value of the idling angle ψ depends on
the specific choice of the target selection strategy employed,
which are discussed next. Note that the control laws (5)–
(6) are much simpler than those presented by Nalepka et al.
(2017b) as they do not contain any higher order nonlinear
term nor are complemented by parameter adaptation rules
(see Nalepka et al. 2017b for further details). Moreover, as
for the passive agents, we do not assume any upper bound on
the maximum velocity of the herders.

4.2 Target selection strategies

In the case of a single herder chasingmultiple agents, themost
common strategy in the literature is for it to select the target
as either the farthest passive agent from the goal region, or
the centre of mass of the flocking herd (Vaughan et al. 2000;
Strombom et al. 2014; Licitra et al. 2017).When two or more
herders are involved, the problem is usually solved using a
formation control approach, letting the herders surround the
herd and then drive them towards the goal region (Pierson
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Fig. 1 Illustration of the spatial arrangement in the herding
problem. The herder agent yj (yellow square), with polar co-
ordinates (rj , ✓j), must relocate the target agent xi (green
ball), with polar coordinates (⇢i, �i), in the containment re-
gion G (solid red circle) of centre x? and radius r?. The bu↵er
region B, of width �r?, is depicted as a dashed red circle.

is a 2-dimensional standard Wiener process and ↵b > 0
is a constant. We suppose the distance travelled by
the passive agents depends on how close the herder
agents are and model this e↵ect by considering a po-
tential field centred on the j-th herder given by vi,j =
1/(kxi � yjk), exerting on the passive agents an ac-
tion proportional to its gradient (Pierson and Schwa-
ger 2018). Specifically, the dynamics of the i-th passive
agent is influenced by all the herders through the reac-
tion term

Vr,i(t) = ↵r

NHX
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@vi,j
@xi

= �↵r

NHX

j=1

xi(t)�yj(t)
kxi(t)�yj(t)k3 , (4)

where ↵r > 0 is a constant. Uncertainties on the repul-
sive reaction term (4) can be seen as being captured by
the additional noisy term in (3).

Notice that the velocity of all passive agents is com-
pletely determined by (3)-(4) and we do not assume
any upper bound on its maximum value. The position
of the i-th passive agent when it is targeted by the j-th
herder will be denoted as x̃i,j or in polar coordinates
as (⇢̃i,j , �̃i,j).

4 Herder dynamics and control rules

Our solution to the herding problem consists of two
layered strategies; (i) a local control law to drive the
motion of the herder towards the target it selected, and
to push it inside the goal region and (ii) a target selec-
tion strategy through which herders decide what target
to chase. When the herd are all gathered, the herders

switch back to an idling condition by keeping theirself
within the safety region surrounding the goal region.

4.1 Local control strategy

For the sake of comparison with the strategy presented
in Nalepka et al. (2017b, 2019), we express in polar
coordinates the control law we propose to drive each
herder. Albeit not resulting in the shortest possible
path travelled by the herders, the controller expressed
in polar coordinates ensures circumnavigation of the
goal region, avoiding passive agents already contained
therein from being scattered around. Specifically, the
control input to the j-th herder dynamics (1) is defined
as uj = ur,j r̂j + u✓,j ✓̂j , where ✓̂j = r̂?

j
are unit vec-

tors and r̂j = [cos ✓j , sin ✓j ]>, and its components are
chosen as

ur,j(t) = �br ṙj(t)�R(x̃i,j , t), (5)

u✓,j(t) = �b✓ ✓̇j(t)� T (x̃i,j , t), (6)

with br, b✓ > 0, and where the feedback termsR(x̃i,j , t)
and T (x̃i,j , t) are elastic forces that drive the herder to-
wards the target i and push it towards the containment
region G. Such forces are chosen as

R(x̃i,j , t) = ✏r
h
rj(t)� ⇠j(t) (⇢̃i,j(t) +�r?)

� (1� ⇠j(t)) (r
? +�r?)

i
,

(7)

T (x̃i,j , t) = ✏✓
h
✓j(t)� ⇠j(t)�̃i,j(t)

� (1� ⇠j(t)) (t)
i
.

(8)

with ✏r, ✏✓ > 0, and where ⇠j regulates the switching
policy between collecting and idling behaviours. That
is, ⇠j = 1, if ⇢̃i,j � r?, and ⇠j = 0, if ⇢̃i,j < r?, so
that the herder is attracted to the position of the i-th
target x̃i,j (plus a radial o↵set �r?) when the current
target is outside the containment region (⇠j = 1) or
close to the boundary of the bu↵er region at the idling
position (r? +�r?,  ), in polar coordinates, otherwise
(⇠j = 0). The value of the idling angle  depends on
the specific choice of the target selection strategy em-
ployed, which are discussed next. Note that the con-
trol laws (5)-(6) are much simpler than those presented
by Nalepka et al. (2017b) as they do not contain any
higher order nonlinear term nor are complemented by
parameter adaptation rules (see Nalepka et al. (2017b)
for further details). Moreover, as for the passive agents,
we do not assume any upper bound on the maximum
velocity of the herders.
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ur,j(t) = �br ṙj(t)�R(x̃i,j , t), (5)

u✓,j(t) = �b✓ ✓̇j(t)� T (x̃i,j , t), (6)

with br, b✓ > 0, and where the feedback termsR(x̃i,j , t)
and T (x̃i,j , t) are elastic forces that drive the herder to-
wards the target i and push it towards the containment
region G. Such forces are chosen as

R(x̃i,j , t) = ✏r
h
rj(t)� ⇠j(t) (⇢̃i,j(t) +�r?)

� (1� ⇠j(t)) (r
? +�r?)

i
,

(7)

T (x̃i,j , t) = ✏✓
h
✓j(t)� ⇠j(t)�̃i,j(t)

� (1� ⇠j(t)) (t)
i
.

(8)

with ✏r, ✏✓ > 0, and where ⇠j regulates the switching
policy between collecting and idling behaviours. That
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4.2 Target selection strategies

In the case of a single herder chasing multiple agents,
the most common strategy in the literature is for it
to select the target as either the farthest passive agent
from the goal region, or the centre of mass of the flock-
ing herd (Vaughan et al. 2000; Strombom et al. 2014;
Licitra et al. 2017). When two or more herders are in-
volved, the problem is usually solved using a formation
control approach, letting the herders surround the herd
and then drive them towards the goal region (Pierson
and Schwager 2018; Lien et al. 2004). Rather than us-
ing formation control techniques or solving o↵-line or
on-line optimisation problems as in dynamic target as-
signment problems (e.g., Bürger et al. (2011)), here we
present a set of simple, yet e↵ective, target selection
strategies that exploit the spatial distribution of the
herders allowing them to cooperatively select their tar-
gets without requiring any computationally expensive
optimisation problem to be solved on-line.

We present four di↵erent herding strategies, starting
from the simplest case where herders globally look for
the target farthest from the goal region. A graphical
illustration of the four strategies is reported in Fig. 2
for NH = 3 herders.

Global search strategy (no partitioning) Each herder se-
lects the farthest passive agent from the containment
region which is not currently targeted by any other
herder (Fig. 2(a)). Being the simplest possible strat-
egy, we present this strategy for the sake of comparison
only and not for being implemented on real robots.

Static arena partitioning At the beginning of the trial
and for all of its duration, the plane is partitioned inNH

circular sectors of width equal to 2⇡/NH rad centred at
x?. Each herder is then assigned one sector to patrol
and selects the passive agent therein that is farthest
from G (Fig. 2(b)). Note that this is the same herding
strategy used in Nalepka et al. (2017b) for NH = 2
herders.

Dynamic leader-follower (LF) target selection strategy
At the beginning of the trial, herders are labelled from
1 to NH in anticlockwise order starting from a ran-
domly selected herder which is assigned the leader role.
The plane is then partitioned dynamically in di↵erent
regions as follows. The leader starts by selecting the
farthest passive agent from G whose angular position
�̃i,1 is such that

�̃i,1 2
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(a) Global search (b) Static arena partition-
ing

(c) Leader-follower (d) Peer-to-peer

Fig. 2 Graphical representation of the target selection
strategies. Herders are depicted as yellow squares, passive
agents as green balls. The colours in which the game field
is divided correspond to regions assigned to di↵erent herders.
Herder yj is currently chasing target agent x̃i,j , while passive
agent xi is not chased by any herder.

where ✓1 is the angular position of the leader at time
t. Then, all the other follower herders (j = 2, . . . , NH),
in ascending order, select their targets as the passive
agent farthest from G such that
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with ⇣j = 2⇡(j � 1)/NH . As the leader chases the se-
lected target and moves in the plane, the partition de-
scribed above changes dynamically so that a di↵erent
circular sector with constant angular width 2⇡/NH rad
is assigned to each follower at any time instant. In
Fig. 2(c) the case is depicted for NH = 3 in which the
sector (✓1 � ⇡

3 , ✓1 +
⇡

3 ] is assigned to the leader herder
while the rest of the plane is assigned equally to the
other two herders.

Dynamic peer-to-peer (P2P) target selection strategy
At the beginning of the trial herders are labelled from
1 to NH as in the previous strategy. Denoting as ⇣+

j

the angular di↵erence between the positions of herder
j and herder (j + 1)modNH at time t, and as ⇣�

j
that

between herder j and herder (j + NH � 1)modNH at
time t, then herder j selects the farthest passive agent
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4.2 Target selection strategies

In the case of a single herder chasing multiple agents,
the most common strategy in the literature is for it
to select the target as either the farthest passive agent
from the goal region, or the centre of mass of the flock-
ing herd (Vaughan et al. 2000; Strombom et al. 2014;
Licitra et al. 2017). When two or more herders are in-
volved, the problem is usually solved using a formation
control approach, letting the herders surround the herd
and then drive them towards the goal region (Pierson
and Schwager 2018; Lien et al. 2004). Rather than us-
ing formation control techniques or solving o↵-line or
on-line optimisation problems as in dynamic target as-
signment problems (e.g., Bürger et al. (2011)), here we
present a set of simple, yet e↵ective, target selection
strategies that exploit the spatial distribution of the
herders allowing them to cooperatively select their tar-
gets without requiring any computationally expensive
optimisation problem to be solved on-line.

We present four di↵erent herding strategies, starting
from the simplest case where herders globally look for
the target farthest from the goal region. A graphical
illustration of the four strategies is reported in Fig. 2
for NH = 3 herders.

Global search strategy (no partitioning) Each herder se-
lects the farthest passive agent from the containment
region which is not currently targeted by any other
herder (Fig. 2(a)). Being the simplest possible strat-
egy, we present this strategy for the sake of comparison
only and not for being implemented on real robots.

Static arena partitioning At the beginning of the trial
and for all of its duration, the plane is partitioned inNH

circular sectors of width equal to 2⇡/NH rad centred at
x?. Each herder is then assigned one sector to patrol
and selects the passive agent therein that is farthest
from G (Fig. 2(b)). Note that this is the same herding
strategy used in Nalepka et al. (2017b) for NH = 2
herders.

Dynamic leader-follower (LF) target selection strategy
At the beginning of the trial, herders are labelled from
1 to NH in anticlockwise order starting from a ran-
domly selected herder which is assigned the leader role.
The plane is then partitioned dynamically in di↵erent
regions as follows. The leader starts by selecting the
farthest passive agent from G whose angular position
�̃i,1 is such that

�̃i,1 2
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(a) Global search (b) Static arena partition-
ing

(c) Leader-follower (d) Peer-to-peer

Fig. 2 Graphical representation of the target selection
strategies. Herders are depicted as yellow squares, passive
agents as green balls. The colours in which the game field
is divided correspond to regions assigned to di↵erent herders.
Herder yj is currently chasing target agent x̃i,j , while passive
agent xi is not chased by any herder.

where ✓1 is the angular position of the leader at time
t. Then, all the other follower herders (j = 2, . . . , NH),
in ascending order, select their targets as the passive
agent farthest from G such that
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with ⇣j = 2⇡(j � 1)/NH . As the leader chases the se-
lected target and moves in the plane, the partition de-
scribed above changes dynamically so that a di↵erent
circular sector with constant angular width 2⇡/NH rad
is assigned to each follower at any time instant. In
Fig. 2(c) the case is depicted for NH = 3 in which the
sector (✓1 � ⇡

3 , ✓1 +
⇡

3 ] is assigned to the leader herder
while the rest of the plane is assigned equally to the
other two herders.

Dynamic peer-to-peer (P2P) target selection strategy
At the beginning of the trial herders are labelled from
1 to NH as in the previous strategy. Denoting as ⇣+

j

the angular di↵erence between the positions of herder
j and herder (j + 1)modNH at time t, and as ⇣�

j
that

between herder j and herder (j + NH � 1)modNH at
time t, then herder j selects the farthest passive agent

Global search Static arena partitioning



• Leader-follower target selection strategy

• At start, herders are labelled anticlockwise starting
from a randomly selected herder (the leader)

• The plane is then partitioned dynamically in different 
search regions of constant width for each herder

• As the leader chases a target, the other herders’ regions adjust dynamically

Dynamic selection strategies
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4.2 Target selection strategies

In the case of a single herder chasing multiple agents,
the most common strategy in the literature is for it
to select the target as either the farthest passive agent
from the goal region, or the centre of mass of the flock-
ing herd (Vaughan et al. 2000; Strombom et al. 2014;
Licitra et al. 2017). When two or more herders are in-
volved, the problem is usually solved using a formation
control approach, letting the herders surround the herd
and then drive them towards the goal region (Pierson
and Schwager 2018; Lien et al. 2004). Rather than us-
ing formation control techniques or solving o↵-line or
on-line optimisation problems as in dynamic target as-
signment problems (e.g., Bürger et al. (2011)), here we
present a set of simple, yet e↵ective, target selection
strategies that exploit the spatial distribution of the
herders allowing them to cooperatively select their tar-
gets without requiring any computationally expensive
optimisation problem to be solved on-line.

We present four di↵erent herding strategies, starting
from the simplest case where herders globally look for
the target farthest from the goal region. A graphical
illustration of the four strategies is reported in Fig. 2
for NH = 3 herders.

Global search strategy (no partitioning) Each herder se-
lects the farthest passive agent from the containment
region which is not currently targeted by any other
herder (Fig. 2(a)). Being the simplest possible strat-
egy, we present this strategy for the sake of comparison
only and not for being implemented on real robots.

Static arena partitioning At the beginning of the trial
and for all of its duration, the plane is partitioned inNH

circular sectors of width equal to 2⇡/NH rad centred at
x?. Each herder is then assigned one sector to patrol
and selects the passive agent therein that is farthest
from G (Fig. 2(b)). Note that this is the same herding
strategy used in Nalepka et al. (2017b) for NH = 2
herders.

Dynamic leader-follower (LF) target selection strategy
At the beginning of the trial, herders are labelled from
1 to NH in anticlockwise order starting from a ran-
domly selected herder which is assigned the leader role.
The plane is then partitioned dynamically in di↵erent
regions as follows. The leader starts by selecting the
farthest passive agent from G whose angular position
�̃i,1 is such that
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(a) Global search (b) Static arena partition-
ing

(c) Leader-follower (d) Peer-to-peer

Fig. 2 Graphical representation of the target selection
strategies. Herders are depicted as yellow squares, passive
agents as green balls. The colours in which the game field
is divided correspond to regions assigned to di↵erent herders.
Herder yj is currently chasing target agent x̃i,j , while passive
agent xi is not chased by any herder.

where ✓1 is the angular position of the leader at time
t. Then, all the other follower herders (j = 2, . . . , NH),
in ascending order, select their targets as the passive
agent farthest from G such that
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with ⇣j = 2⇡(j � 1)/NH . As the leader chases the se-
lected target and moves in the plane, the partition de-
scribed above changes dynamically so that a di↵erent
circular sector with constant angular width 2⇡/NH rad
is assigned to each follower at any time instant. In
Fig. 2(c) the case is depicted for NH = 3 in which the
sector (✓1 � ⇡

3 , ✓1 +
⇡

3 ] is assigned to the leader herder
while the rest of the plane is assigned equally to the
other two herders.

Dynamic peer-to-peer (P2P) target selection strategy
At the beginning of the trial herders are labelled from
1 to NH as in the previous strategy. Denoting as ⇣+

j

the angular di↵erence between the positions of herder
j and herder (j + 1)modNH at time t, and as ⇣�

j
that

between herder j and herder (j + NH � 1)modNH at
time t, then herder j selects the farthest passive agent
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4.2 Target selection strategies

In the case of a single herder chasing multiple agents,
the most common strategy in the literature is for it
to select the target as either the farthest passive agent
from the goal region, or the centre of mass of the flock-
ing herd (Vaughan et al. 2000; Strombom et al. 2014;
Licitra et al. 2017). When two or more herders are in-
volved, the problem is usually solved using a formation
control approach, letting the herders surround the herd
and then drive them towards the goal region (Pierson
and Schwager 2018; Lien et al. 2004). Rather than us-
ing formation control techniques or solving o↵-line or
on-line optimisation problems as in dynamic target as-
signment problems (e.g., Bürger et al. (2011)), here we
present a set of simple, yet e↵ective, target selection
strategies that exploit the spatial distribution of the
herders allowing them to cooperatively select their tar-
gets without requiring any computationally expensive
optimisation problem to be solved on-line.

We present four di↵erent herding strategies, starting
from the simplest case where herders globally look for
the target farthest from the goal region. A graphical
illustration of the four strategies is reported in Fig. 2
for NH = 3 herders.

Global search strategy (no partitioning) Each herder se-
lects the farthest passive agent from the containment
region which is not currently targeted by any other
herder (Fig. 2(a)). Being the simplest possible strat-
egy, we present this strategy for the sake of comparison
only and not for being implemented on real robots.

Static arena partitioning At the beginning of the trial
and for all of its duration, the plane is partitioned inNH

circular sectors of width equal to 2⇡/NH rad centred at
x?. Each herder is then assigned one sector to patrol
and selects the passive agent therein that is farthest
from G (Fig. 2(b)). Note that this is the same herding
strategy used in Nalepka et al. (2017b) for NH = 2
herders.

Dynamic leader-follower (LF) target selection strategy
At the beginning of the trial, herders are labelled from
1 to NH in anticlockwise order starting from a ran-
domly selected herder which is assigned the leader role.
The plane is then partitioned dynamically in di↵erent
regions as follows. The leader starts by selecting the
farthest passive agent from G whose angular position
�̃i,1 is such that
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(a) Global search (b) Static arena partition-
ing

(c) Leader-follower (d) Peer-to-peer

Fig. 2 Graphical representation of the target selection
strategies. Herders are depicted as yellow squares, passive
agents as green balls. The colours in which the game field
is divided correspond to regions assigned to di↵erent herders.
Herder yj is currently chasing target agent x̃i,j , while passive
agent xi is not chased by any herder.

where ✓1 is the angular position of the leader at time
t. Then, all the other follower herders (j = 2, . . . , NH),
in ascending order, select their targets as the passive
agent farthest from G such that
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with ⇣j = 2⇡(j � 1)/NH . As the leader chases the se-
lected target and moves in the plane, the partition de-
scribed above changes dynamically so that a di↵erent
circular sector with constant angular width 2⇡/NH rad
is assigned to each follower at any time instant. In
Fig. 2(c) the case is depicted for NH = 3 in which the
sector (✓1 � ⇡

3 , ✓1 +
⇡

3 ] is assigned to the leader herder
while the rest of the plane is assigned equally to the
other two herders.

Dynamic peer-to-peer (P2P) target selection strategy
At the beginning of the trial herders are labelled from
1 to NH as in the previous strategy. Denoting as ⇣+

j

the angular di↵erence between the positions of herder
j and herder (j + 1)modNH at time t, and as ⇣�

j
that

between herder j and herder (j + NH � 1)modNH at
time t, then herder j selects the farthest passive agent
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4.2 Target selection strategies

In the case of a single herder chasing multiple agents,
the most common strategy in the literature is for it
to select the target as either the farthest passive agent
from the goal region, or the centre of mass of the flock-
ing herd (Vaughan et al. 2000; Strombom et al. 2014;
Licitra et al. 2017). When two or more herders are in-
volved, the problem is usually solved using a formation
control approach, letting the herders surround the herd
and then drive them towards the goal region (Pierson
and Schwager 2018; Lien et al. 2004). Rather than us-
ing formation control techniques or solving o↵-line or
on-line optimisation problems as in dynamic target as-
signment problems (e.g., Bürger et al. (2011)), here we
present a set of simple, yet e↵ective, target selection
strategies that exploit the spatial distribution of the
herders allowing them to cooperatively select their tar-
gets without requiring any computationally expensive
optimisation problem to be solved on-line.

We present four di↵erent herding strategies, starting
from the simplest case where herders globally look for
the target farthest from the goal region. A graphical
illustration of the four strategies is reported in Fig. 2
for NH = 3 herders.

Global search strategy (no partitioning) Each herder se-
lects the farthest passive agent from the containment
region which is not currently targeted by any other
herder (Fig. 2(a)). Being the simplest possible strat-
egy, we present this strategy for the sake of comparison
only and not for being implemented on real robots.

Static arena partitioning At the beginning of the trial
and for all of its duration, the plane is partitioned inNH

circular sectors of width equal to 2⇡/NH rad centred at
x?. Each herder is then assigned one sector to patrol
and selects the passive agent therein that is farthest
from G (Fig. 2(b)). Note that this is the same herding
strategy used in Nalepka et al. (2017b) for NH = 2
herders.

Dynamic leader-follower (LF) target selection strategy
At the beginning of the trial, herders are labelled from
1 to NH in anticlockwise order starting from a ran-
domly selected herder which is assigned the leader role.
The plane is then partitioned dynamically in di↵erent
regions as follows. The leader starts by selecting the
farthest passive agent from G whose angular position
�̃i,1 is such that
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(a) Global search (b) Static arena partition-
ing

(c) Leader-follower (d) Peer-to-peer

Fig. 2 Graphical representation of the target selection
strategies. Herders are depicted as yellow squares, passive
agents as green balls. The colours in which the game field
is divided correspond to regions assigned to di↵erent herders.
Herder yj is currently chasing target agent x̃i,j , while passive
agent xi is not chased by any herder.

where ✓1 is the angular position of the leader at time
t. Then, all the other follower herders (j = 2, . . . , NH),
in ascending order, select their targets as the passive
agent farthest from G such that
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with ⇣j = 2⇡(j � 1)/NH . As the leader chases the se-
lected target and moves in the plane, the partition de-
scribed above changes dynamically so that a di↵erent
circular sector with constant angular width 2⇡/NH rad
is assigned to each follower at any time instant. In
Fig. 2(c) the case is depicted for NH = 3 in which the
sector (✓1 � ⇡

3 , ✓1 +
⇡

3 ] is assigned to the leader herder
while the rest of the plane is assigned equally to the
other two herders.

Dynamic peer-to-peer (P2P) target selection strategy
At the beginning of the trial herders are labelled from
1 to NH as in the previous strategy. Denoting as ⇣+

j

the angular di↵erence between the positions of herder
j and herder (j + 1)modNH at time t, and as ⇣�

j
that

between herder j and herder (j + NH � 1)modNH at
time t, then herder j selects the farthest passive agent



• In this case  the width of the sectors assigned
to each herder is also dynamically changing

as a function of the relative angular distance
between neighboring herders

• Note that in this case the herders can self-determine
their circular sector of interest by just observing
the relative positions of their neighbors

• Hence they dynamically cooperate to decide who herds whom!

Peer-to-peer target selection strategy
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4.2 Target selection strategies

In the case of a single herder chasing multiple agents,
the most common strategy in the literature is for it
to select the target as either the farthest passive agent
from the goal region, or the centre of mass of the flock-
ing herd (Vaughan et al. 2000; Strombom et al. 2014;
Licitra et al. 2017). When two or more herders are in-
volved, the problem is usually solved using a formation
control approach, letting the herders surround the herd
and then drive them towards the goal region (Pierson
and Schwager 2018; Lien et al. 2004). Rather than us-
ing formation control techniques or solving o↵-line or
on-line optimisation problems as in dynamic target as-
signment problems (e.g., Bürger et al. (2011)), here we
present a set of simple, yet e↵ective, target selection
strategies that exploit the spatial distribution of the
herders allowing them to cooperatively select their tar-
gets without requiring any computationally expensive
optimisation problem to be solved on-line.

We present four di↵erent herding strategies, starting
from the simplest case where herders globally look for
the target farthest from the goal region. A graphical
illustration of the four strategies is reported in Fig. 2
for NH = 3 herders.

Global search strategy (no partitioning) Each herder se-
lects the farthest passive agent from the containment
region which is not currently targeted by any other
herder (Fig. 2(a)). Being the simplest possible strat-
egy, we present this strategy for the sake of comparison
only and not for being implemented on real robots.

Static arena partitioning At the beginning of the trial
and for all of its duration, the plane is partitioned inNH

circular sectors of width equal to 2⇡/NH rad centred at
x?. Each herder is then assigned one sector to patrol
and selects the passive agent therein that is farthest
from G (Fig. 2(b)). Note that this is the same herding
strategy used in Nalepka et al. (2017b) for NH = 2
herders.

Dynamic leader-follower (LF) target selection strategy
At the beginning of the trial, herders are labelled from
1 to NH in anticlockwise order starting from a ran-
domly selected herder which is assigned the leader role.
The plane is then partitioned dynamically in di↵erent
regions as follows. The leader starts by selecting the
farthest passive agent from G whose angular position
�̃i,1 is such that
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(a) Global search (b) Static arena partition-
ing

(c) Leader-follower (d) Peer-to-peer

Fig. 2 Graphical representation of the target selection
strategies. Herders are depicted as yellow squares, passive
agents as green balls. The colours in which the game field
is divided correspond to regions assigned to di↵erent herders.
Herder yj is currently chasing target agent x̃i,j , while passive
agent xi is not chased by any herder.

where ✓1 is the angular position of the leader at time
t. Then, all the other follower herders (j = 2, . . . , NH),
in ascending order, select their targets as the passive
agent farthest from G such that
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with ⇣j = 2⇡(j � 1)/NH . As the leader chases the se-
lected target and moves in the plane, the partition de-
scribed above changes dynamically so that a di↵erent
circular sector with constant angular width 2⇡/NH rad
is assigned to each follower at any time instant. In
Fig. 2(c) the case is depicted for NH = 3 in which the
sector (✓1 � ⇡

3 , ✓1 +
⇡

3 ] is assigned to the leader herder
while the rest of the plane is assigned equally to the
other two herders.

Dynamic peer-to-peer (P2P) target selection strategy
At the beginning of the trial herders are labelled from
1 to NH as in the previous strategy. Denoting as ⇣+

j

the angular di↵erence between the positions of herder
j and herder (j + 1)modNH at time t, and as ⇣�

j
that

between herder j and herder (j + NH � 1)modNH at
time t, then herder j selects the farthest passive agent
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from G whose angular position is such that
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Unlike the previous case, now the width of the circu-
lar sector assigned to each herder is also dynamically
changing as it depends on the relative angular positions
of the herders in the plane.

The idling angle  in (8) is set equal to the angular
position �̃i,j of the last contained target for the global
search strategy, otherwise it is set equal to the angular
position corresponding to the half of the angular sector
assigned at each time to the herder. In so doing, the
herder is made to rest at a point in which its angular
distance is minimised from any passive agent escaping
the containment region into the assigned angular sector.

A crucial di↵erence between the herding strategies
presented above is the nature (local vs global) and amount
of information that herders must possess to select their
next target. Specifically, when the global search strategy
is used, every herder needs to know the position xi of
every passive agent in the plane, not currently targeted
by other herders. In the case of the static arena par-
titioning instead a herder needs to know its assigned
(constant) circular sector together with the position xi

of every passive agent in the sector.
For the dynamic target selection strategies, less in-

formation is generally required. Indeed, in the dynamic
leader-follower strategy the herders, knowing NH , can
either self-select the sector assigned to themselves (if
they act as leader) or self-determine their respective
sector by knowing the position of the leader y1. Sim-
ilarly in the dynamic peer-to-peer strategy herders can
self-select their sectors by using the angles ⇣+

j
and ⇣�

j
.

Note that in the event of perfect radial alignment of
the herder and its target, the herder might push the tar-
get away, rather than towards the goal region (Fig. 3).
Although this condition is very unlikely to persist due
to the random motion of the passive agents, this prob-
lem can be avoided by extending the herder dynamics
in (1) by a circumnavigation force u?

j
(t). This force is

orthogonal to the vector �xij = xi � yj , and its am-
plitude depends on the angle �ij between �xij and
yj , such that it is maximum when the two vectors are
parallel (�ij = 0) and zero when they are anti-parallel
(�ij = ⇡). Specifically, it is defined as:

u?
j
(t) = Ū · v(t) · cos2

⇣�ij

2

⌘ �x?
ij

k�xijk
, (9)

where Ū > 0 is the maximum amplitude, and v 2
{�1, 1}, whose value depends on which halves of the
assigned sector the herder is currently in to guarantee

(a)

(b) (c)

Fig. 3 Graphical representation of circumnavigation force
u?
j
(t) in the case that herder and its target are not aligned

(panel a, �ij 2 (0,⇡)) and in the case the herder is perfectly
aligned behind (panel b, �ij = ⇡) or ahead (panel c, �ij = 0)
of the passive agent w.r.t. the containment region G.

that the target agent is always pushed toward the inte-
rior of the sector.

5 Numerical validation

The herding performance of the proposed control strate-
gies has been evaluated through a set of numerical ex-
periments aimed at (i) assessing their e↵ectiveness in
achieving the herding goal; (ii) comparing the use of
di↵erent target selection strategies; (iii) studying the
robustness of each strategy to parameter variations.
The implementation and validation of the strategies in
a more realistic robotic environment is reported in the
next section where ROS simulations are included.

5.1 Performance Metrics

We defined the following metrics (see Appendix A for
their definitions) to evaluate the performance of dif-
ferent strategies. Specifically, for each of the proposed
strategies we computed the (i) gathering time tg, (ii) the
average length dg of the path travelled by the herders
until all targets are contained, (iii) the average total
length dtot of the path travelled by herders during all
the herding trial, (iv) the mean distance DT between



• Our strategy consists therefore of local control laws driving the dynamics of each 
herder and a target selection strategy allowing them to somehow cooperate

The resulting herding strategy



• We validated our herding strategy via both numerical simulation and experiments

Experimental validation

Sean Wilson, et al., "The Robotarium […]" in IEEE Control Systems Magazine, vol. 40, no. 1, pp. 26-44, Feb. 2020.

