SIMON FRASER UNIVERSITY SCHOOL OF ENGINEERING SCIENCE

Fall 2008 ENSC 220: ELECTRIC CIRCUITS I

Final Examination Wednesday, December 10, 2008

Duration: 3 hours. Attempt all problems. Questions are not equally weighted. Closed book and closed notes. Simple calculators (with no graphing/programming functions) are permitted. Formula/equation sheets, PDAs, laptops, and wireless phones are not permitted.

- 1. A model of one-transistor amplifier circuit is shown in Figure 1. The transistor is modeled with the circuit connected between terminals B-C-E. Find the Thévenin's equivalent seen between the base (B) and the emitter (E) terminals using the following procedure:
 - (20 points) The Thévenin's equivalent voltage:
 - Write nodal equations for an appropriate circuit.
 - Find the Thévenin's equivalent voltage V_{Th} .

(20 points) The Thévenin's equivalent resistance:

- Write mesh equations for an appropriate circuit.
- Find the Thévenin's equivalent resistance R_{Th} .
- Check your result by observing the resulting circuit when $\beta = 0$.
- 2. (20 points) The capacitor shown in Figure 2 is initially uncharged. Suppose that $v_s(t) = 2tu(t)$ (a ramp function).
 - Find capacitor voltage $v_c(t)$ for $t \ge 0$.
 - Find current i(t) for $t \geq 0$.
 - Sketch $v_c(t)$ and i(t) as functions of time.
- 3. (20 points) In the circuit shown in Figure 3, the switch S has been at position A for a long time and is moved to position B at t = 0.
 - Find $v_C(0-)$ and $i_L(0-)$.
 - Find $v_C(t)$ for $t \geq 0$.
 - Find $v_C(t)$ and $i_L(t)$ for $t \to \infty$.
- 4. (20 points) The ideal op amp circuits shown in Figure 4 operates in the sinusoidal steady-state with an input voltage $v_i(t) = V_m cos(\omega t)$.
 - Find the phasor of the output voltage V_o .
 - Find the ratio V_o/V_i .
 - Find frequency ω as a function of L and C so that the ratio does not depend of ω .
 - For this value of ω write the relationship between $v_o(t)$ and $v_i(t)$.

