SIMON FRASER UNIVERSITY SCHOOL OF ENGINEERING SCIENCE

Fall 1999 ENSC 220

ELECTRIC CIRCUITS I

Final Examination December 11, 1999

Attempt all four problems. Problems are equally weighted.

- 1. Two ideal op-amp filters are shown in Figure 1. Assume $v_c(0_-) = 0$ in each case. For each circuit:
 - Determine the time response $v_{out}(t)$ to a unit step function at the input.
 - Sketch the function $v_{out}(t)$.
 - Determine the filter type.
- 2. In the circuit of Figure 2, the voltage-controlled voltage source has a gain A > 0.
 - Write the state equations for the circuit.
 - Write the characteristic equation.
 - Find the ranges of A for the circuit to be: (a) over-damped, (b) under-damped, (c) critically-damped, and (d) undamped.
 - Find $v_o(t)$ if A=1 and all initial conditions are zero.
- 3. In the circuit of Figure 3, $v(t) = 96\cos(10t + \pi/3)$ V.
 - Find the reactance X such that the impedance "seen" by the source is real.
 - Find the type and the value of the circuit element with reactance X.
 - For the above choice of X, find the phasor I.
 - What is the current i(t) corresponding to the phasor I?
- 4. The circuit shown in Figure 4 employs a simple transistor model.
 - Write nodal equations.
 - Write mesh equations.
 - Check the validity of your equations by choosing appropriate value for β .

Let $R = R_s = R_E = R_L$ and:

- Find the Thévenin's equivalent voltage at terminals AB.
- \bullet Find the Thévenin's equivalent resistance at terminals AB.

FIGURES:

