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ABSTRACT
Multiple-input multiple-output (MIMO) systems are fundamental in numerous advanced engineer-
ing applications, from aerospace to telecommunications, where precise system identification is
critical for optimal performance. However, the identification of such systems often faces significant
hurdles due to data scarcity, with existing approaches typically requiring substantial amounts of
data for effective training. Addressing this challenge, this paper introduces a novel transfer learning
framework designed specifically forMIMO system identification under conditions of limiteddata and
inherent uncertainties. Theproposed framework is applied to twocase studies: the first inmetal addi-
tive manufacturing, specifically the laser-blown powder-directed energy deposition as the source
domain and the laser hot wire-directed energy deposition as the target domain, and the second
involving a nonlinear case study of a continuous stirred-tank reactor (CSTR) with a temperature-
dependent reaction. The results underscore the framework’s effectiveness in capturing thedynamics
of the target systems, including the ability to effectively model nonlinear dynamics. Comparative
analyses highlight the benefits of employing dimensionless numbers in dynamic systemmodelling,
offering reduced dimensionality, more physical meaning, and increased model accuracy. Overall,
the proposed framework presents a promising approach to enhance system identification in MIMO
systems with limited data and uncertainties, with potential applications across diverse domains.
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1. Introduction

Multiple-input multiple-output (MIMO) systems,
characterized by their multiple inputs and outputs,
are integral in a wide range of applications from
advanced control systems in aerospace engineering
to complex data processing in telecommunications
(W. Wang, 2007; X. Wang et al., 2019a). Efficient
and accurate modeling of MIMO systems, known as
MIMO system identification, is crucial as it allows
for enhanced understanding, prediction, and control
of complex processes in various engineering and sci-
entific fields. There are different methods of system
identification in the literature including autoregres-
sive models with exogenous input (ARX) (Gosiewski
& Paszowski, 2003), Hammerstein-Wiener models
(Ławryńczuk, 2015; Naitali &Giri, 2016), and artificial
neural networks (ANN) (Chu et al., 1990; Dong et al.,
2023). However, the main challenge with these system
identificationmethods is that they require a substantial
and rich dataset for effective application. Conventional
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system identification techniques often fall short in per-
formance when faced with limited data availability or
when significant uncertainty is present in the system.

Transfer learning (TL) is a strategy designed to
enhance the performance of learners on specific
tasks within target domains by leveraging knowledge
acquired from related source domains (Zhuang et al.,
2021). Inspired by human’s ability to transfer knowl-
edge across different domains, TL seeks to optimise
learning outcomes or minimise the need for labelled
examples in a target domain by drawing on knowl-
edge from a source domain. TL is particularly valuable
when dealing with a limited amount of target data,
where traditional machine learning (ML) techniques
may struggle due to data scarcity such as in the case
of training models for metal additive manufacturing
(AM) processes (Tang et al., 2023). It’s important to
note that the effectiveness of transferred knowledge
isn’t always guaranteed to be positive, as little com-
monality between domains can result in unsuccessful
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knowledge transfer, known as negative transfer (Z.
Wang et al., 2019b). Due to the inherent complexity
of the MIMO systems, the data required for system
identification should be both rich and abundant (Xiao
et al., 2011). However, in scenarios where data gath-
ering and acquisition are time-consuming and costly,
and a dataset from a similar system is available, TL
is considered an excellent option for MIMO system
identification.

While TL has demonstrated promising results in
modelling systems with a limited amount of data
across various fields, such as fault diagnosis (Han et al.,
2021), defect detection (Zhang et al., 2022), medical
imaging (Alzubaidi et al., 2021), and AM (Tang et al.,
2023), its application in MIMO system identification
has been limited. Niu et al. innovatively applied TL,
specifically parameter fine-tuning and freezing using
long-short term memory neural networks, to reduce
data and computation requirements for system iden-
tification. Their work focused on second-order lin-
ear andWiener-Hammerstein nonlinear systems (Niu
et al., 2022). Another noteworthy study by Tsoi et al.
(2018) applied TL to a frictionless ball and beam sys-
tem for system identification of a friction ball and
beam system using neural networks. However, these
TL techniques have primarily been applied to single-
input single-output (SISO) systems. Extending them to
MIMO systems presents challenges, mainly due to the
significant data requirements for training neural net-
works. This challenge becomes more pronounced as
the necessary data to train neural networks increases
exponentially with the growing number of inputs.

Refining the accuracy and robustness of dynamic
system models hinges on addressing inherent uncer-
tainties associated with both the systems and their
experimental data (Milanese & Vicino, 1991). For
example, in the realm of metal AM processes,
these uncertainties are particularly pronounced, with
parameters like laser power (LP), travel speed (TS),
and laser spot diameter exhibiting temporal fluctua-
tions during fabrication (Moges et al., 2019; Olleak &
Xi, 2020). Notably, such fluctuations can lead to signif-
icant deviations, such as a 20% reduction in LP from
the set value (King et al., 2014). To ensure the devel-
opment of robust models, it is imperative to quantify
these parameter uncertainties. Ritto et al. pioneered
an approach using approximate Bayesian computa-
tion and reinforcement learning for parameter iden-
tification and uncertainty calibration. They employed

an initial uncertainty distribution, which is iteratively
updated based on the model’s success in reproducing
the reference data (reinforcement learning strategy)
(Ritto et al., 2022). While effective in calibrating
parameter uncertainties, their method demands sub-
stantial data, raising questions about its applicability
when a limited amount of data is available.

For systems withmultiple inputs, dimensional anal-
ysis serves as a method for dimensional reduction by
defining dimensionless parameters (π), which helps to
reduce the demand on training data. In 1914 Bucking-
ham proposed the π-theorem, laying the foundation
for dimensional analysis theory (Buckingham, 1914).
Given its proficiency in dimension reduction and
generation of interpretable dimensionless parameters,
dimensional analysis finds widespread applications in
various domains such as heat transfer, fluid dynamics,
and manufacturing processes. Researchers have also
sought to define and utilise dimensionless parameters
in AM modelling since a multitude of input parame-
ters is involved (Kazmer & Colon, 2020; Marmarelis
& Ghanem, 2020; Zhao et al., 2021). For instance,
Rubenchik et al. (2018) characterised the temperature
distribution of components in selective laser melt-
ing using two dimensionless parameters: normalised
enthalpy and the ratio of dwell time to thermal diffu-
sion time. Additionally, Mukherjee et al. examined the
effects of various process variables and alloy properties
on the structure and properties of additively man-
ufactured parts using four dimensionless numbers:
dimensionless heat input, Peclet number, Marangoni
number, and Fourier number (Mukherjee et al., 2017).
The combination of TL and dimensional analysis holds
promise for addressing challenges in MIMO system
identification, where the data scarcity poses significant
hurdles.

The motivation for this study arises from the sub-
stantial challenges associated with identifying MIMO
systems, which typically require extensive, high-
quality datasets to accurately capture their complex
dynamics.Often, the available data aremarkedly insuf-
ficient – both in quantity and richness – making tradi-
tional system identificationmethods ineffective.While
TL approaches are commonly applied to SISO systems,
their extension to MIMO systems often requires rela-
tively abundant data due to the complexity and large
number of parameters involved. Recognising this limi-
tation, our research aims to develop a robust TL frame-
work specifically designed for MIMO systems under
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conditions of severe data scarcity. By focusing on this
underexplored area, the study aims to facilitate more
accurate and reliable system identification when data
scarcity is a critical constraint in MIMO systems. The
developed framework incorporates dimensional anal-
ysis for dimension reduction and calibrates the inher-
ent uncertainties within the MIMO input parameters.
This ensures enhanced agreement between the sys-
tem identification models and the experimental data.
Such an approach significantly improves the practi-
cal applicability of MIMO models in real-world sce-
narios, where data often exhibit imperfections or are
incomplete.

