SIMON FRASER UNIVERSITY SCHOOL OF ENGINEERING SCIENCE

Fall 2014 ENSC 220: ELECTRIC CIRCUITS I

Midterm Examination No. 2 Wednesday, November 19, 2014

Duration: 110 minutes. Attempt all problems. Questions are not equally weighted. Closed book and closed notes. Simple calculators (with no graphing/programming functions) are permitted. Calculators, PDAs, laptops, and wireless phones are not permitted. Please write legibly. Illegible text will not be graded.

1. (15 points)

For the circuit shown in Figure 1, find the voltage ratio V_{out}/V_s .

2. (15 points)

In the circuit shown in Figure 2:

- Replace the circuit to the left of nodes A and B with its Thévenin equivalent.
- Find i.
- Find the power consumed by the 75 Ω resistor.

3. (30 points)

Consider the circuit shown in Figure 3:

- Find the Thévenin equivalent seen by the capacitor for $t \geq 0$.
- Find $v_c(t)$ for $t \ge 0^+$ assuming $V_c(0^-) = -6 V$.

4. (40 points)

The switch in the RLC circuit shown in Figure 4 opens at t=0 after having been closed for a long time. Find the complete response of the current i_L and voltage v_C for $t \ge 0$:

- Using a DC analysis, find the initial conditions $i_L(0^-)$ and $v_C(0^-)$.
- Find $i_L(0^+)$, $v_C(0^+)$, and $i_C(0^+)$.
- Using a DC analysis, find the final values of the inductor current $i_L(\infty)$ and capacitor voltage $v_C(\infty)$.
- Find the characteristic equation and compute its roots. Given the roots, write general forms of the responses $i_L(t)$ and $v_C(t)$.
- Solve for the unknown coefficients and write the exact expressions for $i_L(t)$ and $v_C(t)$ valid for $t \geq 0$.

Figure 1.

Figure 2.

Figure 3.

Figure 4.