CHAPTER 3. LOCAL CONTROL RULES AND DYNAMIC TARGET SELECTION STRATEGIES

(a) (b) (c)

(d) (e) (f)

Figure 3.6: ROS simulations. Top panels show the trajectories of target agents (green lines) and
herders (grey lines) adopting (a) static arena partitioning, (b) leader-follower and (c) peer-to-peer
herding strategies simulated in the Gazebo environment. The containment region G is depicted as a
red circle. Black square marks denote the initial and the final (solid coloured) position of the herders.
Green circle marks show the initial and the final (solid coloured) position of the target agents. Bot-
tom panels show that all herders are able to collect the herd in less than 500s by following the an-
gular bounds (red lines) prescribed by the (d) static arena partitioning, (e) leader-follower and (f)
peer-to-peer herding strategies.

3.5.2 Robotarium experiments

Robotarium is a remotely accessible swarm robotics research platform equipped with GRITSBot

robots which allows rapid deployment and testing of custom control algorithms [119, 169]. To com-

ply with the limited space of the arena (3.2m £ 2m) and safety protocols to avoid collisions be-

tween robots (robots’ diameter is 11cm) implemented in the platform, we considered a scenario

with NT = 4 target robots and NH = 2 herder robots; a herding scenario that was also considered in

[8, 129] to study and model the selection strategies adopted by pairs of human-driven herder agents.

Herder parameters were selected as described in Appendix B.2, while the coefficient of diffusion

and repulsion in the dynamics of passive agents (3.3) were scaled to (Æb ,Ær ) = (0.001,0.4) to comply

with the physical constraints on the hardware of the GRITBots; having a max tangential speed of

20cm/s and a max rotational speed of about 3.6rad/s.
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Global Static LF P2P
NH = 2
tg [a.u.] 8.5±1.5 15.2±9.6 15.3±9.2 13.3±6.2
dg [a.u.] 139±34 102±42 92±49 143±53
dtot [a.u.] 841±27 493±51 423±29 418±56
DT [a.u.] 1.3±0.1 1.4±0.6 1.5±0.6 1.3±0.5
S% [%] 0.1±0.05 0.2±0.1 0.2±0.2 0.2±0.1
NH = 3
tg [a.u.] 5.8±0.9 11.2±7.9 11.2±8.7 8.3±5.6
dg [a.u.] 88±21 107±98 84±74 58±43
dtot [a.u.] 1242±26 757±67 885±56 950±79
DT [a.u.] 0.6±0.1 0.9±0.5 0.8±0.3 0.7±0.1
S% [%] 0.1±0.03 0.2±0.2 0.2±0.2 0.2±0.3

Table 1 Average performance and standard deviation over
50 successful trials of di↵erent herding strategies for NT = 7
passive agents.

the herd’s centre of mass and the centre of the contain-
ment region, and (v) the herd agents’ spread S%.

Note that lower values of tg correspond to better
herding performance; herders taking a shorter time to
gather all the passive agents in the goal region. Also,
lower values of DT and S% correspond to a tighter con-
tainment of the passive agents in the goal region while
lower values of dg and dtot correspond to a more e�-
cient herding capability of the herders during the gath-
ering and containment of the herd.

5.2 Performance analysis

We carried out 50 simulation trials with NT = 7 pas-
sive agents and eitherNH = 2 orNH = 3 herders, start-
ing from random initial conditions. All simulation trials
were found to be successful, that is, such that condition
(2) is verified. (All simulation parameters and the de-
scription of simulation setup adopted here are reported
in Appendix B.)

The results of our numerical investigation are re-
ported in Tab. 1. As expected, when herders search
globally for agents to chase, their average total path,
dtot, is notably larger than when dynamic target selec-
tion strategies are used, pointing out that this strategy
is going to be the least e�cient when implemented and
also requiring complete information about the agents.
Therefore, in what follows we will discuss this strat-
egy only for the sake of completeness and not for the
purpose of its implementation.

As regards the aggregation of the herd in terms of
DT and S%, all other strategies presented compara-
ble results in terms of both mean and standard devia-
tion. Dynamic strategies showed better gathering per-
formance (tg and dg) than the static arena partitioning.
Therefore, we find that in general higher level of coop-
eration between herders and a more e�cient coverage of

(a) Gathering time tg. Lower values correspond to faster herd-
ing.

(b) Total distance travelled dtot. Lower values correspond to
more e�cient herding.

Fig. 4 Robustness analysis of the proposed herding strate-
gies for two herders (NH = 2) to variation of herd size NT

and repulsive reaction coe�cient ↵r. NT was varied between
3 and 60 agents, with increments equal to 3, while ↵r be-
tween 0.05 and 2.5, with increments equal to 0.05. For each
pair (NT , ↵r) the corresponding metric was averaged over 15
simulation trials starting with random initial positions. The
coloured plots were obtained by interpolation of the computed
values.

the plane, as those guaranteed by dynamic strategies,
yield an overall better herding performance which is
more suitable for realistic implementations in robots or
virtual agents that are bound to move at limited speed.

5.3 Robustness analysis

Next, we analysed the robustness of the proposed herd-
ing strategies to variations of the herd size and of the
magnitude of the repulsive reaction to the herders ex-
hibited by the passive agents (Fig. 4). Specifically, we
varied NT between 3 and 60 and the repulsion pa-
rameter ↵r in (4) between 0.05 and 2.5, while keeping
NH = 2; we found that all strategies succeed in herding
up to 60 agents in a large region of parameter values
(see the blue areas in Fig. 4(a)). The global strategy,
where herders patrol the entire plane, is found as ex-
pected to be the least e�cient in terms of total distance
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Unlike the previous case, now the width of the circu-
lar sector assigned to each herder is also dynamically
changing as it depends on the relative angular positions
of the herders in the plane.

The idling angle  in (8) is set equal to the angular
position �̃i,j of the last contained target for the global
search strategy, otherwise it is set equal to the angular
position corresponding to the half of the angular sector
assigned at each time to the herder. In so doing, the
herder is made to rest at a point in which its angular
distance is minimised from any passive agent escaping
the containment region into the assigned angular sector.

A crucial di↵erence between the herding strategies
presented above is the nature (local vs global) and amount
of information that herders must possess to select their
next target. Specifically, when the global search strategy
is used, every herder needs to know the position xi of
every passive agent in the plane, not currently targeted
by other herders. In the case of the static arena par-
titioning instead a herder needs to know its assigned
(constant) circular sector together with the position xi

of every passive agent in the sector.
For the dynamic target selection strategies, less in-

formation is generally required. Indeed, in the dynamic
leader-follower strategy the herders, knowing NH , can
either self-select the sector assigned to themselves (if
they act as leader) or self-determine their respective
sector by knowing the position of the leader y1. Sim-
ilarly in the dynamic peer-to-peer strategy herders can
self-select their sectors by using the angles ⇣+

j
and ⇣�

j
.

Note that in the event of perfect radial alignment of
the herder and its target, the herder might push the tar-
get away, rather than towards the goal region (Fig. 3).
Although this condition is very unlikely to persist due
to the random motion of the passive agents, this prob-
lem can be avoided by extending the herder dynamics
in (1) by a circumnavigation force u?

j
(t). This force is

orthogonal to the vector �xij = xi � yj , and its am-
plitude depends on the angle �ij between �xij and
yj , such that it is maximum when the two vectors are
parallel (�ij = 0) and zero when they are anti-parallel
(�ij = ⇡). Specifically, it is defined as:

u?
j
(t) = Ū · v(t) · cos2

⇣�ij

2

⌘ �x?
ij

k�xijk
, (9)

where Ū > 0 is the maximum amplitude, and v 2
{�1, 1}, whose value depends on which halves of the
assigned sector the herder is currently in to guarantee

(a)

(b) (c)

Fig. 3 Graphical representation of circumnavigation force
u?
j
(t) in the case that herder and its target are not aligned

(panel a, �ij 2 (0,⇡)) and in the case the herder is perfectly
aligned behind (panel b, �ij = ⇡) or ahead (panel c, �ij = 0)
of the passive agent w.r.t. the containment region G.

that the target agent is always pushed toward the inte-
rior of the sector.

5 Numerical validation

The herding performance of the proposed control strate-
gies has been evaluated through a set of numerical ex-
periments aimed at (i) assessing their e↵ectiveness in
achieving the herding goal; (ii) comparing the use of
di↵erent target selection strategies; (iii) studying the
robustness of each strategy to parameter variations.
The implementation and validation of the strategies in
a more realistic robotic environment is reported in the
next section where ROS simulations are included.

5.1 Performance Metrics

We defined the following metrics (see Appendix A for
their definitions) to evaluate the performance of dif-
ferent strategies. Specifically, for each of the proposed
strategies we computed the (i) gathering time tg, (ii) the
average length dg of the path travelled by the herders
until all targets are contained, (iii) the average total
length dtot of the path travelled by herders during all
the herding trial, (iv) the mean distance DT between
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Unlike the previous case, now the width of the circu-
lar sector assigned to each herder is also dynamically
changing as it depends on the relative angular positions
of the herders in the plane.

The idling angle  in (8) is set equal to the angular
position �̃i,j of the last contained target for the global
search strategy, otherwise it is set equal to the angular
position corresponding to the half of the angular sector
assigned at each time to the herder. In so doing, the
herder is made to rest at a point in which its angular
distance is minimised from any passive agent escaping
the containment region into the assigned angular sector.

A crucial di↵erence between the herding strategies
presented above is the nature (local vs global) and amount
of information that herders must possess to select their
next target. Specifically, when the global search strategy
is used, every herder needs to know the position xi of
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formation is generally required. Indeed, in the dynamic
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sector by knowing the position of the leader y1. Sim-
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Note that in the event of perfect radial alignment of
the herder and its target, the herder might push the tar-
get away, rather than towards the goal region (Fig. 3).
Although this condition is very unlikely to persist due
to the random motion of the passive agents, this prob-
lem can be avoided by extending the herder dynamics
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that the target agent is always pushed toward the inte-
rior of the sector.

5 Numerical validation

The herding performance of the proposed control strate-
gies has been evaluated through a set of numerical ex-
periments aimed at (i) assessing their e↵ectiveness in
achieving the herding goal; (ii) comparing the use of
di↵erent target selection strategies; (iii) studying the
robustness of each strategy to parameter variations.
The implementation and validation of the strategies in
a more realistic robotic environment is reported in the
next section where ROS simulations are included.

5.1 Performance Metrics

We defined the following metrics (see Appendix A for
their definitions) to evaluate the performance of dif-
ferent strategies. Specifically, for each of the proposed
strategies we computed the (i) gathering time tg, (ii) the
average length dg of the path travelled by the herders
until all targets are contained, (iii) the average total
length dtot of the path travelled by herders during all
the herding trial, (iv) the mean distance DT between
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Global Static LF P2P
NH = 2
tg [a.u.] 8.5±1.5 15.2±9.6 15.3±9.2 13.3±6.2
dg [a.u.] 139±34 102±42 92±49 143±53
dtot [a.u.] 841±27 493±51 423±29 418±56
DT [a.u.] 1.3±0.1 1.4±0.6 1.5±0.6 1.3±0.5
S% [%] 0.1±0.05 0.2±0.1 0.2±0.2 0.2±0.1
NH = 3
tg [a.u.] 5.8±0.9 11.2±7.9 11.2±8.7 8.3±5.6
dg [a.u.] 88±21 107±98 84±74 58±43
dtot [a.u.] 1242±26 757±67 885±56 950±79
DT [a.u.] 0.6±0.1 0.9±0.5 0.8±0.3 0.7±0.1
S% [%] 0.1±0.03 0.2±0.2 0.2±0.2 0.2±0.3

Table 1 Average performance and standard deviation over
50 successful trials of di↵erent herding strategies for NT = 7
passive agents.

the herd’s centre of mass and the centre of the contain-
ment region, and (v) the herd agents’ spread S%.

Note that lower values of tg correspond to better
herding performance; herders taking a shorter time to
gather all the passive agents in the goal region. Also,
lower values of DT and S% correspond to a tighter con-
tainment of the passive agents in the goal region while
lower values of dg and dtot correspond to a more e�-
cient herding capability of the herders during the gath-
ering and containment of the herd.

5.2 Performance analysis

We carried out 50 simulation trials with NT = 7 pas-
sive agents and eitherNH = 2 orNH = 3 herders, start-
ing from random initial conditions. All simulation trials
were found to be successful, that is, such that condition
(2) is verified. (All simulation parameters and the de-
scription of simulation setup adopted here are reported
in Appendix B.)

The results of our numerical investigation are re-
ported in Tab. 1. As expected, when herders search
globally for agents to chase, their average total path,
dtot, is notably larger than when dynamic target selec-
tion strategies are used, pointing out that this strategy
is going to be the least e�cient when implemented and
also requiring complete information about the agents.
Therefore, in what follows we will discuss this strat-
egy only for the sake of completeness and not for the
purpose of its implementation.

As regards the aggregation of the herd in terms of
DT and S%, all other strategies presented compara-
ble results in terms of both mean and standard devia-
tion. Dynamic strategies showed better gathering per-
formance (tg and dg) than the static arena partitioning.
Therefore, we find that in general higher level of coop-
eration between herders and a more e�cient coverage of

(a) Gathering time tg. Lower values correspond to faster herd-
ing.

(b) Total distance travelled dtot. Lower values correspond to
more e�cient herding.

Fig. 4 Robustness analysis of the proposed herding strate-
gies for two herders (NH = 2) to variation of herd size NT

and repulsive reaction coe�cient ↵r. NT was varied between
3 and 60 agents, with increments equal to 3, while ↵r be-
tween 0.05 and 2.5, with increments equal to 0.05. For each
pair (NT , ↵r) the corresponding metric was averaged over 15
simulation trials starting with random initial positions. The
coloured plots were obtained by interpolation of the computed
values.

the plane, as those guaranteed by dynamic strategies,
yield an overall better herding performance which is
more suitable for realistic implementations in robots or
virtual agents that are bound to move at limited speed.

5.3 Robustness analysis

Next, we analysed the robustness of the proposed herd-
ing strategies to variations of the herd size and of the
magnitude of the repulsive reaction to the herders ex-
hibited by the passive agents (Fig. 4). Specifically, we
varied NT between 3 and 60 and the repulsion pa-
rameter ↵r in (4) between 0.05 and 2.5, while keeping
NH = 2; we found that all strategies succeed in herding
up to 60 agents in a large region of parameter values
(see the blue areas in Fig. 4(a)). The global strategy,
where herders patrol the entire plane, is found as ex-
pected to be the least e�cient in terms of total distance
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lar sector assigned to each herder is also dynamically
changing as it depends on the relative angular positions
of the herders in the plane.