This study also pioneers the application of trans-
fer learning for MIMO system identification within
metal AM processes and extends the framework’s
applicability to nonlinear systems. We demonstrate
the framework’s effectiveness through two case stud-
ies: the first involves metal AM, where source data is
collected from a laser-blown powder directed energy
deposition (DED-LB/P) process, and target data from
a laser hot wire directed energy deposition (DED-
LB/W) process. Metal AM serves as a suitable domain
for applying the framework due to prevalent challenges
such as inherent uncertainty and data scarcity (Tang
et al., 2023). Additionally, the temporal fluctuations
observed in process parameters during the production
of metal AM parts highlight the importance of cal-
ibrating uncertainties for dynamic system modelling
(Moges et al., 2019; Olleak & Xi, 2020). Furthermore,
it has been observed that the dynamic relationship
between the process parameters in metal AM pro-
cesses and the resulting printing characteristics can be
effectively modelled using linear models, making lin-
ear model system identification a suitable choice for
this domain (Rahmani Dehaghani et al., 2024). The
second case study involves a nonlinear system: a con-
tinuous stirred-tank reactor (CSTR) with a first-order,
temperature-dependent reaction, chosen to assess the
framework’s generalizability to nonlinear dynamics. It
is to be noted that the model construction methods
explored in this study are restricted to linear models.
However, nonlinear systems that can be approximated
by linear models or linearised models around their
operating points can also be effectively modelled, as
demonstrated by the second case study (Bradshaw,
1978).

The rest of the paper is organised as follows:
Section 2 provides a detailed explanation of the TL

framework for MIMO systems. In Section 3, the pro-
posed approach is applied to Case Study 1, focusing
on metal additive manufacturing. Section 4 presents
the application to Case Study 2, involving a nonlinear
CSTR. The results are discussed in Section 5, and the
conclusion is drawn in Section 6.

2. TL framework for MIMO systems

The MIMO system TL framework is explained in
detail in this section. The framework is inspired by the
iterative uncertainty calibration framework developed
by Rahmani Dehaghani et al. (2022). Their frame-
work is used for uncertainty and model calibration of
static systems and not meant for dynamic time-series
systems or processes. An overall description of the pro-
posed approach is presented first and each subsection
of the framework is explained afterwards.

The flowchart of the framework can be observed
in Figure 1. The framework starts by defining the
source and target data and modelling objectives (out-
puts). The dimensional analysis is then applied using
Buckingham-II theorem to create the dimensionless
output and input numbers. The data is then pre-
processed which involves the normalisation of the
input and output dimensionless numbers to be within
0 and 1.

The next step is to perform the system identification
on the source data to find the most accurate yet sim-
ple model to fit on the source data. This step includes
calculating the fast Fourier transformation (FFT) of
outputs and inputs and developing the numerical Bode
plots of the input-output relationships to find how
many poles and zeros exist in the system for each
input-output pair. Afterwards, a model is constructed
using the dimensionless numbers, and the models are
compared based on their R-squared, normalised root
mean square error (NRMSE), and mean absolute per-
centage error (MAPE) calculated on the validation
source data, and the model with the highest accuracy
is selected as the model to be calibrated by the target
data.

An initial value is assumed for the uncertainty cal-
ibration variables (UCVs) and a bias is calibrated
between the selected model in the previous step and
the training target data. UCVs are the standard devi-
ations of the dimensionless numbers which are cali-
brated in the framework. The assumed uncertainty is
then calibrated by minimising the autocorrelation of
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Figure 1. MIMO system TL and uncertainty calibration framework flowchart.

the residuals of the output. To validate the calibrated
model with the calibrated uncertainty, the autocor-
relation of the residuals of the output of the model
should lie in the 99% confidence interval (CI). If
not, the convergence of the uncertainty calibration
variables (UCVs) is checked. If the convergence or
stopping criteria are not met, the algorithm uses the
calibrated UCVs for the model calibration. Otherwise,
the algorithm calls for more target data to calibrate the
model. In the following subsections, the main steps of
the framework are explained in more detail.

