SIMON FRASER UNIVERSITY SCHOOL OF ENGINEERING SCIENCE

Fall 2001 ENSC 220 ELECTRIC CIRCUITS I

Final Examination December 15, 2001

Attempt all five problems.

Problems are not equally weighted.

- 1. (10 points) For the circuit shown in Figure 1, determine the gain V_o/V_i . Assume that the op-amp is ideal.
- 2. (20 points) In the circuit shown in Figure 2:
 - Write a set of node equations.
 - Solve the node equations for v_2 .
 - Find the Thévenin equivalent resistance at the output.

(Note: Keep your numerical results in terms of fractions.)

- 3. (30 points) At t = 0, a 10-ma current pulse (rectangular) is applied to the initially relaxed circuit shown in Figure 3.
 - Find i(t) for t > 0.
 - Sketch the results to scale on the graph of the pulse. (Note: $e^{-3} \approx 0.05$.)
- (20 points) The capacitors in the circuit shown in Figure 4 are initially not charged when the circuit is excited by a step voltage. The given values are normalized.
 - Find the state equations.
 - Form these, find the characteristic equation and the natural frequencies.
 - Find the complete response of the state variables, leaving no unspecified constants.
 - Determine $v_o(t)$ for t > 0.
- 5. (20 points) The circuit shown in Figure 5 is to act as a *phase shifter*, that is, to produce an output-voltage phasor V_3 that has the same magnitude as that of V_1 and an angle that leads the angle of V_1 by 90°. Find V_3 and determine how closely the circuit meets these objectives.