The idling angle  in (8) is set equal to the angular
position �̃i,j of the last contained target for the global
search strategy, otherwise it is set equal to the angular
position corresponding to the half of the angular sector
assigned at each time to the herder. In so doing, the
herder is made to rest at a point in which its angular
distance is minimised from any passive agent escaping
the containment region into the assigned angular sector.

A crucial di↵erence between the herding strategies
presented above is the nature (local vs global) and amount
of information that herders must possess to select their
next target. Specifically, when the global search strategy
is used, every herder needs to know the position xi of
every passive agent in the plane, not currently targeted
by other herders. In the case of the static arena par-
titioning instead a herder needs to know its assigned
(constant) circular sector together with the position xi

of every passive agent in the sector.
For the dynamic target selection strategies, less in-

formation is generally required. Indeed, in the dynamic
leader-follower strategy the herders, knowing NH , can
either self-select the sector assigned to themselves (if
they act as leader) or self-determine their respective
sector by knowing the position of the leader y1. Sim-
ilarly in the dynamic peer-to-peer strategy herders can
self-select their sectors by using the angles ⇣+
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.

Note that in the event of perfect radial alignment of
the herder and its target, the herder might push the tar-
get away, rather than towards the goal region (Fig. 3).
Although this condition is very unlikely to persist due
to the random motion of the passive agents, this prob-
lem can be avoided by extending the herder dynamics
in (1) by a circumnavigation force u?
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(t). This force is

orthogonal to the vector �xij = xi � yj , and its am-
plitude depends on the angle �ij between �xij and
yj , such that it is maximum when the two vectors are
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Fig. 3 Graphical representation of circumnavigation force
u?
j
(t) in the case that herder and its target are not aligned

(panel a, �ij 2 (0,⇡)) and in the case the herder is perfectly
aligned behind (panel b, �ij = ⇡) or ahead (panel c, �ij = 0)
of the passive agent w.r.t. the containment region G.

that the target agent is always pushed toward the inte-
rior of the sector.

5 Numerical validation

The herding performance of the proposed control strate-
gies has been evaluated through a set of numerical ex-
periments aimed at (i) assessing their e↵ectiveness in
achieving the herding goal; (ii) comparing the use of
di↵erent target selection strategies; (iii) studying the
robustness of each strategy to parameter variations.
The implementation and validation of the strategies in
a more realistic robotic environment is reported in the
next section where ROS simulations are included.

5.1 Performance Metrics

We defined the following metrics (see Appendix A for
their definitions) to evaluate the performance of dif-
ferent strategies. Specifically, for each of the proposed
strategies we computed the (i) gathering time tg, (ii) the
average length dg of the path travelled by the herders
until all targets are contained, (iii) the average total
length dtot of the path travelled by herders during all
the herding trial, (iv) the mean distance DT between
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A Performance Metrics

Denote with X (t) := {i : kxi(t)� x
?k  r?} the set of pas-

sive agents which are contained within the goal region G at
time t. Moreover, denote with [0, T ] the time interval over
which the performance metrics are evaluated. The following
metrics are used in the paper to evaluate the proposed herd-
ing strategies.

Gathering time defined as the time instant tg 2 [0, T ]
such that condition (2) holds, that is, all the passive agents
are in the containment region for all t � tg.

Distance travelled by the herders which measures
the mean in time and among herders of the distance travelled
by the herders during the time interval [0, t]. It is defined as

d(t) :=
1
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Therefore, dg := d(tg), and dtot := d(T ). A smaller average
distance travelled indicates better e�ciency of the herders in
solving the task.

Herd distance from containment region which mea-
sures the herders ability to keep the herd close to the contain-
ment region, with centre x

?. It is defined as the mean in time
of the Euclidean distance between the centre of mass of the
herd and the centre of the containment region, that is

DT :=
1

T

Z
T

0

�����

 
1

NT

NTX

i=1

xi(⌧)

!
� x

?(⌧)

����� d⌧.

A smaller average distance indicates better ability of the
herders to keep the herd close to the containment region.

Herd spread measuring how much scattered the herd
is in the game field. Denote as Pol(t) the convex polygon
defined by the convex hull of the points xi at time t, that
is, Pol(t) := Conv ({xi(t), i = 1, . . . , NT }). Then, the herd
spread S is defined as the mean in time of the area of this
polygon, that is

S :=
1

T

Z
T

0

 Z

Pol(⌧)

dx

!
d⌧.

Lower values corresponds to a more cohesive herd and con-
sequently better herding performance. The herd spread can
also be evaluated with respect to the area of the containment
region, Acr = ⇡(r?)2, as S% = S/Acr · 100.

B MATLAB simulations

In all simulations we considered the case of NH = 2 or NH =
3 artificial herders and NT = 7 passive agents. Moreover, we
considered a circular containment region with radius r? = 1,
centred in x

? = 0, and a bu↵er region of width �r? = 1. The
numerical integration of the di↵erential equations describing
the dynamics of passive agents and herders has been realised
using Euler-Maruyama method (Higham 2001) in the time
interval [0, T ] = [0, 100] s with step size dt = 0.006 s, while the
herder agents compute their next target-to-be-chased each
tdwell = 50 dt s.
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A Performance Metrics

Denote with X (t) := {i : kxi(t)� x
?k  r?} the set of pas-

sive agents which are contained within the goal region G at
time t. Moreover, denote with [0, T ] the time interval over
which the performance metrics are evaluated. The following
metrics are used in the paper to evaluate the proposed herd-
ing strategies.

Gathering time defined as the time instant tg 2 [0, T ]
such that condition (2) holds, that is, all the passive agents
are in the containment region for all t � tg.

Distance travelled by the herders which measures
the mean in time and among herders of the distance travelled
by the herders during the time interval [0, t]. It is defined as

d(t) :=
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Therefore, dg := d(tg), and dtot := d(T ). A smaller average
distance travelled indicates better e�ciency of the herders in
solving the task.

Herd distance from containment region which mea-
sures the herders ability to keep the herd close to the contain-
ment region, with centre x

?. It is defined as the mean in time
of the Euclidean distance between the centre of mass of the
herd and the centre of the containment region, that is
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A smaller average distance indicates better ability of the
herders to keep the herd close to the containment region.

Herd spread measuring how much scattered the herd
is in the game field. Denote as Pol(t) the convex polygon
defined by the convex hull of the points xi at time t, that
is, Pol(t) := Conv ({xi(t), i = 1, . . . , NT }). Then, the herd
spread S is defined as the mean in time of the area of this
polygon, that is

S :=
1
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Lower values corresponds to a more cohesive herd and con-
sequently better herding performance. The herd spread can
also be evaluated with respect to the area of the containment
region, Acr = ⇡(r?)2, as S% = S/Acr · 100.

B MATLAB simulations

In all simulations we considered the case of NH = 2 or NH =
3 artificial herders and NT = 7 passive agents. Moreover, we
considered a circular containment region with radius r? = 1,
centred in x

? = 0, and a bu↵er region of width �r? = 1. The
numerical integration of the di↵erential equations describing
the dynamics of passive agents and herders has been realised
using Euler-Maruyama method (Higham 2001) in the time
interval [0, T ] = [0, 100] s with step size dt = 0.006 s, while the
herder agents compute their next target-to-be-chased each
tdwell = 50 dt s.
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sive agents which are contained within the goal region G at
time t. Moreover, denote with [0, T ] the time interval over
which the performance metrics are evaluated. The following
metrics are used in the paper to evaluate the proposed herd-
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Gathering time defined as the time instant tg 2 [0, T ]
such that condition (2) holds, that is, all the passive agents
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defined by the convex hull of the points xi at time t, that
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sequently better herding performance. The herd spread can
also be evaluated with respect to the area of the containment
region, Acr = ⇡(r?)2, as S% = S/Acr · 100.

B MATLAB simulations

In all simulations we considered the case of NH = 2 or NH =
3 artificial herders and NT = 7 passive agents. Moreover, we
considered a circular containment region with radius r? = 1,
centred in x

? = 0, and a bu↵er region of width �r? = 1. The
numerical integration of the di↵erential equations describing
the dynamics of passive agents and herders has been realised
using Euler-Maruyama method (Higham 2001) in the time
interval [0, T ] = [0, 100] s with step size dt = 0.006 s, while the
herder agents compute their next target-to-be-chased each
tdwell = 50 dt s.
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(a) Global task division (b) Static task division

(c) Leader-follower task division (d) Peer-to-peer task division

Fig. 4. Graphical representation of the task division strategies. Herders
are depicted as yellow squares, targets as green balls. The colours in
which the game field is divided correspond to regions assigned to
different herders. Herder y(j) is currently chasing target agent x̃(i,j),
while target x(i) is not chased by any herder. DF: La figura d è

sbagliata, la linea di separazione è proprio la bisettrice, e non la

perpendicolare alla bisettrice. Valutiamo anche di disegnare il caso

NH = 3 perché può far mettere in luce il fatto che nella strategia c,

solo il leader è centrato nel suo settore (gli altri possono addirittura

trovarsi per sbaglio in settori altrui), mentre nella strategia d

questo non avviene mai e tutti gli herder sono centrati.

static division of the game field. The performance have
been compared using the same metrics as in Sec. III
(see Appendix VI-B) evaluated on fully successful trials
among a total of 50 trials carried out for each strategy.

The numerical results in Tab. IV show that the four
strategies lead to comparable herding performance. Nev-
ertheless, herders adopting dynamic strategies keep tar-
gets contained longer (higher �tin) and more aggregated
(lower S) with respect to the static strategy.

The herding behavioural-classification in Tab. V con-
firms that COC behaviours emerge in presence of con-
certed strategies, while it is absent when there is no game
field division, as in the simple global search where only
S&R behaviours are observed.

The novel proposed dynamic strategies led to the
emergence of both herding behaviour with a prepon-
derance of oscillating behaviour in herders adopting the
leader-follower strategy and of non-oscillating behaviour
in herders cooperatively dividing the task space as in
the peer-to-peer strategy (See Fig. 5 for an example of

TABLE IV
PERFORMANCE OF HERDERS IN DIFFERENT TASK DIVISION

STRATEGIES

�tin[s] I%[%] D[a.u.] S[a.u.2]
Global 58 58 0.6 9.7e-4
Static 53.26 55 0.63 0.0062
Leader-follower t.d. 59.61 57.4 0.62 0.0044
Peer-to-peer 55.78 55.9 0.62 0.0036

TABLE V
EMERGING BEHAVIOUR FROM HERDERS IN DIFFERENT TASK

DIVISION STRATEGIES

S&R COC
Global 100% 0%
Static 0% 100%
Leader-follower 12% 88%
Peer-to-peer 68% 32%

spectral classification).
Therefore, it appears that the presence of a leader

(either external to the herders as in the static strategy
or internal to them as in the dynamic leader-follower
strategy), that assigns (directly or indirectly, respectively)
to the herder in which part of the game field they have to
search the next target, promotes the onset of oscillatory
behaviours. This may be due to a disadvantageous divi-
sion of the game field that forces the herders to move
around more than in more balanced scenarios.

DF: Sono però comunque convinto che la peer-to-

peer debba avere performance migliori perché divide

lo spazio in modo tale che gli herder si muovono il

meno possibile. Mi sembra strano non sia uscito questo

risultato dalle simulazioni.

VI. CONCLUSIONS

TO DO

APPENDIX
A. Numerical simulations

In all simulations we considered the case of NH = 2

herders and NT = 7 targets. Moreover, we considered
a circular containment region with radius r? = 1 and
a buffer region of width �r? = 1.0005. The numerical
integration of the differential equations describing the
dynamics of targets and herders has been realised using
Euler-Maruyama method [19] in the time interval [0, T ]
with step size dt = 0.006 s and T = 120 s.

The herders dynamics have been simulated with
the same parameters for all four dynamical models
presented in Sections III and IV. Specifically, the values
of all parameters have been chosen according to [16].
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Global Static LF P2P
NH = 2
tg [a.u.] 8.5±1.5 15.2±9.6 15.3±9.2 13.3±6.2
dg [a.u.] 139±34 102±42 92±49 143±53
dtot [a.u.] 841±27 493±51 423±29 418±56
DT [a.u.] 1.3±0.1 1.4±0.6 1.5±0.6 1.3±0.5
S% [%] 0.1±0.05 0.2±0.1 0.2±0.2 0.2±0.1
NH = 3
tg [a.u.] 5.8±0.9 11.2±7.9 11.2±8.7 8.3±5.6
dg [a.u.] 88±21 107±98 84±74 58±43
dtot [a.u.] 1242±26 757±67 885±56 950±79
DT [a.u.] 0.6±0.1 0.9±0.5 0.8±0.3 0.7±0.1
S% [%] 0.1±0.03 0.2±0.2 0.2±0.2 0.2±0.3

Table 1 Average performance and standard deviation over
50 successful trials of di↵erent herding strategies for NT = 7
passive agents.

the herd’s centre of mass and the centre of the contain-
ment region, and (v) the herd agents’ spread S%.

Note that lower values of tg correspond to better
herding performance; herders taking a shorter time to
gather all the passive agents in the goal region. Also,
lower values of DT and S% correspond to a tighter con-
tainment of the passive agents in the goal region while
lower values of dg and dtot correspond to a more e�-
cient herding capability of the herders during the gath-
ering and containment of the herd.

5.2 Performance analysis

We carried out 50 simulation trials with NT = 7 pas-
sive agents and eitherNH = 2 orNH = 3 herders, start-
ing from random initial conditions. All simulation trials
were found to be successful, that is, such that condition
(2) is verified. (All simulation parameters and the de-
scription of simulation setup adopted here are reported
in Appendix B.)

The results of our numerical investigation are re-
ported in Tab. 1. As expected, when herders search
globally for agents to chase, their average total path,
dtot, is notably larger than when dynamic target selec-
tion strategies are used, pointing out that this strategy
is going to be the least e�cient when implemented and
also requiring complete information about the agents.
Therefore, in what follows we will discuss this strat-
egy only for the sake of completeness and not for the
purpose of its implementation.

As regards the aggregation of the herd in terms of
DT and S%, all other strategies presented compara-
ble results in terms of both mean and standard devia-
tion. Dynamic strategies showed better gathering per-
formance (tg and dg) than the static arena partitioning.
Therefore, we find that in general higher level of coop-
eration between herders and a more e�cient coverage of

(a) Gathering time tg. Lower values correspond to faster herd-
ing.

(b) Total distance travelled dtot. Lower values correspond to
more e�cient herding.

Fig. 4 Robustness analysis of the proposed herding strate-
gies for two herders (NH = 2) to variation of herd size NT

and repulsive reaction coe�cient ↵r. NT was varied between
3 and 60 agents, with increments equal to 3, while ↵r be-
tween 0.05 and 2.5, with increments equal to 0.05. For each
pair (NT , ↵r) the corresponding metric was averaged over 15
simulation trials starting with random initial positions. The
coloured plots were obtained by interpolation of the computed
values.

the plane, as those guaranteed by dynamic strategies,
yield an overall better herding performance which is
more suitable for realistic implementations in robots or
virtual agents that are bound to move at limited speed.

