SIMON FRASER UNIVERSITY SCHOOL OF ENGINEERING SCIENCE

Fall 1999

ENSC 220

ELECTRIC CIRCUITS I

Midterm Examination

October 21, 1999

Attempt all six problems.

Problems are equally weighted.

1. For the device shown in Figure 1, the power (in Watts) absorbed by a circuit element is:

 $p(t) = \begin{cases} P_0 & for & t \ge 0 \\ 0 & for & t < 0 \end{cases}$

and the charge delivered to the device is $q(t) = e^{-2t}$ coulombs for $t \ge 0$ and zero otherwise.

- Find the energy W(t) expanded in time t to move charge q(t).
- Find the current i(t) and the voltage v(t).
- Find a general expression for v(t) in terms of W(t).
- 2. Determine the value of the voltage V_x for the circuit of Figure 2.
- 3. For the circuit of Figure 3:
 - Find the Thévenin's equivalent for the circuit left of R_L .
 - Determine the value of R_L required for maximum power transfer.
 - Determine maximum power that can be absorbed by R_L .
- 4. Find the output voltage V_o for the circuit shown in Figure 4.
- 5. The op-amp in circuit shown in Figure 5(a) is non-ideal. Its model is given in Figure 5(b). Assuming this non-ideal model:
 - Find the Thévenin's equivalent for the circuit to the right of nodes 1 and 3.
 - What is the Thévenin's equivalent if the op-amp is ideal with infinite open-loop gain?
 - Explain your result.
- 6. Use nodal equations to find $\frac{V_o}{I_{in}}$ for the circuit of Figure 6.

Ljiljana Trajković