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Abstract. Explicit Runge-Kutta pairs are known to provide efficient
solutions to initial value differential equations with inexpensive derivative
evaluations. Two criteria for selection are proposed with a view to deriving
pairs which minimize computation while achieving a user-specified accuracy.
Coefficients of improved pairs, their stability regions and coefficents of ap-
pended optimal interpolatory Runge-Kutta formulas are included on the
author’s website (www.math.sfu.ca/~jverner). This note reports results of
tests on these pairs to illustrate their effectiveness in solving nonstiff initial
value problems. These pairs and interpolants may be used for implementa-
tion or to provide comparison targets for other new types of methods.
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1 Introduction

Explicit Runge-Kutta pairs are known to be efficient algorithms for ob-
taining approximate solutions to initial value problems for nonstiff and mildly-
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stiff ordinary differential equations with relatively inexpensive derivative func-
tions evaluations. Here, we shall write an initial value problem as

y/(l') = f(x,y(x)), YIS [$Oaxend]a
y(o) = Yo,

(1.1)

where the solution is vector valued: y : R — R", and its derivative function
f: R" — R"is assumed to be sufficiently smooth.

The author designed a strategy for constructing explicit Runge-Kutta
pairs, and families of all orders up to order p, p < 9 [16, 17], which cir-
cumvented a problem with earlier pairs of orders greater than 5 derived by
Fehlberg [7]. Moreover, a classification system proposed in [22], and a sub-
set in [11] identify different structures from which to choose coefficients that
satisfy the well-known order conditions [1]. Indeed, higher-order pairs con-
jectured by this classification were subsequently constructed in [15, 23, 24].

Since the initial design appeared, a variety of authors have contributed a
spectrum of methods primarily focussed on reducing the 2-norm of the vector
of local truncation error (LTE) coefficients to obtain efficient algorithms.
Studies reported here indicates that this general strategy for selecting pairs
yields effective procedures for solving nonstiff problems of type (1.1).

In particular, we focus on two types of pairs designed to be effective:
i.e. for a given user-specified tolerance, the amount of computation required
should be small on average for all nonstiff problems. Following the traditional
criteria while restricting the size of the maximum coefficient used [11], we
designate a pair to be efficient if the 2-norm of the vector of LTE coefficients
is small, and the largest coefficient is not greater than about 200. Further, to
restrict the possibility that large coefficients may lead to increased arithmetic
truncation errors, we specify a pair to be robust if it is efficient, and all the
weights of the propagating (higher order) formula of a pair are non-negative.

Using these two criteria, searches through known and recently derived
pairs have lead to a selection of pairs which are recommended either for
implementation in production software, or as models against which other
types of new formula such as two-step Runge—Kutta or almost Runge-Kutta
pairs might be compared. In tests to determine the relative effectiveness of
these pairs, the higher-order approximation is propagated (extrapolation) so
that the 2-norm of the error-per-step (XEPS) is bounded by a user-specified
tolerance. In this mode, the global error is known to be approximately pro-
portional to the requested tolerance [13].
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For several reasons, coefficients of the selected pairs are provided on the
author’s website. First, this allows for an accurate and convenient transcrip-
tion of the coefficients for use in codes implemented by interested users. Sec-
ond, it allows for the inclusion of other information including several norms
of the vectors of local truncation error coefficients, graphs of the stability
regions of each pair, and coefficients for differentiable interpolatory Runge—
Kutta methods of the same orders with arbitrary parameters selected to give
(nearly) optimal interpolants. (When possible, each order p interpolant is
selected so that the 2-norm of its LTE increases monotonically over the step,
or is bounded by the endpoint 2-norm of the LTE of the discrete method.)

2 Selected Runge—Kutta Pairs

A single step of a Runge-Kutta pair using s stages F; = f(z, + ¢jh,Y;) is

specified by
Yi = yat+h) ayF;

j<i
Yni1 = Yo +h) bF (2.1)
=1
Uny1 = yn+hzgiFi
=1

(s*=s+1 for FSAL pairs), its coefficients are displayed in a Butcher tableau:

C1
cl A C2 | G21
ET = Cs | As1 o Qg s—1
b* 1] b b,
1| b b,

Table 1: Butcher tableau of a Runge-Kutta pair

This allows a brief description of the classification scheme in [22]. For each
problem in which f of (1.1) depends on y, the accuracy of the endpoint
solution depends upon stage-order (or ”sub-quadrature”) conditions