5.3 Robustness analysis

Next, we analysed the robustness of the proposed herd-
ing strategies to variations of the herd size and of the
magnitude of the repulsive reaction to the herders ex-
hibited by the passive agents (Fig. 4). Specifically, we
varied NT between 3 and 60 and the repulsion pa-
rameter ↵r in (4) between 0.05 and 2.5, while keeping
NH = 2; we found that all strategies succeed in herding
up to 60 agents in a large region of parameter values
(see the blue areas in Fig. 4(a)). The global strategy,
where herders patrol the entire plane, is found as ex-
pected to be the least e�cient in terms of total distance



• We were able to solve the herding problem via a set of simpler local rules driving 
the individual herders’ behaviour.. 

• ..complemented by target selection rules 

• Still we assumed global rather than limited sensing 
of the herders

• What if the herders only possess limited sensing?

• How many targets can they shepherd?

To summarize
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FIG. 1. Representative snapshots of the system configuration
(with herders represented by blue diamonds and targets by
magenta circles) at (a) the initial time t = 0 with the agents
uniformly distributed in ⌦0 (yellow shaded disk), (b) at an in-
termediate time during shepherding control when herders sur-
round all targets and (c) when the task is successfully achieved
with all the targets in ⌦G (dark blue circle). (d) Schematic
of the herders’ and targets’ sensing (magenta shaded disks)
and repulsion (blue shaded disk) regions of radius ⇠ and �

respectively. The solid black arrows represent the direction of
motion of the herders when moving in the absence of nearby
targets (H1), selecting the target to chase T⇤ with the largest
distance from to goal (H2), or when the herder pushes a se-
lected target towards the goal region (H3).

ature on control and controllability of complex systems
(see e.g. [21] and references therein).

We consider the shepherding problem in R2 (see Fig.
1a), where N herders have to corral M targets to a goal
region ⌦G. We assume that both the herders and the
targets are initially randomly and uniformly distributed
in a circle ⌦0 of radius R, and that the ⌦G region is a
circle of radius r⇤ < R; both ⌦0 and ⌦G being centered
around the origin. Let H 2 R2N be the vector of the
herders’ positions H = [H1, H2, ..., HN ] with Hi 2 R2

being the Cartesian coordinates of the i-th herder, i =
1, ..., N , and T 2 R2M the vector of the targets’ positions
T = [T1, T2, ..., TM ], with Ta 2 R2 being the Cartesian
coordinates of target a, a = 1, ...,M .

We assume the targets do not exhibt any type of cohe-
sive collective behaviour with their dynamics being de-
scribed by the following overdamped Langevin equation:

Ṫa =
p
2DN + �

X

i2Na

(�� |dia|) d̂ia (1)

where, analogously to what typically considered in the lit-
erature on soft matter, e.g. [18, 19, 22], N is white Gaus-
sian noise, � and D are positive constants, dia = Hi�Ta

is the vector of the di↵erence between the position of
herder i and target a, � > 0 is the radius of the region
where targets are repelled by nearby herders, andNa rep-
resents the set of indexes of all the herders, if any, whose
positions are such that |dia|  �. Note that �� ⌘ vT is
the maximum escaping speed of a target due to the pres-
ence of a nearby herder and that we assume ��2 � D
so that the harmonic repulsive action eventually exerted
by the herders onto the targets dominates over their own
Brownian dynamics
We model the dynamics of the herders as made of two

mutually exclusive terms, one capturing their own dy-
namics and the other their interaction with the targets,
see e.g. [23]. Specifically, we set

Ḣi = (1� ⌘i)Fi(Hi, r
⇤) + ⌘iIi(T,H, ⇠) (2)

where ⌘i = ⌘i(T,H, ⇠) is an indicator function activating
when herder i has at least one target to chase in its sens-
ing region of radius ⇠, Fi(Hi, r⇤) describes the herder’s
own dynamics when it is not chasing any targets while
Ii(T,H, ⇠) is a feedback term capturing the herder’s re-
action to the presence of targets in its sensing region.
Without loss of generality, we choose Fi(Hi, r⇤) so that

the herders, in the absence of nearby targets, converge
towards the origin if outside the goal region of radius r⇤;
namely we set

Fi(Hi, r
⇤) =

(
�vH bHi if |Hi| � r⇤

0 otherwise
(3)

As typically done in the control theoretic and robotics
literature, e.g. [12], we assume that at each time step,
herder i selects a target within its sensing region, say
T

⇤
i
= Ti(H,T, ⇠), to coral and chase. Then, we choose

Ii(T,H, ⇠) = �
h
↵
⇣
Hi � (T⇤

i
+ �bT

⇤
i
)
⌘i

vH

(4)

where � = �/2 is the distance at which the herder places
itself behind the chosen target to coral it towards the goal
region, ↵ is a positive dimensional constant and [·]vH is
a saturation operator that limits the herders’ maximum
speed to vH when chasing a target.
The target to chase T

⇤
i
is selected by herder i as the

target with the largest distance from the origin among
those, if any, within the sensing radius of herder i. Fur-
thermore, if herder i detects other herders Hj in its sens-
ing region (i.e. such that |Hj �Hi|  ⇠), it only consid-
ers those targets Ta for which |Ta � Hi|  |Ta � Hj |.
Through this simple local rule, nearby herders e↵ectively
cooperate so as to decide which target to chase without
needing any global information on the positions of other
herders and targets.
We assume that the herders’ velocity vH > vT as typi-

cally done in the control literature [8] and to prevent the
formation of stable chasing patterns that can be observed
for vT . vH [24–26], and that can hinder the achievement
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ature on control and controllability of complex systems
(see e.g. [21] and references therein).

We consider the shepherding problem in R2 (see Fig.
1a), where N herders have to corral M targets to a goal
region ⌦G. We assume that both the herders and the
targets are initially randomly and uniformly distributed
in a circle ⌦0 of radius R, and that the ⌦G region is a
circle of radius r⇤ < R; both ⌦0 and ⌦G being centered
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1, ..., N , and T 2 R2M the vector of the targets’ positions
T = [T1, T2, ..., TM ], with Ta 2 R2 being the Cartesian
coordinates of target a, a = 1, ...,M .
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scribed by the following overdamped Langevin equation:
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positions are such that |dia|  �. Note that �� ⌘ vT is
the maximum escaping speed of a target due to the pres-
ence of a nearby herder and that we assume ��2 � D
so that the harmonic repulsive action eventually exerted
by the herders onto the targets dominates over their own
Brownian dynamics
We model the dynamics of the herders as made of two

mutually exclusive terms, one capturing their own dy-
namics and the other their interaction with the targets,
see e.g. [23]. Specifically, we set

Ḣi = (1� ⌘i)Fi(Hi, r
⇤) + ⌘iIi(T,H, ⇠) (2)

where ⌘i = ⌘i(T,H, ⇠) is an indicator function activating
when herder i has at least one target to chase in its sens-
ing region of radius ⇠, Fi(Hi, r⇤) describes the herder’s
own dynamics when it is not chasing any targets while
Ii(T,H, ⇠) is a feedback term capturing the herder’s re-
action to the presence of targets in its sensing region.
Without loss of generality, we choose Fi(Hi, r⇤) so that

the herders, in the absence of nearby targets, converge
towards the origin if outside the goal region of radius r⇤;
namely we set

Fi(Hi, r
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0 otherwise
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As typically done in the control theoretic and robotics
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where � = �/2 is the distance at which the herder places
itself behind the chosen target to coral it towards the goal
region, ↵ is a positive dimensional constant and [·]vH is
a saturation operator that limits the herders’ maximum
speed to vH when chasing a target.
The target to chase T

⇤
i
is selected by herder i as the

target with the largest distance from the origin among
those, if any, within the sensing radius of herder i. Fur-
thermore, if herder i detects other herders Hj in its sens-
ing region (i.e. such that |Hj �Hi|  ⇠), it only consid-
ers those targets Ta for which |Ta � Hi|  |Ta � Hj |.
Through this simple local rule, nearby herders e↵ectively
cooperate so as to decide which target to chase without
needing any global information on the positions of other
herders and targets.
We assume that the herders’ velocity vH > vT as typi-

cally done in the control literature [8] and to prevent the
formation of stable chasing patterns that can be observed
for vT . vH [24–26], and that can hinder the achievement
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(with herders represented by blue diamonds and targets by
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of the herders’ and targets’ sensing (magenta shaded disks)
and repulsion (blue shaded disk) regions of radius ⇠ and �
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motion of the herders when moving in the absence of nearby
targets (H1), selecting the target to chase T⇤ with the largest
distance from to goal (H2), or when the herder pushes a se-
lected target towards the goal region (H3).
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motion of the herders when moving in the absence of nearby
targets (H1), selecting the target to chase T⇤ with the largest
distance from to goal (H2), or when the herder pushes a se-
lected target towards the goal region (H3).
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where � = �/2 is the distance at which the herder places
itself behind the chosen target to coral it towards the goal
region, ↵ is a positive dimensional constant and [·]vH is
a saturation operator that limits the herders’ maximum
speed to vH when chasing a target.
The target to chase T
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is selected by herder i as the

target with the largest distance from the origin among
those, if any, within the sensing radius of herder i. Fur-
thermore, if herder i detects other herders Hj in its sens-
ing region (i.e. such that |Hj �Hi|  ⇠), it only consid-
ers those targets Ta for which |Ta � Hi|  |Ta � Hj |.
Through this simple local rule, nearby herders e↵ectively
cooperate so as to decide which target to chase without
needing any global information on the positions of other
herders and targets.
We assume that the herders’ velocity vH > vT as typi-
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targets (H1), selecting the target to chase T⇤ with the largest
distance from to goal (H2), or when the herder pushes a se-
lected target towards the goal region (H3).
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in a circle ⌦0 of radius R, and that the ⌦G region is a
circle of radius r⇤ < R; both ⌦0 and ⌦G being centered
around the origin. Let H 2 R2N be the vector of the
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1, ..., N , and T 2 R2M the vector of the targets’ positions
T = [T1, T2, ..., TM ], with Ta 2 R2 being the Cartesian
coordinates of target a, a = 1, ...,M .
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herder i and target a, � > 0 is the radius of the region
where targets are repelled by nearby herders, andNa rep-
resents the set of indexes of all the herders, if any, whose
positions are such that |dia|  �. Note that �� ⌘ vT is
the maximum escaping speed of a target due to the pres-
ence of a nearby herder and that we assume ��2 � D
so that the harmonic repulsive action eventually exerted
by the herders onto the targets dominates over their own
Brownian dynamics
We model the dynamics of the herders as made of two

mutually exclusive terms, one capturing their own dy-
namics and the other their interaction with the targets,
see e.g. [23]. Specifically, we set

Ḣi = (1� ⌘i)Fi(Hi, r
⇤) + ⌘iIi(T,H, ⇠) (2)

where ⌘i = ⌘i(T,H, ⇠) is an indicator function activating
when herder i has at least one target to chase in its sens-
ing region of radius ⇠, Fi(Hi, r⇤) describes the herder’s
own dynamics when it is not chasing any targets while
Ii(T,H, ⇠) is a feedback term capturing the herder’s re-
action to the presence of targets in its sensing region.
Without loss of generality, we choose Fi(Hi, r⇤) so that

the herders, in the absence of nearby targets, converge
towards the origin if outside the goal region of radius r⇤;
namely we set
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0 otherwise
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As typically done in the control theoretic and robotics
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where � = �/2 is the distance at which the herder places
itself behind the chosen target to coral it towards the goal
region, ↵ is a positive dimensional constant and [·]vH is
a saturation operator that limits the herders’ maximum
speed to vH when chasing a target.
The target to chase T

⇤
i
is selected by herder i as the

target with the largest distance from the origin among
those, if any, within the sensing radius of herder i. Fur-
thermore, if herder i detects other herders Hj in its sens-
ing region (i.e. such that |Hj �Hi|  ⇠), it only consid-
ers those targets Ta for which |Ta � Hi|  |Ta � Hj |.
Through this simple local rule, nearby herders e↵ectively
cooperate so as to decide which target to chase without
needing any global information on the positions of other
herders and targets.
We assume that the herders’ velocity vH > vT as typi-

cally done in the control literature [8] and to prevent the
formation of stable chasing patterns that can be observed
for vT . vH [24–26], and that can hinder the achievement
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motion of the herders when moving in the absence of nearby
targets (H1), selecting the target to chase T⇤ with the largest
distance from to goal (H2), or when the herder pushes a se-
lected target towards the goal region (H3).
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region, ↵ is a positive dimensional constant and [·]vH is
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is selected by herder i as the

target with the largest distance from the origin among
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ing region (i.e. such that |Hj �Hi|  ⇠), it only consid-
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distance from to goal (H2), or when the herder pushes a se-
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the maximum escaping speed of a target due to the pres-
ence of a nearby herder and that we assume ��2 � D
so that the harmonic repulsive action eventually exerted
by the herders onto the targets dominates over their own
Brownian dynamics
We model the dynamics of the herders as made of two

mutually exclusive terms, one capturing their own dy-
namics and the other their interaction with the targets,
see e.g. [23]. Specifically, we set

Ḣi = (1� ⌘i)Fi(Hi, r
⇤) + ⌘iIi(T,H, ⇠) (2)

where ⌘i = ⌘i(T,H, ⇠) is an indicator function activating
when herder i has at least one target to chase in its sens-
ing region of radius ⇠, Fi(Hi, r⇤) describes the herder’s
own dynamics when it is not chasing any targets while
Ii(T,H, ⇠) is a feedback term capturing the herder’s re-
action to the presence of targets in its sensing region.
Without loss of generality, we choose Fi(Hi, r⇤) so that

the herders, in the absence of nearby targets, converge
towards the origin if outside the goal region of radius r⇤;
namely we set

Fi(Hi, r
⇤) =

(
�vH bHi if |Hi| � r⇤

0 otherwise
(3)

As typically done in the control theoretic and robotics
literature, e.g. [12], we assume that at each time step,
herder i selects a target within its sensing region, say
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= Ti(H,T, ⇠), to coral and chase. Then, we choose
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where � = �/2 is the distance at which the herder places
itself behind the chosen target to coral it towards the goal
region, ↵ is a positive dimensional constant and [·]vH is
a saturation operator that limits the herders’ maximum
speed to vH when chasing a target.
The target to chase T

⇤
i
is selected by herder i as the

target with the largest distance from the origin among
those, if any, within the sensing radius of herder i. Fur-
thermore, if herder i detects other herders Hj in its sens-
ing region (i.e. such that |Hj �Hi|  ⇠), it only consid-
ers those targets Ta for which |Ta � Hi|  |Ta � Hj |.
Through this simple local rule, nearby herders e↵ectively
cooperate so as to decide which target to chase without
needing any global information on the positions of other
herders and targets.
We assume that the herders’ velocity vH > vT as typi-

cally done in the control literature [8] and to prevent the
formation of stable chasing patterns that can be observed
for vT . vH [24–26], and that can hinder the achievement
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FIG. 1. Representative snapshots of the system configuration
(with herders represented by blue diamonds and targets by
magenta circles) at (a) the initial time t = 0 with the agents
uniformly distributed in ⌦0 (yellow shaded disk), (b) at an in-
termediate time during shepherding control when herders sur-
round all targets and (c) when the task is successfully achieved
with all the targets in ⌦G (dark blue circle). (d) Schematic
of the herders’ and targets’ sensing (magenta shaded disks)
and repulsion (blue shaded disk) regions of radius ⇠ and �

respectively. The solid black arrows represent the direction of
motion of the herders when moving in the absence of nearby
targets (H1), selecting the target to chase T⇤ with the largest
distance from to goal (H2), or when the herder pushes a se-
lected target towards the goal region (H3).
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in a circle ⌦0 of radius R, and that the ⌦G region is a
circle of radius r⇤ < R; both ⌦0 and ⌦G being centered
around the origin. Let H 2 R2N be the vector of the
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being the Cartesian coordinates of the i-th herder, i =
1, ..., N , and T 2 R2M the vector of the targets’ positions
T = [T1, T2, ..., TM ], with Ta 2 R2 being the Cartesian
coordinates of target a, a = 1, ...,M .

