next up previous
Next: About this document ...

Assume:

\begin{displaymath}{v_s}(t) = {V_s} sin(\omega t)
\end{displaymath}

and

\begin{displaymath}{v_C}(t) = {V_C} sin( \omega t - \theta ) .
\end{displaymath}

Then
i(t) = $\displaystyle C \frac {d {v_C}(t)}{dt }$  
  = $\displaystyle C {V_C} \omega cos (\omega t - \theta ) .$  

KVL:
vs(t) = vC(t) + vR(t)  
  = vC(t) + Ri(t) .  


$\displaystyle {V_s} sin( \omega t)$ = $\displaystyle {V_C} \left [ sin( \omega t - \theta ) + \omega RC cos ( \omega t - \theta ) \right ]$  
  = $\displaystyle {V_C} \sqrt {1 + ( \omega RC)^2} \left [ \frac{1}{\sqrt {1 + ( \o...
...frac {\omega RC}{\sqrt {1 + ( \omega RC)^2} }
cos (\omega t - \theta ) \right ]$  
  = $\displaystyle {V_C} \sqrt {1 + ( \omega RC)^2 } \left [ cos (\delta )
sin (\omega t - \theta ) + sin (\delta ) cos (\omega t - \theta ) \right ]$  
  = $\displaystyle {V_C} \sqrt {1 + ( \omega RC)^2 } sin ( \omega t - \theta + \delta)$  

where:

\begin{displaymath}tan(\delta ) = \omega RC .
\end{displaymath}

Therefore:

\begin{displaymath}{V_C} = \frac{{V_s}}{ \sqrt {1 + ( \omega RC)^2}}
\end{displaymath}

and

\begin{displaymath}\theta = \delta = tan^{-1} (\omega RC) .
\end{displaymath}

Furthermore,

\begin{displaymath}{v_R}(t) = {V_s} \frac {\omega RC}{\sqrt {1 + (\omega RC)^2}} cos (\omega t - \delta)
\end{displaymath}

and

\begin{displaymath}{v_C}(t) = {V_s} \frac{1}{ \sqrt {1 + (\omega RC)^2)}} sin(\omega t - \delta) .
\end{displaymath}



 

Ljiljana Trajkovic
1998-11-08