2.1. Developing dimensionless numbers (π )

After collecting both source and target data, the ini-
tial step involves the development of dimensionless

numbers. Dimensional analysis not only aims to
reduce the system’s dimensionality but also to intro-
duce dimensionless numbers that hold physical sig-
nificance in both the source and target domains. The
underlying assumption is that the outputs are mutu-
ally independent, and each output can be described or
controlled independently of the others using the sys-
tem’s inputs. Under these conditions, the MIMO sys-
tem can effectively be decomposed intomultipleMISO
(multiple-input single-output) systems. This conver-
sion of aMIMO systemwith ‘m’ inputs and ‘n’ outputs
to the ‘m’ MISO systems occurs by defining each out-
put yj(t) as a function of the inputs alone (yj(t) = f(u1,
u2, u3, . . . , un)), where ‘j’ ranges from 1 to ‘m’. This
means that a dynamic system with ‘n’ inputs and ‘m’
outputs can be expressed through ‘m’ separate systems,
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each consisting of ‘n’ inputs and a single output. Con-
sequently, the number of MISO systems is equal to
the number of outputs (m). At the conclusion of the
framework, the j-th output of the MIMO system can
be modelled or controlled by the corresponding j-th
MISO system. At this stage, the objective is to formu-
late dimensionless numbers for each of these ‘m’MISO
systems. Once dimensionless numbers are established
for one system, the same process is applied to each
subsequent system.

Applying the Buckingham-� theorem, the number
of dimensionless parameters for such a system is given
by ‘n+ 1-k,’ where ‘k’ represents the number of basic
dimensions and ‘n+ 1’ accounts for the total vari-
ables involved (comprising ‘n’ inputs and one output).
In simpler terms, the development of dimensionless
numbers effectively eliminates ‘k’ variables from the
problem.

To identify these dimensionless numbers, ‘k’ vari-
ables serve as the repeating variables, meaning that the
number of repeating variables is equal to the number of
basic dimensions in the problem. By combining each
of the ‘n+ 1 - k’ remaining variables with the repeat-
ing variables, a � group is formed. The exponents of
the repeating variables are then determined by setting
the total exponent of each dimension in the � group
to zero.

For instance, if the system features five inputs
(x1, x2, x3, x4, x5) and one output (y), and if all the
input dimensions can be expressed using three funda-
mental dimensions (k = 3), such as length (L), time
(T), and mass (M), the entire system’s behaviour can
be captured by three dimensionless groups (n+ 1 -
k = 3). The repeating variables, in this case, are x1, x2,
and x3, leading to the formation of three distinct
dimensionless groups: (x1, x2, x3, and y), (x1, x2, x3,
and x4), and (x1, x2, x3, and x5). The exponent of
the non-repeating variable is set to one, and the
exponents of the repeating variables within each �

group are computed to ensure dimensional consis-
tency in the resulting dimensionless numbers. It is
worth noting that one can choose different repeat-
ing variables as long as satisfying the following
requirements:

• Repeating variables should be selected from the list
of input parameters (independent variables).

• All of the basic dimensions must be represented in
the repeating variables.

• Two repeating variables cannot have the same
dimension.

• Repeating variables cannot be dimensionless.

The� group that includes the dependent parameter
(the output) is designated as the output dimensionless
number, while the remaining dimensionless numbers
are recognised as the input dimensionless numbers.
Once the � numbers are determined, it is advisable
to delve into the endeavour of comprehending the
physical significance of these � numbers. This under-
standing aids in deciphering the implications of the
numerical values in subsequent stages of the analysis.

2.2. Sourcemodel system identification

The next step is to construct the model for the source
system. This source model is exploited as the base
model for the target system. The procedure of cali-
brating this model on the target data is explained in
Section 2.3. If a system has n inputs and one output,
the Laplace transformation of the output can be then
formulated as.

πoutput(s) = G1(s)π1(s) + G2(s)π2(s) + G3(s)π3(s)

+ . . . + Gn−k(s)πn−k(s) (1)

where Gi(s) is the transfer function between the
ith dimensionless input number (πi) and the output
(πoutput). πoutput(s) and πi(s) are the Laplace transfor-
mation of the output and the ith input dimensionless
numbers, respectively. The objective of Section 2.2 is
to find all of the Gis for a given MISO source sys-
tem, referred to as source model system identification,
a process comprising two distinct stages. Firstly, it
entails an analysis of the behaviour of the MISO sys-
tem, including determination of the number of poles
and zeros. Subsequently, the task involves constructing
multiple models and select the model demonstrating
the highest accuracy on the source validation data. The
succeeding subsections provide detailed explanations
for each of these stages.

2.2.1. Numerical Bode plots
In a continuous system, understanding the system’s
behaviour often involves examining the Bode plot of
the system’s transfer function. In caseswhere the trans-
fer function of the source system remains undeter-
mined, Bode plots for each input and the output can
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be generated using FFT. For a given MISO system, the
Bode plot can be represented through Equations 2 and
3. Equation 2 yields the gain in decibels (dB), while
Equation 3 provides the phase angle in degrees.

G = 20log10
FFT(πoutput(t))
FFT(πi(t))

(2)

Phase = ∠
∣∣∣∣FFT(πoutput(t))

FFT(πi(t))

∣∣∣∣ (3)

In Equations 2 and 3, πoutput(t)and πi(t) are the out-
put and ith input time series data, respectively (1 ≤ i ≤
n − k). Furthermore, the function FFT(.) is employed
to efficiently compute the Discrete Fourier Transform
(DFT) from the provided time series data (Cooley &
Tukey, 1965). DFT is the frequency response of the
time series data and the ratio, FFT(πoutput(t))

FFT(πi(t)) , behaves
like the transfer function between the ith input and
the output of the system in the frequency domain.
Hence, the gain (Equation 2) and phase (Equation 3)
of this ratio are plotted and used to find out the overall
behaviour of the system. Plotting the gain and phase
of the ratio, FFT(πoutput(t))

FFT(πi(t)) , versus the frequency is com-
monly known as the Bode plots of the system. It’s
worth noting that these Bode plots are calculated using
discrete data, hence they are referred to as numeri-
cal Bode plots. Determination of the system’s number
of poles and zeros is then achieved by observing how
many times the gain decreases and increases, respec-
tively. Once the poles and zeros are understood, the
appropriate transfer function is fit to the data, a process
to be elaborated on in the subsequent subsection.

2.2.2. Model construction and comparison
The generic formof the transfer function between each
input and the output is represented by Equation 4.

Gi(s) = πoutput(s)
πi(s)

= e−Tds

apsp + ap−1sp−1 + ap−2sp−2

+ . . . + a1s + a0
boso + bo−1so−1 + bo−2so−2

+ . . . + b1s + 1

(4)

In Equation 4, Gi(s) is the transfer function between
the ith input and the output (1 ≤ i ≤ n − k). πoutput(s)
and πi(s) are the Laplace transformation of the out-
put and the ith input dimensionless numbers, respec-
tively. The exponential term, e−Tds, is the delay term

that shows the delay between the input and the out-
put and Td is the delay time in seconds. p and o are
the orders of the nominator and denominator, respec-
tively. The order of the system is also equal to o. It
is worth noting that the necessary condition to have
a stable system is that o ≥ p.The purpose of this step
is to find Td, ap, ap−1, ap−2, . . . , a0, bo, bo−1, bo−2, . . . ,
and b1 which are called model parameters. It is worth
mentioning that the values of p and o are determined
in the previous section by the numbers of poles and
zeros, which are called p∗ and o∗, respectively.

The source dataset is divided into separate valida-
tion and training datasets. The training dataset serves
as the basis for constructing themodels, while the vali-
dation dataset is employed for comparing and selecting
the models. In pursuit of enhancing the reliability of
system identification, various choices of p and o in
proximity to the values p∗ and o∗ are explored, result-
ing in the creation of different models. These models
are evaluated based on their R-squared, NRMSE, and
MAPE values with respect to the source validation
dataset; the models exhibiting the highest accuracy are
chosen as the source models.

2.3. MIMO system bias calibration

Prior to calibrating the models, it is essential to define
UCVs and assign initial values to each of them. The
dimensionless input numbers, as described in Section
2.1, exhibit uncertainties stemming from the inherent
uncertainties in the original input parameters. Conse-
quently, it is postulated that the dimensionless input
numbers conform to a Gaussian distribution, with
mean values derived from the original input param-
eters and standard deviations referred to as UCVs.
Equation 5 formulates the UCVs as follows:

UCVs = (μπ 1,μπ 2,μπ 3, . . . ,μπn−k) (5)

where, μπ i represents the standard deviation of the
ith dimensionless input number. An initial vector
of UCVs is assumed prior to the bias calibration.
This initially-assumed uncertainty is calibrated in
Section 2.4.