= G
Zaj,ka = T, l = 1,..,Qj, (22)
k=1



where ¢; defines the stage-order of stage j. In [23], we define the dominant

stage order to be
DSO = min{g;, |b; #0, j=1,..,s} (2.3)

Stages DSO=p-4 | DSO=p-3

[Tal.1 [16] | IIb [19, 15]
8-stage [Tal.2 [12]

propagation | ITal.3 [11]
ITa2 [23]

FSAL | IIIXal [2] | ITIXD [5, 19, 15]
propagation | I1IXa2 [23]

Table 2: Partition of RK6(5) Pairs by structure

Experience has shown that pairs with DSO=p-4 or DSO=p-3 (with subse-
quent names designated as Type a or Type b respectively) are most efficient
for computation. (Other pairs such as Hairer’s formula [8] with DSO=p-5,
do not appear to be effective for use as general purpose algorithms.)

A second partitioning of pairs is determined by their structure: we specify
a pair of Type II to be one for which s basic approximate derivatives are used
to compute two approximations of successive orders. In a pair of Type III,

0
9 9
50 50
1 29 25
6 324 324
1 1 3
4 16 0 16
53 79129 0 261237 19663
100 250000 250000 15625
3 1336883 0 25476 194159 8225
5 4909125 30875 185250 78546
4 | _ 2459386 0 19504 2377474 6157250 902
5 14727375 30875 13615875 5773131 735
1 2699 0 252 1393253 236875 135 15
7410 1235 3993990 72618 49 22
11 256 125 125 5
1 144 0 0 693 0 504 528 72
1 28 0 0 212 312500 2125 0 _ 2105 2995
477 441 366177 1764 35532 17766

Table 3: IIIXb+6(5), a robust nine-stage FSAL pair of orders 6 and 5



the derivative evaluation for the first approximation is used in computing the
second approximation; if the first approximation is that of higher order, Dor-
mand and Prince [3] use the term FSAL to indicate that the first derivative
of the new step is the same as the last derivative of the previous step, and
we designate this as Type IIIX. Other types are possible, but do not seem to
yield effective algorithms. Table 2 partitions some 6(5) pairs of known types.

Using MAPLE codes designed for deriving different types of pairs, we
searched for optimal efficient and robust pairs. A review of known pairs
provided starting values for arbitrary parameters, and searches to meet the
criteria of each type of pairs motivated modification of these parameters
to find nearly or numerically optimal pairs. In [11], the authors discuss
differences of some 6(5) pairs partitioned by type in Table 2. The three
variations indicated for pairs of type Ilal arise because of restrictions in
choices for node ¢,_; and weight b,. The numerically optimal robust pair
ITIXb+6(5) displayed in Table 3 has bs = 0, a possible additional advantage
for special types of problems such as delay differential equations.

Pair p s Apyio §p+1,2 6p+1,2 Xp_g Do SI, SI,1
[IXb4+6(5) | 6 9% 1.01(-4) 1.80  1.83 5.49(-3) 3.26 -4.32 -4.05
MIXb-6(5) |6 O* 1.44(-6) 172 172  2.25(-3) 207.9 -4.86 -4.39
Ib-6(5)[16] | 6 8 5.17(-5) 1.31  1.32 1.48(-3) 263 -4.36 -3.62
ITal+7(6) 7 10 2.70(-5) 1.57 1.57 5.23(-4) 80.50 -4.64 -4.00

ITal-7(6) 7 10 1.68(-5) 1.73 1.74 3.71(-4) 1873 -4.64 -4.00
Mal+8(7) |8 13 7.54(6) 3.06  3.01 211(-5) 592 -481 -5.00
11a1-8(7) 8 13 2.82(-7) 1.97 1.98 8.35(-6) 1234 -5.86 -5.70
DVERK-8(7) | 8 13 835(-7) 202  2.03  9.32(-6) 16.95 -578 -5.53
ITal+9(8) 9 16 3.51(-7) 3.42 3.41 4.15(-5) 23.80 -4.52 -3.90
al-9(8) |9 16 3.49(-7) 354 341  356(-6) 326 -4.47 -4.75

Table 4: Characteristic Properties of selected RK Pairs

Characteristic properties of explicit Runge-Kutta pairs have been used as
a strategy to identify their effectiveness. For an s-stage pair, Api10 and Ap 2
are 2-norms of the LTE coefficients, Bp+1 5 and C'p+1 o assess the quality of
the error estimate [4], Dy, is the magnitude of the largest coefficient, and S,
give the left ends of the real stability intervals. For some pairs of moderate
orders, tables of such properties appear in [12, 4, 19, 23]. Table 4 provides
corresponding properties for robust and efficient pairs studied here. These



include pairs on the author’s webpage, and as well, that of Table 5b in [15],
and the pair used in dsolve/dverk78] of the MAPLE subroutine library.

3 Numerical Experiments

To test the order of the derived methods and the quality of local error esti-
mation, we have applied the RK pairs listed in Section 2 to problems of the
DETEST set [10]. Each pair was implemented over a range of tolerances with
“error-per-step” and the solution was propagated by extrapolation using the
higher order formula of the pair (XEPS). This implementation makes the
global error approximation proportional to the tolerance, even though the
local truncation error is that of the lower order formula (see [13]). We begin
by tabulation of results on the interval [0,20] for two particular problems.
Problem B5,

yi = Y23, yl(o =0,
Yo = —Y1Y3; y2(0) = 1,
yi/i, — _0~51y1y2> ?/3(0 = ]-7

gives Euler equations of motion of a rigid body without external forces. Prob-
lem E3,

y:/L = Y2, yl(o) :0’
yh = y3/6 — y1 + 25in(2.785352), y»(0) = 0,

is derived from Duffing’s equation y” +y —y3/6 = 2sin(2.78535z). Later, we
include results from the Arenstorf orbit problem over one period of approxi-
mately [0,17.065], equations for which appear in [9] (page 129).

Tables 5 and 6 report results of XEPS implementation on the first two
problems for two efficient pairs over a range of Tolerances. The number of
steps (NS), number of rejected steps (NR), number of function evaluations
(NFE) and the maximum global error (GE) are tabulated. These tables il-
lustrate reduction of computation required with higher order pairs even for
relaxed requirements of accuracy. Moreover, the process for estimating the
order p achieved in a variable step implementation (reviewed below), illus-
trates that the effective order can be higher than expected. In other com-
putations done with these two problems, the application of the higher-order



Problem B5 (Euler) Problem E3 (Duffing)
Tol | NS NR NFE GE p | NS NR NFE GE p
10°6 | 70 2 650 3.77e-7 123 0 1109  1.13e-7
10-7 | 101 0 911 343e-8 710|174 0 1568  7.36e-9  7.88
1078 | 148 0 1334  2.66e-9 6.70 | 251 0 2261 4.92e-10 7.39
1079 | 216 0 1946 1.90e-10 6.99 | 363 0 3269 4.52e-11 6.47
107191316 0 2846 1.45e-11 6.77 | 528 0O 4754 7.52e-12  4.79

Table 5: Maximal global error for I1IX-65, the efficient RK6(5) pair with
|LTE||75 = .000001446174055 and DSO = 3.

Problem B5 (Euler) Problem E3 (Duffing)
Tol | NS NR NFE GE p NS NR NFE GE p
1076 | 31 ) 470 3.62e-7 53 1 704 5.22e-7
10°7 | 39 7 600 6.11e-8  7.29 | 66 0 860 4.33e-8 12.44
1078 | 49 7 730 1.11e-8  8.70 | 82 1 1081  4.59e-9  9.81
1072 | 63 7 912 852-10 11.53 | 105 0 1367 1.82e-10 13.75
10719 | 82 5 1133 9.20e-11 10.26 | 135 O 1757  2.53e-11  7.86

Table 6: Maximal global error for IIIX-8(7), an efficient RK8(7) pair with
|LTE||g2 = .000000282 and DSO = 4.

method of each pair with a fized stepsize selected to use the same amount of
computation as required in the corresponding variable step simulation, the
global errors are slightly smaller than those displayed in the tables. This
suggests that these two problems selected may not adequately challenge the
variable step format.

In contrast, the problem characterizing Arenstorf orbits in [9], shows a
substantial advantage for variable step over fized step Runge-Kutta imple-
mentations. For each of higher-order methods of the pairs studied, solutions
to this model system with a fixed stepsize could only be achieved with a very
large number of steps. Some results for this problem appear in Section 4.

For convenience, we review an accepted strategy for estimating the achieved
order in a variable-step implementation of a Runge-Kutta pair. By main-



taining the 2-norm of the local truncation error
LTE, =y, — v, =~ Ch? (3.1)

less than but almost equal to a fixed fraction of the tolerance, the tolerance
proportionality of the global error leads to

GE(h) ~ KCh? (3.2)

for a fixed stepsize h. In a variable stepsize implementation, we may estimate
an average stepsize by the reciprocal of the number of steps, or conveniently
as the multiple (M/NFE) of the reciprocal of the number of function evalu-
ations required over an interval [a,b]. In turn, we can estimate

P lOg10|KC‘Mp - lOg10(|GE(h)D

Thus, a plot of logio(|GE(h)|) against a logarithmically scaled number of
function evaluations will be approximately a straight line with (negative)
slope p. Such a graph characterizes the efficiency of a pair: the lower or
more to the left is the line indicates improved efficiency.

4 Efficiency Graphs for Three Problems

For each of the three problems selected in Section 3, we have plotted efficiency
graphs for the ten pairs identified in Table 4, in sets partitioned by their
orders ranging from 6(5) to 9(8). For each problem, in the subgraph arising
from order 6(5) pairs, we include lines of all slopes -6,-7,-8,-9, to indicate the
expected slopes of each subplot, and the relative differences expected among
the four subplots.

In general, these graphs manifest expected and unexpected results. We
observe that as the order increases, the computation required to achieve a
particular global error is reduced. Further, for the higher order pairs, the
downward curve of the graph shows that the achieved order is higher than
expected. In general, the new selected efficient pair of each order is best
for most of these comparisons. For the pairs of order 6, only the results for
Duffing’s problem show a clear advantage for the efficient pair. It is perhaps
unexpected that the robust pairs seem to be uniformly less effective than the
efficient pairs.
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Figure 1: Maximum Global Error for the Euler System

From this restricted comparison, we can observe that some slight improve-
ment on currently implemented algorithms might be possible. The closeness
of these graphs indicate that improvements by further reduction of the 2-
norms of the LTE coefficients are likely to be marginal at best.

5 Results from DETEST

To illustrate the general effectiveness of the pairs considered, we have exe-
cuted the DETEST test set of problems with each of the pairs. Each pair
is implemented using different fractions of EST = ||y, — Uy||2 as the Error
Estimate in order to approximately equalize the total amount of computa-
tion required for execution over the range of Tolerances 107%, k= 3,...,9.
These results may be contrasted with others that appear in [4, 18, 19, 20, 15].
From Table 5, we observe that as the order of the pair increases, there is a
slight improvement in efficiency. As well, for a given level of global error,
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Figure 2: Maximum Global Error for Duffing’s system

the amount of computation required is slightly lower for efficient pairs. Over
the range of tolerances for the DETEST results, the efficient 9(8) pair ap-
pears to be best among those examined, and is comparable to the algorithm
implementated as dsolve[dverk78] in MAPLE.

6 Conclusions

The tests reported here indicate that to meet a required accuracy with a min-
imum of computation on nonstiff problems, efficient pairs are more effective
than robust pairs, and the pairs of higher orders tend to be more effective.
In addition, the IIb pair in Table 5 of [15] and the pair implemented as
dsolve[dverk78] in MAPLE are good choices. Pairs displayed on the author’s
website have coefficients for appended differentiable approximations; as well,
dverk78 is implemented with options for selecting continuous solutions.
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Pair EE Tpt1,2 FCN | No. of | Max. | Frac. Frac.
calls | Steps | Error | Decv | Bad Decv
IIIXb+6(5) EST .00010102 104247 | 11441 1.5 0.000 0.000
IIIXb-6(5) EST/3 | .00000144 103271 | 11269 1.7 0.001 0.000
IIb—6(5) EST/3 | .0000517 98960 | 10942 1.6 0.001 0.000
ITal+7(6) EST .00002701 103072 | 8752 7.4 1 0.002 0.000
ITal-7(6) EST .00001676 | 102036 | 8715 0.5 | 0.000 0.000
ITal+8(7) EST .000007547 93626 5918 4.2 0.000 0.000
ITal-8(7) EST*7 | .000000282 | 101220 | 6348 1.6 | 0.000 0.000
DVERK-8(7) | EST*5 | .000000835 | 96309 | 6105 1.1 0.000 0.000
ITa1+9(8) EST .000000351 99670 5125 1.7 0.000 0.000
IIal—9(8) EST .000000349 | 100067 5147 0.4 0.000 0.000

Table 7: Results from DETEST using XEPS
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