We assume the targets do not exhibt any type of cohe-
sive collective behaviour with their dynamics being de-
scribed by the following overdamped Langevin equation:
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resents the set of indexes of all the herders, if any, whose
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the maximum escaping speed of a target due to the pres-
ence of a nearby herder and that we assume ��2 � D
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by the herders onto the targets dominates over their own
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ing region of radius ⇠, Fi(Hi, r⇤) describes the herder’s
own dynamics when it is not chasing any targets while
Ii(T,H, ⇠) is a feedback term capturing the herder’s re-
action to the presence of targets in its sensing region.
Without loss of generality, we choose Fi(Hi, r⇤) so that
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towards the origin if outside the goal region of radius r⇤;
namely we set
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⇤) =
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0 otherwise
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As typically done in the control theoretic and robotics
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where � = �/2 is the distance at which the herder places
itself behind the chosen target to coral it towards the goal
region, ↵ is a positive dimensional constant and [·]vH is
a saturation operator that limits the herders’ maximum
speed to vH when chasing a target.
The target to chase T
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is selected by herder i as the

target with the largest distance from the origin among
those, if any, within the sensing radius of herder i. Fur-
thermore, if herder i detects other herders Hj in its sens-
ing region (i.e. such that |Hj �Hi|  ⇠), it only consid-
ers those targets Ta for which |Ta � Hi|  |Ta � Hj |.
Through this simple local rule, nearby herders e↵ectively
cooperate so as to decide which target to chase without
needing any global information on the positions of other
herders and targets.
We assume that the herders’ velocity vH > vT as typi-

cally done in the control literature [8] and to prevent the
formation of stable chasing patterns that can be observed
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(with herders represented by blue diamonds and targets by
magenta circles) at (a) the initial time t = 0 with the agents
uniformly distributed in ⌦0 (yellow shaded disk), (b) at an in-
termediate time during shepherding control when herders sur-
round all targets and (c) when the task is successfully achieved
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respectively. The solid black arrows represent the direction of
motion of the herders when moving in the absence of nearby
targets (H1), selecting the target to chase T⇤ with the largest
distance from to goal (H2), or when the herder pushes a se-
lected target towards the goal region (H3).
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targets are initially randomly and uniformly distributed
in a circle ⌦0 of radius R, and that the ⌦G region is a
circle of radius r⇤ < R; both ⌦0 and ⌦G being centered
around the origin. Let H 2 R2N be the vector of the
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being the Cartesian coordinates of the i-th herder, i =
1, ..., N , and T 2 R2M the vector of the targets’ positions
T = [T1, T2, ..., TM ], with Ta 2 R2 being the Cartesian
coordinates of target a, a = 1, ...,M .

We assume the targets do not exhibt any type of cohe-
sive collective behaviour with their dynamics being de-
scribed by the following overdamped Langevin equation:
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sian noise, � and D are positive constants, dia = Hi�Ta

is the vector of the di↵erence between the position of
herder i and target a, � > 0 is the radius of the region
where targets are repelled by nearby herders, andNa rep-
resents the set of indexes of all the herders, if any, whose
positions are such that |dia|  �. Note that �� ⌘ vT is
the maximum escaping speed of a target due to the pres-
ence of a nearby herder and that we assume ��2 � D
so that the harmonic repulsive action eventually exerted
by the herders onto the targets dominates over their own
Brownian dynamics
We model the dynamics of the herders as made of two

mutually exclusive terms, one capturing their own dy-
namics and the other their interaction with the targets,
see e.g. [23]. Specifically, we set
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where ⌘i = ⌘i(T,H, ⇠) is an indicator function activating
when herder i has at least one target to chase in its sens-
ing region of radius ⇠, Fi(Hi, r⇤) describes the herder’s
own dynamics when it is not chasing any targets while
Ii(T,H, ⇠) is a feedback term capturing the herder’s re-
action to the presence of targets in its sensing region.
Without loss of generality, we choose Fi(Hi, r⇤) so that

the herders, in the absence of nearby targets, converge
towards the origin if outside the goal region of radius r⇤;
namely we set

Fi(Hi, r
⇤) =
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�vH bHi if |Hi| � r⇤

0 otherwise
(3)

As typically done in the control theoretic and robotics
literature, e.g. [12], we assume that at each time step,
herder i selects a target within its sensing region, say
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where � = �/2 is the distance at which the herder places
itself behind the chosen target to coral it towards the goal
region, ↵ is a positive dimensional constant and [·]vH is
a saturation operator that limits the herders’ maximum
speed to vH when chasing a target.
The target to chase T
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i
is selected by herder i as the

target with the largest distance from the origin among
those, if any, within the sensing radius of herder i. Fur-
thermore, if herder i detects other herders Hj in its sens-
ing region (i.e. such that |Hj �Hi|  ⇠), it only consid-
ers those targets Ta for which |Ta � Hi|  |Ta � Hj |.
Through this simple local rule, nearby herders e↵ectively
cooperate so as to decide which target to chase without
needing any global information on the positions of other
herders and targets.
We assume that the herders’ velocity vH > vT as typi-

cally done in the control literature [8] and to prevent the
formation of stable chasing patterns that can be observed
for vT . vH [24–26], and that can hinder the achievement

• At every step, herders make decisions on what target to chase

• Reciprocal interactions can also be added, e.g. collision avoidance



• The target to chase is selected by an herder as the target with the largest distance 
from the origin within its sensing region

• If an herder detects other herders in its sensing region

it will only considers those targets such that 

• Nearby herders effectively cooperate through this
simple rule

Target selection rule
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uniformly distributed in ⌦0 (yellow shaded disk), (b) at an in-
termediate time during shepherding control when herders sur-
round all targets and (c) when the task is successfully achieved
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respectively. The solid black arrows represent the direction of
motion of the herders when moving in the absence of nearby
targets (H1), selecting the target to chase T⇤ with the largest
distance from to goal (H2), or when the herder pushes a se-
lected target towards the goal region (H3).
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1a), where N herders have to corral M targets to a goal
region ⌦G. We assume that both the herders and the
targets are initially randomly and uniformly distributed
in a circle ⌦0 of radius R, and that the ⌦G region is a
circle of radius r⇤ < R; both ⌦0 and ⌦G being centered
around the origin. Let H 2 R2N be the vector of the
herders’ positions H = [H1, H2, ..., HN ] with Hi 2 R2

being the Cartesian coordinates of the i-th herder, i =
1, ..., N , and T 2 R2M the vector of the targets’ positions
T = [T1, T2, ..., TM ], with Ta 2 R2 being the Cartesian
coordinates of target a, a = 1, ...,M .

We assume the targets do not exhibt any type of cohe-
sive collective behaviour with their dynamics being de-
scribed by the following overdamped Langevin equation:
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where, analogously to what typically considered in the lit-
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sian noise, � and D are positive constants, dia = Hi�Ta
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herder i and target a, � > 0 is the radius of the region
where targets are repelled by nearby herders, andNa rep-
resents the set of indexes of all the herders, if any, whose
positions are such that |dia|  �. Note that �� ⌘ vT is
the maximum escaping speed of a target due to the pres-
ence of a nearby herder and that we assume ��2 � D
so that the harmonic repulsive action eventually exerted
by the herders onto the targets dominates over their own
Brownian dynamics
We model the dynamics of the herders as made of two

mutually exclusive terms, one capturing their own dy-
namics and the other their interaction with the targets,
see e.g. [23]. Specifically, we set

Ḣi = (1� ⌘i)Fi(Hi, r
⇤) + ⌘iIi(T,H, ⇠) (2)

where ⌘i = ⌘i(T,H, ⇠) is an indicator function activating
when herder i has at least one target to chase in its sens-
ing region of radius ⇠, Fi(Hi, r⇤) describes the herder’s
own dynamics when it is not chasing any targets while
Ii(T,H, ⇠) is a feedback term capturing the herder’s re-
action to the presence of targets in its sensing region.
Without loss of generality, we choose Fi(Hi, r⇤) so that

the herders, in the absence of nearby targets, converge
towards the origin if outside the goal region of radius r⇤;
namely we set

Fi(Hi, r
⇤) =
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�vH bHi if |Hi| � r⇤

0 otherwise
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As typically done in the control theoretic and robotics
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herder i selects a target within its sensing region, say
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where � = �/2 is the distance at which the herder places
itself behind the chosen target to coral it towards the goal
region, ↵ is a positive dimensional constant and [·]vH is
a saturation operator that limits the herders’ maximum
speed to vH when chasing a target.
The target to chase T

⇤
i
is selected by herder i as the

target with the largest distance from the origin among
those, if any, within the sensing radius of herder i. Fur-
thermore, if herder i detects other herders Hj in its sens-
ing region (i.e. such that |Hj �Hi|  ⇠), it only consid-
ers those targets Ta for which |Ta � Hi|  |Ta � Hj |.
Through this simple local rule, nearby herders e↵ectively
cooperate so as to decide which target to chase without
needing any global information on the positions of other
herders and targets.
We assume that the herders’ velocity vH > vT as typi-

cally done in the control literature [8] and to prevent the
formation of stable chasing patterns that can be observed
for vT . vH [24–26], and that can hinder the achievement
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magenta circles) at (a) the initial time t = 0 with the agents
uniformly distributed in ⌦0 (yellow shaded disk), (b) at an in-
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respectively. The solid black arrows represent the direction of
motion of the herders when moving in the absence of nearby
targets (H1), selecting the target to chase T⇤ with the largest
distance from to goal (H2), or when the herder pushes a se-
lected target towards the goal region (H3).
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region ⌦G. We assume that both the herders and the
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in a circle ⌦0 of radius R, and that the ⌦G region is a
circle of radius r⇤ < R; both ⌦0 and ⌦G being centered
around the origin. Let H 2 R2N be the vector of the
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1, ..., N , and T 2 R2M the vector of the targets’ positions
T = [T1, T2, ..., TM ], with Ta 2 R2 being the Cartesian
coordinates of target a, a = 1, ...,M .
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sive collective behaviour with their dynamics being de-
scribed by the following overdamped Langevin equation:
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is the vector of the di↵erence between the position of
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where targets are repelled by nearby herders, andNa rep-
resents the set of indexes of all the herders, if any, whose
positions are such that |dia|  �. Note that �� ⌘ vT is
the maximum escaping speed of a target due to the pres-
ence of a nearby herder and that we assume ��2 � D
so that the harmonic repulsive action eventually exerted
by the herders onto the targets dominates over their own
Brownian dynamics
We model the dynamics of the herders as made of two

mutually exclusive terms, one capturing their own dy-
namics and the other their interaction with the targets,
see e.g. [23]. Specifically, we set
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where ⌘i = ⌘i(T,H, ⇠) is an indicator function activating
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ing region of radius ⇠, Fi(Hi, r⇤) describes the herder’s
own dynamics when it is not chasing any targets while
Ii(T,H, ⇠) is a feedback term capturing the herder’s re-
action to the presence of targets in its sensing region.
Without loss of generality, we choose Fi(Hi, r⇤) so that

the herders, in the absence of nearby targets, converge
towards the origin if outside the goal region of radius r⇤;
namely we set
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where � = �/2 is the distance at which the herder places
itself behind the chosen target to coral it towards the goal
region, ↵ is a positive dimensional constant and [·]vH is
a saturation operator that limits the herders’ maximum
speed to vH when chasing a target.
The target to chase T
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is selected by herder i as the

target with the largest distance from the origin among
those, if any, within the sensing radius of herder i. Fur-
thermore, if herder i detects other herders Hj in its sens-
ing region (i.e. such that |Hj �Hi|  ⇠), it only consid-
ers those targets Ta for which |Ta � Hi|  |Ta � Hj |.
Through this simple local rule, nearby herders e↵ectively
cooperate so as to decide which target to chase without
needing any global information on the positions of other
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We assume that the herders’ velocity vH > vT as typi-

cally done in the control literature [8] and to prevent the
formation of stable chasing patterns that can be observed
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respectively. The solid black arrows represent the direction of
motion of the herders when moving in the absence of nearby
targets (H1), selecting the target to chase T⇤ with the largest
distance from to goal (H2), or when the herder pushes a se-
lected target towards the goal region (H3).
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in a circle ⌦0 of radius R, and that the ⌦G region is a
circle of radius r⇤ < R; both ⌦0 and ⌦G being centered
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1, ..., N , and T 2 R2M the vector of the targets’ positions
T = [T1, T2, ..., TM ], with Ta 2 R2 being the Cartesian
coordinates of target a, a = 1, ...,M .
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herder i and target a, � > 0 is the radius of the region
where targets are repelled by nearby herders, andNa rep-
resents the set of indexes of all the herders, if any, whose
positions are such that |dia|  �. Note that �� ⌘ vT is
the maximum escaping speed of a target due to the pres-
ence of a nearby herder and that we assume ��2 � D
so that the harmonic repulsive action eventually exerted
by the herders onto the targets dominates over their own
Brownian dynamics
We model the dynamics of the herders as made of two
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own dynamics when it is not chasing any targets while
Ii(T,H, ⇠) is a feedback term capturing the herder’s re-
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Without loss of generality, we choose Fi(Hi, r⇤) so that

the herders, in the absence of nearby targets, converge
towards the origin if outside the goal region of radius r⇤;
namely we set

Fi(Hi, r
⇤) =

(
�vH bHi if |Hi| � r⇤

0 otherwise
(3)

As typically done in the control theoretic and robotics
literature, e.g. [12], we assume that at each time step,
herder i selects a target within its sensing region, say
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= Ti(H,T, ⇠), to coral and chase. Then, we choose
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where � = �/2 is the distance at which the herder places
itself behind the chosen target to coral it towards the goal
region, ↵ is a positive dimensional constant and [·]vH is
a saturation operator that limits the herders’ maximum
speed to vH when chasing a target.
The target to chase T

⇤
i
is selected by herder i as the

target with the largest distance from the origin among
those, if any, within the sensing radius of herder i. Fur-
thermore, if herder i detects other herders Hj in its sens-
ing region (i.e. such that |Hj �Hi|  ⇠), it only consid-
ers those targets Ta for which |Ta � Hi|  |Ta � Hj |.
Through this simple local rule, nearby herders e↵ectively
cooperate so as to decide which target to chase without
needing any global information on the positions of other
herders and targets.
We assume that the herders’ velocity vH > vT as typi-

cally done in the control literature [8] and to prevent the
formation of stable chasing patterns that can be observed
for vT . vH [24–26], and that can hinder the achievement
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(with herders represented by blue diamonds and targets by
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termediate time during shepherding control when herders sur-
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respectively. The solid black arrows represent the direction of
motion of the herders when moving in the absence of nearby
targets (H1), selecting the target to chase T⇤ with the largest
distance from to goal (H2), or when the herder pushes a se-
lected target towards the goal region (H3).

ature on control and controllability of complex systems
(see e.g. [21] and references therein).

