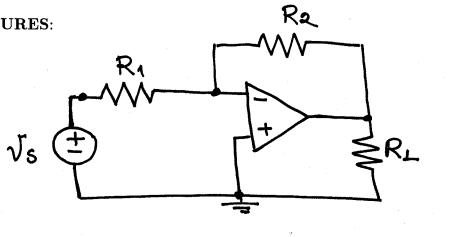
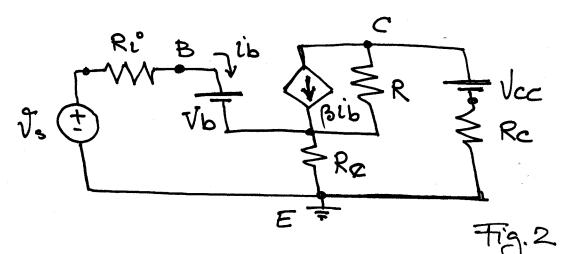
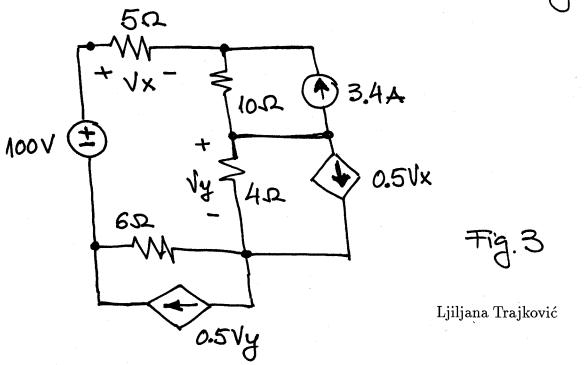
SIMON FRASER UNIVERSITY SCHOOL OF ENGINEERING SCIENCE


ENSC 220 ELECTRIC CIRCUITS I


Midterm Examination No. 2 November 6, 1998


Attempt all four problems.
Problems are equally weighted.

- 1. In the op-am circuit shown in Figure 1., the op-amp input resistance is R_i , the op-amp output resistance is R_o , and the op-amp gain is A. Write the **nodal equations** for the circuit. What is the output voltage of the op-amp in terms of node voltages?
- 2. The one-transistor amplifier circuit is shown in Figure 2. (The BJT transistor is modeled with the circuit connected between terminals B-C-E.) Find the Thévenin's equivalent voltage V_T seen between the base (B) and the emitter (E) terminals by writing the **nodal equations** for the **appropriate circuit**.
- 3. For the circuit shown in Figure 2, find the Thévenin's equivalent resistance R_T seen between the base (B) and the emitter (E) terminals by writing the **mesh** equations for the appropriate circuit. Check you result by setting $\beta = 0$ and by looking at the resulting circuit. Check again, now by setting both $\beta = 0$ and $R = \infty$.
- 4. What is the number of independent **nodal** equations and the number of independent **mesh** equations for the circuit shown in Figure 3? Which of these two methods produces the **least number** of independent equations? Write this set of equations.

FIGURES:

