Skip to content

Exercises

  1. What is the command to import NumPy as np?

  2. Create an array with \(10\) zeros.

  3. Create an array with \(10\) ones.

  4. Create an array with \(10\) fives.

  5. Create a diagonal matrix with \(5\) threes down the diagonal.

  6. Create an array of the integers from \(10\) to \(50\).

  7. Create an array of the even integers from \(10\) to \(50\).

  8. Create a \(3\times 3\) matrix with values ranging from \(0\) to \(8\).

  9. Create the \(3\times 3\) identity matrix.

  10. Use NumPy to generate a random number between \(0\) and \(1\).

  11. Use NumPy to generate an array of \(25\) random numbers sampled from a standard normal distribution.

  12. Create The following \(10\times 10\) matrix.

    array([[ 0.01,  0.02,  0.03,  0.04,  0.05,  0.06,  0.07,  0.08,  0.09,  0.1 ],
           [ 0.11,  0.12,  0.13,  0.14,  0.15,  0.16,  0.17,  0.18,  0.19,  0.2 ],
           [ 0.21,  0.22,  0.23,  0.24,  0.25,  0.26,  0.27,  0.28,  0.29,  0.3 ],
           [ 0.31,  0.32,  0.33,  0.34,  0.35,  0.36,  0.37,  0.38,  0.39,  0.4 ],
           [ 0.41,  0.42,  0.43,  0.44,  0.45,  0.46,  0.47,  0.48,  0.49,  0.5 ],
           [ 0.51,  0.52,  0.53,  0.54,  0.55,  0.56,  0.57,  0.58,  0.59,  0.6 ],
           [ 0.61,  0.62,  0.63,  0.64,  0.65,  0.66,  0.67,  0.68,  0.69,  0.7 ],
           [ 0.71,  0.72,  0.73,  0.74,  0.75,  0.76,  0.77,  0.78,  0.79,  0.8 ],
           [ 0.81,  0.82,  0.83,  0.84,  0.85,  0.86,  0.87,  0.88,  0.89,  0.9 ],
           [ 0.91,  0.92,  0.93,  0.94,  0.95,  0.96,  0.97,  0.98,  0.99,  1.  ]])
    

  13. Create an array of 20 linearly spaced points between 0 and 1.

  14. Create a 2D array of numbers from 0 to 49 as follows:

    arr_2d = np.arange(50).reshape(5,10)
    
    Using array slicing write down the command that will produce the following outputs.

    (a)

    Output:
    array([[12, 13, 14, 15],
            [22, 23, 24, 25],
            [32, 33, 34, 35]])
    

    (b)

    Output:
    30
    

    (c)

    Output:
    array([[ 2],
           [12],
           [22],
           [32],
           [42]])
    

  15. Create the following matrix.

    mat = np.arange(1,26).reshape(5,5)
    mat
    

    1. Find the sum of all values in mat.
    2. Find the standard deviation of the values in mat.
    3. Find the sum of all columns in mat.