We consider the shepherding problem in R2 (see Fig.
1a), where N herders have to corral M targets to a goal
region ⌦G. We assume that both the herders and the
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in a circle ⌦0 of radius R, and that the ⌦G region is a
circle of radius r⇤ < R; both ⌦0 and ⌦G being centered
around the origin. Let H 2 R2N be the vector of the
herders’ positions H = [H1, H2, ..., HN ] with Hi 2 R2

being the Cartesian coordinates of the i-th herder, i =
1, ..., N , and T 2 R2M the vector of the targets’ positions
T = [T1, T2, ..., TM ], with Ta 2 R2 being the Cartesian
coordinates of target a, a = 1, ...,M .

We assume the targets do not exhibt any type of cohe-
sive collective behaviour with their dynamics being de-
scribed by the following overdamped Langevin equation:
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resents the set of indexes of all the herders, if any, whose
positions are such that |dia|  �. Note that �� ⌘ vT is
the maximum escaping speed of a target due to the pres-
ence of a nearby herder and that we assume ��2 � D
so that the harmonic repulsive action eventually exerted
by the herders onto the targets dominates over their own
Brownian dynamics
We model the dynamics of the herders as made of two

mutually exclusive terms, one capturing their own dy-
namics and the other their interaction with the targets,
see e.g. [23]. Specifically, we set
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own dynamics when it is not chasing any targets while
Ii(T,H, ⇠) is a feedback term capturing the herder’s re-
action to the presence of targets in its sensing region.
Without loss of generality, we choose Fi(Hi, r⇤) so that

the herders, in the absence of nearby targets, converge
towards the origin if outside the goal region of radius r⇤;
namely we set
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⇤) =
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0 otherwise
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As typically done in the control theoretic and robotics
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where � = �/2 is the distance at which the herder places
itself behind the chosen target to coral it towards the goal
region, ↵ is a positive dimensional constant and [·]vH is
a saturation operator that limits the herders’ maximum
speed to vH when chasing a target.
The target to chase T

⇤
i
is selected by herder i as the

target with the largest distance from the origin among
those, if any, within the sensing radius of herder i. Fur-
thermore, if herder i detects other herders Hj in its sens-
ing region (i.e. such that |Hj �Hi|  ⇠), it only consid-
ers those targets Ta for which |Ta � Hi|  |Ta � Hj |.
Through this simple local rule, nearby herders e↵ectively
cooperate so as to decide which target to chase without
needing any global information on the positions of other
herders and targets.
We assume that the herders’ velocity vH > vT as typi-

cally done in the control literature [8] and to prevent the
formation of stable chasing patterns that can be observed
for vT . vH [24–26], and that can hinder the achievement
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distance from to goal (H2), or when the herder pushes a se-
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where targets are repelled by nearby herders, andNa rep-
resents the set of indexes of all the herders, if any, whose
positions are such that |dia|  �. Note that �� ⌘ vT is
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ing region of radius ⇠, Fi(Hi, r⇤) describes the herder’s
own dynamics when it is not chasing any targets while
Ii(T,H, ⇠) is a feedback term capturing the herder’s re-
action to the presence of targets in its sensing region.
Without loss of generality, we choose Fi(Hi, r⇤) so that

the herders, in the absence of nearby targets, converge
towards the origin if outside the goal region of radius r⇤;
namely we set
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where � = �/2 is the distance at which the herder places
itself behind the chosen target to coral it towards the goal
region, ↵ is a positive dimensional constant and [·]vH is
a saturation operator that limits the herders’ maximum
speed to vH when chasing a target.
The target to chase T
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is selected by herder i as the

target with the largest distance from the origin among
those, if any, within the sensing radius of herder i. Fur-
thermore, if herder i detects other herders Hj in its sens-
ing region (i.e. such that |Hj �Hi|  ⇠), it only consid-
ers those targets Ta for which |Ta � Hi|  |Ta � Hj |.
Through this simple local rule, nearby herders e↵ectively
cooperate so as to decide which target to chase without
needing any global information on the positions of other
herders and targets.
We assume that the herders’ velocity vH > vT as typi-

cally done in the control literature [8] and to prevent the
formation of stable chasing patterns that can be observed
for vT . vH [24–26], and that can hinder the achievement



The herdability problem

• Under what conditions on the repulsion zone, the sensing area and the density of 
the targets can we achieve herdability of a given number of targets?
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• We define a group of M target agents as “herdable” by N herders if the latter can 
guide a significant fraction of the former within a finite time towards the goal region

• We look for the minimum number of herders 
!∗ " necessary to herd M  targets

• The herdability chart for infinite sensing 
shows:
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FIG. 2. Values of the fraction � of successfully herd targets
obtained for di↵erent values of M and N when R = 50. Re-
sults are averaged over 50 simulations; the increments of N
and

p
M have values �N = 1, �

p
M = 1. The level curve for

�
⇤ = 0.99 is depicted by the white curve. The left panel shows

the case of infinite sensing (⇠ = 1) where N
⇤ /

p
M while

the right panel the case of limited sensing (⇠ < 1) where we
recover N⇤ /

p
M only above a critical threshold M > M

low

(white vertical line).

of the control goal. In addition, the radius of the repul-
sion zone, �, is chosen smaller than that of the sensing
area, ⇠, as any other choice would be unrealistic.

Next, we study the herdability of a group of M targets
by a group of N herders [27]. Specifically, we define a
group of M target agents as “herdable” by N herders if
the latter can successfully guide at least a certain fraction
� > �⇤ of the former towards ⌦G within a finite time (see
SM for further details). The threshold fraction �⇤ is set
based on standard values in control theory, typically �⇤ 2
{0.9, 0.95, 0.99} [28]. Given the dynamics of the agents,
we will then look for the minimal number of herders,
denoted as N⇤(M), required to achieve herdability of M
targets.

For the sake of comparison, we start by considering
herders with infinite sensing capabilities, setting ⇠ = 1.
As shown in Figure 2a, for a broad range of target group
sizes, the required number of herders, N⇤(M), exhibits a
quadratic relationship with the number of targets. Con-
versely, in scenarios with finite sensing (Figure 2b), the
scaling N⇤(M) /

p
M is observed, but only when the

number of targets, M , exceeds a certain critical thresh-
old, M low. Below this threshold, the task notably de-
mands more herders, indicating, counterintuitively, that
fewer targets do not necessarily ease the control task with
herders’ limited sensing abilities.

In general, the minimum number of herders, N⇤(M),
needed to shepherd M targets depends on two things,
namely the herders’ ability to (i) collectively sense all
targets, which are random independent walkers, and (ii)
to counterbalance the di↵usion of the M targets with the
transport flow they induce.

From a simple dimensional argument, as the M tar-
gets are distributed in a two-dimensional circular domain
while the N herders tend to arrange themselves on its

(a) (b) T
?

T
?

⌦G ⌦G

FIG. 3. Two representative configurations of targets and the
structure of the corresponding herdability graph G (whose
edges are depicted as solid black lines) (a) below and (b) above

the critical percolation threshold \M low. Green arrows show
possible paths the herder could potentially navigate to reach
the furthermost targets, denoted as T?, showing that when
the graph is too sparse [panel (a)] more distant targets can
be lost.

one-dimensional boundary [see Fig.1(b) and supplemen-
tary videos], condition (ii) is satisfied for N⇤(M) /

p
M

(as observed in Fig. 2a) while condition (i) is trivially sat-
isfied when the herders possess infinite sensing (⇠ = 1).

However, with finite sensing ⇠ < 1, meeting condi-
tion (i) becomes increasingly more cumbersome as target
density decreases (e.g., M < M low). In this case, targets
can become too sparse, hindering herders from e�ciently
scouting the area based on local information alone. Con-
sequently, a larger number of herders, N⇤ is required to
ensure all targets, particularly those farthest from the
goal ⌦G, are observed consistently. This requirement de-
viates from the quadratic scaling observed with infinite
sensing. For M > M low, the higher density of targets en-
ables herders to e↵ectively navigate end explore the area
of interest moving from target to target, even without
sensing each target at every time instant, thus aligning
with the scaling law observed in the infinite sensing sce-
nario.

To explain the critical threshold M low, we analyze how
herders, relying on local information, can satisfy the con-
dition of sensing and corralling also distant targets from
⌦G.

To this aim, we define the herdability graph G as the
random geometric graph [29] where nodes represent tar-
gets, and an edge exists between two targets, say Ta and
Tb, if their distance is within the sensing radius of the
herders, i.e. if |Ta �Tb|  ⇠.

Then, a path in G from one target, Ta, to another
generic target, say Tc, indicates the potential for a herder
to transition from sensing Ta to sensing Tc. Therefore, we
propose to estimate the critical threshold M low by calcu-
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(with herders represented by blue diamonds and targets by
magenta circles) at (a) the initial time t = 0 with the agents
uniformly distributed in ⌦0 (yellow shaded disk), (b) at an in-
termediate time during shepherding control when herders sur-
round all targets and (c) when the task is successfully achieved
with all the targets in ⌦G (dark blue circle). (d) Schematic
of the herders’ and targets’ sensing (magenta shaded disks)
and repulsion (blue shaded disk) regions of radius ⇠ and �

respectively. The solid black arrows represent the direction of
motion of the herders when moving in the absence of nearby
targets (H1), selecting the target to chase T⇤ with the largest
distance from to goal (H2), or when the herder pushes a se-
lected target towards the goal region (H3).
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(see e.g. [21] and references therein).

We consider the shepherding problem in R2 (see Fig.
1a), where N herders have to corral M targets to a goal
region ⌦G. We assume that both the herders and the
targets are initially randomly and uniformly distributed
in a circle ⌦0 of radius R, and that the ⌦G region is a
circle of radius r⇤ < R; both ⌦0 and ⌦G being centered
around the origin. Let H 2 R2N be the vector of the
herders’ positions H = [H1, H2, ..., HN ] with Hi 2 R2

being the Cartesian coordinates of the i-th herder, i =
1, ..., N , and T 2 R2M the vector of the targets’ positions
T = [T1, T2, ..., TM ], with Ta 2 R2 being the Cartesian
coordinates of target a, a = 1, ...,M .

We assume the targets do not exhibt any type of cohe-
sive collective behaviour with their dynamics being de-
scribed by the following overdamped Langevin equation:
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where, analogously to what typically considered in the lit-
erature on soft matter, e.g. [18, 19, 22], N is white Gaus-
sian noise, � and D are positive constants, dia = Hi�Ta

is the vector of the di↵erence between the position of
herder i and target a, � > 0 is the radius of the region
where targets are repelled by nearby herders, andNa rep-
resents the set of indexes of all the herders, if any, whose
positions are such that |dia|  �. Note that �� ⌘ vT is
the maximum escaping speed of a target due to the pres-
ence of a nearby herder and that we assume ��2 � D
so that the harmonic repulsive action eventually exerted
by the herders onto the targets dominates over their own
Brownian dynamics
We model the dynamics of the herders as made of two

mutually exclusive terms, one capturing their own dy-
namics and the other their interaction with the targets,
see e.g. [23]. Specifically, we set

Ḣi = (1� ⌘i)Fi(Hi, r
⇤) + ⌘iIi(T,H, ⇠) (2)

where ⌘i = ⌘i(T,H, ⇠) is an indicator function activating
when herder i has at least one target to chase in its sens-
ing region of radius ⇠, Fi(Hi, r⇤) describes the herder’s
own dynamics when it is not chasing any targets while
Ii(T,H, ⇠) is a feedback term capturing the herder’s re-
action to the presence of targets in its sensing region.
Without loss of generality, we choose Fi(Hi, r⇤) so that

the herders, in the absence of nearby targets, converge
towards the origin if outside the goal region of radius r⇤;
namely we set

Fi(Hi, r
⇤) =
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0 otherwise
(3)

As typically done in the control theoretic and robotics
literature, e.g. [12], we assume that at each time step,
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where � = �/2 is the distance at which the herder places
itself behind the chosen target to coral it towards the goal
region, ↵ is a positive dimensional constant and [·]vH is
a saturation operator that limits the herders’ maximum
speed to vH when chasing a target.
The target to chase T
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i
is selected by herder i as the

target with the largest distance from the origin among
those, if any, within the sensing radius of herder i. Fur-
thermore, if herder i detects other herders Hj in its sens-
ing region (i.e. such that |Hj �Hi|  ⇠), it only consid-
ers those targets Ta for which |Ta � Hi|  |Ta � Hj |.
Through this simple local rule, nearby herders e↵ectively
cooperate so as to decide which target to chase without
needing any global information on the positions of other
herders and targets.
We assume that the herders’ velocity vH > vT as typi-

cally done in the control literature [8] and to prevent the
formation of stable chasing patterns that can be observed
for vT . vH [24–26], and that can hinder the achievement
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distance from to goal (H2), or when the herder pushes a se-
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where � = �/2 is the distance at which the herder places
itself behind the chosen target to coral it towards the goal
region, ↵ is a positive dimensional constant and [·]vH is
a saturation operator that limits the herders’ maximum
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target with the largest distance from the origin among
those, if any, within the sensing radius of herder i. Fur-
thermore, if herder i detects other herders Hj in its sens-
ing region (i.e. such that |Hj �Hi|  ⇠), it only consid-
ers those targets Ta for which |Ta � Hi|  |Ta � Hj |.
Through this simple local rule, nearby herders e↵ectively
cooperate so as to decide which target to chase without
needing any global information on the positions of other
herders and targets.
We assume that the herders’ velocity vH > vT as typi-

cally done in the control literature [8] and to prevent the
formation of stable chasing patterns that can be observed
for vT . vH [24–26], and that can hinder the achievement
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FIG. 2. Values of the fraction � of successfully herd targets
obtained for di↵erent values of M and N when R = 50. Re-
sults are averaged over 50 simulations; the increments of N
and

p
M have values �N = 1, �

p
M = 1. The level curve for

�
⇤ = 0.99 is depicted by the white curve. The left panel shows

the case of infinite sensing (⇠ = 1) where N
⇤ /

p
M while

the right panel the case of limited sensing (⇠ < 1) where we
recover N⇤ /

p
M only above a critical threshold M > M

low

(white vertical line).

of the control goal. In addition, the radius of the repul-
sion zone, �, is chosen smaller than that of the sensing
area, ⇠, as any other choice would be unrealistic.

Next, we study the herdability of a group of M targets
by a group of N herders [27]. Specifically, we define a
group of M target agents as “herdable” by N herders if
the latter can successfully guide at least a certain fraction
� > �⇤ of the former towards ⌦G within a finite time (see
SM for further details). The threshold fraction �⇤ is set
based on standard values in control theory, typically �⇤ 2
{0.9, 0.95, 0.99} [28]. Given the dynamics of the agents,
we will then look for the minimal number of herders,
denoted as N⇤(M), required to achieve herdability of M
targets.

For the sake of comparison, we start by considering
herders with infinite sensing capabilities, setting ⇠ = 1.
As shown in Figure 2a, for a broad range of target group
sizes, the required number of herders, N⇤(M), exhibits a
quadratic relationship with the number of targets. Con-
versely, in scenarios with finite sensing (Figure 2b), the
scaling N⇤(M) /

p
M is observed, but only when the

number of targets, M , exceeds a certain critical thresh-
old, M low. Below this threshold, the task notably de-
mands more herders, indicating, counterintuitively, that
fewer targets do not necessarily ease the control task with
herders’ limited sensing abilities.

In general, the minimum number of herders, N⇤(M),
needed to shepherd M targets depends on two things,
namely the herders’ ability to (i) collectively sense all
targets, which are random independent walkers, and (ii)
to counterbalance the di↵usion of the M targets with the
transport flow they induce.

From a simple dimensional argument, as the M tar-
gets are distributed in a two-dimensional circular domain
while the N herders tend to arrange themselves on its

(a) (b) T
?

T
?

⌦G ⌦G

FIG. 3. Two representative configurations of targets and the
structure of the corresponding herdability graph G (whose
edges are depicted as solid black lines) (a) below and (b) above

the critical percolation threshold \M low. Green arrows show
possible paths the herder could potentially navigate to reach
the furthermost targets, denoted as T?, showing that when
the graph is too sparse [panel (a)] more distant targets can
be lost.

one-dimensional boundary [see Fig.1(b) and supplemen-
tary videos], condition (ii) is satisfied for N⇤(M) /

p
M

(as observed in Fig. 2a) while condition (i) is trivially sat-
isfied when the herders possess infinite sensing (⇠ = 1).

However, with finite sensing ⇠ < 1, meeting condi-
tion (i) becomes increasingly more cumbersome as target
density decreases (e.g., M < M low). In this case, targets
can become too sparse, hindering herders from e�ciently
scouting the area based on local information alone. Con-
sequently, a larger number of herders, N⇤ is required to
ensure all targets, particularly those farthest from the
goal ⌦G, are observed consistently. This requirement de-
viates from the quadratic scaling observed with infinite
sensing. For M > M low, the higher density of targets en-
ables herders to e↵ectively navigate end explore the area
of interest moving from target to target, even without
sensing each target at every time instant, thus aligning
with the scaling law observed in the infinite sensing sce-
nario.

To explain the critical threshold M low, we analyze how
herders, relying on local information, can satisfy the con-
dition of sensing and corralling also distant targets from
⌦G.

To this aim, we define the herdability graph G as the
random geometric graph [29] where nodes represent tar-
gets, and an edge exists between two targets, say Ta and
Tb, if their distance is within the sensing radius of the
herders, i.e. if |Ta �Tb|  ⇠.

Then, a path in G from one target, Ta, to another
generic target, say Tc, indicates the potential for a herder
to transition from sensing Ta to sensing Tc. Therefore, we
propose to estimate the critical threshold M low by calcu-



Fewer targets do not necessarily ease the shepherding task!

Finite sensing effect
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⇠ < 1



• In general, in order to be successful herders need to:

1. Collectively sense all the targets which are random independent walkers

2. Counterbalance diffusion of the M targets with the transport flow they induce

• In the finite sensing case, meeting the first condition becomes harder and harder 
as targets’ density decreases and targets become more sparse

• To explain the critical threshold we need to analyze how herders, using only local 
information, can sense and corrall also distant targets

Herdability conditions



• We define the herdability graph
as the random geometric graph

• A path in the graph indicates
the potential for a herder to 
transition from sensing one target
to sensing another

The herdability graph

$"#(&, () = 1

if ," − ,# ≤ (

A. Lama, MdiB, ”Shepherding and herdability in complex multiagent systems”, PRR, to appear



• Namely if the graph is too sparse, 
herders cannot  navigate to 
reach the furthermost
targets

• Hence, some targets will be lost

• Hence, we proposed to estimate the 
critical threshold by studying 
percolation of the herdability graph

Percolation of the herdability graph
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FIG. 2. Values of the fraction � of successfully herd targets
obtained for di↵erent values of M and N when R = 50. Re-
sults are averaged over 50 simulations; the increments of N
and
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M have values �N = 1, �
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M = 1. The level curve for
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⇤ = 0.99 is depicted by the white curve. The left panel shows

the case of infinite sensing (⇠ = 1) where N
⇤ /
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M while

the right panel the case of limited sensing (⇠ < 1) where we
recover N⇤ /

p
M only above a critical threshold M > M

low

(white vertical line).

of the control goal. In addition, the radius of the repul-
sion zone, �, is chosen smaller than that of the sensing
area, ⇠, as any other choice would be unrealistic.

Next, we study the herdability of a group of M targets
by a group of N herders [27]. Specifically, we define a
group of M target agents as “herdable” by N herders if
the latter can successfully guide at least a certain fraction
� > �⇤ of the former towards ⌦G within a finite time (see
SM for further details). The threshold fraction �⇤ is set
based on standard values in control theory, typically �⇤ 2
{0.9, 0.95, 0.99} [28]. Given the dynamics of the agents,
we will then look for the minimal number of herders,
denoted as N⇤(M), required to achieve herdability of M
targets.

For the sake of comparison, we start by considering
herders with infinite sensing capabilities, setting ⇠ = 1.
As shown in Figure 2a, for a broad range of target group
sizes, the required number of herders, N⇤(M), exhibits a
quadratic relationship with the number of targets. Con-
versely, in scenarios with finite sensing (Figure 2b), the
scaling N⇤(M) /

p
M is observed, but only when the

number of targets, M , exceeds a certain critical thresh-
old, M low. Below this threshold, the task notably de-
mands more herders, indicating, counterintuitively, that
fewer targets do not necessarily ease the control task with
herders’ limited sensing abilities.

In general, the minimum number of herders, N⇤(M),
needed to shepherd M targets depends on two things,
namely the herders’ ability to (i) collectively sense all
targets, which are random independent walkers, and (ii)
to counterbalance the di↵usion of the M targets with the
transport flow they induce.

From a simple dimensional argument, as the M tar-
gets are distributed in a two-dimensional circular domain
while the N herders tend to arrange themselves on its
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FIG. 3. Two representative configurations of targets and the
structure of the corresponding herdability graph G (whose
edges are depicted as solid black lines) (a) below and (b) above

the critical percolation threshold \M low. Green arrows show
possible paths the herder could potentially navigate to reach
the furthermost targets, denoted as T?, showing that when
the graph is too sparse [panel (a)] more distant targets can
be lost.

one-dimensional boundary [see Fig.1(b) and supplemen-
tary videos], condition (ii) is satisfied for N⇤(M) /

p
M

(as observed in Fig. 2a) while condition (i) is trivially sat-
isfied when the herders possess infinite sensing (⇠ = 1).

However, with finite sensing ⇠ < 1, meeting condi-
tion (i) becomes increasingly more cumbersome as target
density decreases (e.g., M < M low). In this case, targets
can become too sparse, hindering herders from e�ciently
scouting the area based on local information alone. Con-
sequently, a larger number of herders, N⇤ is required to
ensure all targets, particularly those farthest from the
goal ⌦G, are observed consistently. This requirement de-
viates from the quadratic scaling observed with infinite
sensing. For M > M low, the higher density of targets en-
ables herders to e↵ectively navigate end explore the area
of interest moving from target to target, even without
sensing each target at every time instant, thus aligning
with the scaling law observed in the infinite sensing sce-
nario.

To explain the critical threshold M low, we analyze how
herders, relying on local information, can satisfy the con-
dition of sensing and corralling also distant targets from
⌦G.

To this aim, we define the herdability graph G as the
random geometric graph [29] where nodes represent tar-
gets, and an edge exists between two targets, say Ta and
Tb, if their distance is within the sensing radius of the
herders, i.e. if |Ta �Tb|  ⇠.

Then, a path in G from one target, Ta, to another
generic target, say Tc, indicates the potential for a herder
to transition from sensing Ta to sensing Tc. Therefore, we
propose to estimate the critical threshold M low by calcu-



• We study when G becomes initially 
connected when targets are randomly
distributed in a circle of radius R

• We then expect

• This aligns with our numerical findings
explaining the observations and the 
scaling observed in the numerical 
experiments

Percolation analysis
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FIG. 4. Scaling of the critical threshold M
low as a function

of ⇠/R. The numerically observed values of M
low (scatter

dots), evaluated by direct inspection, are compared with the

theoretical estimate \M low (dashed line) for di↵erent values of
⇠ and R (see Tab. 1 in the SM for the values of ⇠ and R

selected). Error bars represent the maximum precision of the
computation given the stepsize �

p
M = 1 used in the simula-

tions. Results for �
⇤ 2 {0.90, 0.95} are reported in section I

of the Supplementary Material confirming the observed scal-
ing. For the same ⇠/R value, scatter points were shifted on
the x-axis to increase visibility.

lating the percolation threshold of the graph G, denoted
as [M low(R, ⇠); in particular, we compute [M low(R, ⇠) in
the worst-case at t = 0 when targets are randomly and
uniformly distributed within a circle of radius R (See
Section II of the SM for further details).

Fig.3 presents two schematic examples illustrating tar-
get configurations below and above the estimated thresh-

old [M low along with their respective herdability graph

structures G. These examples clarify how [M low can
serve as an approximation for the critical thresholdM low.
Given the known scaling of the percolation threshold of
a two-dimensional geometric graph as R2/⇠2 [30], we an-
ticipate M low ⇠ R2/⇠2. This expectation aligns with our
numerical findings shown in Figure 4 when �⇤ = 0.99,
confirming that our theoretical approach e↵ectively cap-
tures the observed trend. For more details and additional
validation for di↵erent �⇤ values and noise levels in the
targets dynamics, we refer the reader to the SM.

Our study’s central finding is that e↵ective herdability
hinges on su�cient connectivity of the herdability graph
G. To analytically substantiate this, we examine a sim-
pler one-dimensional scenario and derive a PDE char-
acterizing the spatio-temporal dynamics of the herders’
density, denoted as ⇢H . A pivotal aspect of our analysis
involves translating the decision-making process herders
use to select the target to chase, T⇤

i
, into a continuum

framework. We propose this can be done by expressing
the target selection rule used by the herders as a weighted

x/⇠

⇢
T
(x
)

V
(x
)

FIG. 5. Stationary distributions of the targets, ⇢T (magenta
lines), over a one-dimensional domain together with the cor-
responding potential V (red line) computed by (7) showing
global stability when no regions exist where ⇢

T |x2� = 0 with
|�| > ⇠ (top panel) and local stability otherwise (bottom
panel). See supplementary video 3 in the SM for a simulation
of (6) in the above scenarios.

average approximated by:

T
⇤
i
= lim

�!1

P
a2Ni

e�|Ta| TaP
a2Ni

e�|Ta|
(5)

with Ni being the set of target indexes such that dia  ⇠.
Then, recasting (5) in a continuum framework, ignor-

ing the herders’ own dynamics, Fi, and setting � = 0 in
(4) for the sake of simplicity, we capture heuristically the
dynamics of the herders’ density ⇢H(x, t) by the following
PDE:

⇢H
t
+


�dV

dx
⇢H

�

x

= 0 (6)

where

� dV

dx
= � 1

M

Z

B⇠(x)
e�|y|⇢T (y)(x� y) dy (7)

with ⇢T being the density of the targets supposed to be
stationary when the herders are su�ciently faster than
the targets, and B⇠(x) denotes a ball of radius ⇠ centered
in x, and M is a normalization factor.
Using (6), we find, as shown in Fig. 5, that a glob-

ally stable equilibrium configuration, in which herders
completely encircle all targets, is attainable only under
the condition that no regions exist where ⇢T |x2� = 0
with |�| > ⇠; a situation corresponding to the herdability
graph G being disconnected. This further substantiates
our finding that the targets need to maintain a su�cient
level of connectivity within the herdability graph G in or-
der to enable the herders to collectively detect and guide
even the most distant ones.
In summary, the relevance of our findings is twofold.

Firstly, we solved the shepherding control problem in a
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as [M low(R, ⇠); in particular, we compute [M low(R, ⇠) in
the worst-case at t = 0 when targets are randomly and
uniformly distributed within a circle of radius R (See
Section II of the SM for further details).
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structures G. These examples clarify how [M low can
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ticipate M low ⇠ R2/⇠2. This expectation aligns with our
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pler one-dimensional scenario and derive a PDE char-
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with ⇢T being the density of the targets supposed to be
stationary when the herders are su�ciently faster than
the targets, and B⇠(x) denotes a ball of radius ⇠ centered
in x, and M is a normalization factor.
Using (6), we find, as shown in Fig. 5, that a glob-

ally stable equilibrium configuration, in which herders
completely encircle all targets, is attainable only under
the condition that no regions exist where ⇢T |x2� = 0
with |�| > ⇠; a situation corresponding to the herdability
graph G being disconnected. This further substantiates
our finding that the targets need to maintain a su�cient
level of connectivity within the herdability graph G in or-
der to enable the herders to collectively detect and guide
even the most distant ones.
In summary, the relevance of our findings is twofold.

Firstly, we solved the shepherding control problem in a



• In the presence of limited sensing, some herdability conditions must be satisfied

• As the number of targets increases
the problem becomes harder and harder

• More herders are needed to solve the
problem

• How dependent is this from the specific
rules and dynamics we selected?

• Can we find other (better) solutions to the
problem?

• To address this issue we started exploring
the use of learning-based approaches

To summarize
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⇠ < 1



• Shepherding is a ”multi-layer” control problem consisting of three layers
(coralling, target selection and herder cooperation)

A computational approach

Steering and 
containing a target

Single herder 
single target 

Selecting the target to 
steer

Single herder multiple 
targets

Coordinating the 
herders

Multiple herders 
multiple targets

L1

L2

L3

Task Scenario



Two RL driven cooperating herders 46



Beyond two herders: the multiple herders case 47

• DQN has fixed structure: 2H-5T net previously trained is extended (validation only)
• Each herder only considers the 5 closest targets and the closest herder (topological sensing)

• Unbounded region (with I.C. in circle of radius 30m)



• Complex systems can be exploited to solve 
distributed control tasks

• Shepherding is a great paradigmatic example..

• ..where emerging behaviour needs to arise from a 
complex system in order to solve a control task

• We saw that a set of simple local rules coupled with 
appropriate target selection strategies is able to solve 
the problem under certain assumptions

• We studied the herdability of the targets when the herders’ sensing is finite and 
linked it to the percolation of a suitably defined herdability graph

• Finally, we discussed possible learning-based approaches to solve the problem

Conclusions 48



• Many aspects of this problem remain 
unsolved

• How to prove convergence of a herding 
policy in the presence of limited sensing?

• Is it possible to give herdability 
conditions for more general dynamics?

• Can feedback rules be defined in 
the continuum approximation, 
e.g. PDE control?

• What about herding in more realistic 3D scenarios where navigation and exploration 
become essential parts of the problem? 

• Or where the targets have more realistic dynamics (schooling fish, crowds etc)
• What about multi-agent reinforcement learning? How scalable?

Perspectives and open problems

A. Bin Kamruddin, M J Richardson



Thank you for your attention.
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