The objective of this phase is to calibrate the
source models using the target data. The bias cali-
bration approach employed in this study falls under
the category of model-based TL techniques, designed
to streamline the construction and training of target
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models by leveraging source model structures or
parameters (Tang et al., 2023; Zhuang et al., 2021).

In the proposed method, the assumption is made
that both the source and target domains share the
same feature space, and the TL approach employed
is of the homogeneous type (Weiss et al., 2016).
This assumption needs validation during the model
construction. If the application of the proposed TL
approach results in negative transfer, it indicates a
deviation from the assumption. In such cases, other
heterogeneous TL approaches, such as feature space
adaptation, should be considered (Day & Khoshgof-
taar, 2017; Sugiyama et al., 2008). In this work, the
source model has a structure described in Equation
4. It is assumed that the target domain has a sim-
ilar structure, implying that the model’s order and
the number of poles and zeros are the same in both
the source and target systems. As a result, the task is
to adjust the model parameters to increase the accu-
racy of the model on the target training data with-
out changing the structure of the models. Hence, in
Equation 6, τd,αp,αp−1, . . . ,α1,βo,βo−1, . . . ,β1 are
the bias parameters (θ)that should be found during
the bias calibration to construct the transfer function
between each dimensionless input and output num-
ber. According to Equation 6, the total number of bias
parameters is ‘1+ p+ o’.

Gi(s) = πoutput(s)
πi(s)

(6)

= e−(Td+τd)s

(ap + αp)sp + (ap−1 + αp−1)sp−1

+(ap−2 + αp−2)sp−2 + . . .

+(a1 + α1)s + a0
(bo + βo)so + (bo−1 + βo−1)so−1

+(bo−2 + βo−2)so−2 + . . .

+(b1 + β1)s + 1

The process to find the bias parameters involves
an optimisation problem formulated in Equation 7,
where, N is the number of training samples from the
target dataset, π̂output,t(θ) is the dimensionless output
number predicted by the model at time t, and π̄output is
the mean value of the training samples from the tar-
get dataset. It’s essential to note that the bounds for
optimisation parameters, denoted as θmin and θmax,
must be chosen judiciously to ensure the stability of
the finalmodel. For instance, poles located on the right
side of the complex number plane should be avoided,
as they lead to unstable models. If the system’s stability

cannot be readily inferred from the parameter range,
additional stability criteria, such as the Lyapunov sta-
bility theorem, can be incorporated as constraints in
Equation 7 (Lyapunov, 1992).

θ∗ = Argmax

(
1 −

∑N
t=1 (π̂output,t(θ) − πoutput,t)

2∑N
t=1 (πoutput,t − π̄output)

2

)

(7)

Subject to:

θmin ≤ θ ≤ θmax

2.4. MIMO system uncertainty calibration

The subsequent step involves the calibration of the
uncertainties that were assumed prior to the bias cali-
bration. Uncertainty calibration is performed with the
aid of residual autocorrelation of the output. In the sys-
tem identification theory, a necessary condition of a
perfect estimation is the absence of autocorrelation in
the residuals of the model (Box & Pierce, 1970; Monti,
1994). The UCVs are calibrated to minimise the resid-
ual autocorrelation of the predicted models. Autocor-
relation for time-series data, specifically the residuals
of the output, can be computed at various time lags. In
time series analysis, a ‘lag’ is a fixed amount of passing
time between two points in the data. When analysing
autocorrelation in time series data, a lag is used tomea-
sure how the data values at one point in time are related
to values at another point. Equation 8 shows the auto-
correlation calculation at lagh (Chatfield, 2013). In this
notation, Rh denotes the degree of correlation between
a data point in a time-series and its value ‘h’ time steps
earlier. The value of ′Rh’ falls within the range of –1–1,
with zero indicating no autocorrelation. It’s important
to note that ‘R0’ is invariably 1. In this study, autocor-
relation is computed for lags ranging from 0 to 25 (0 ≤
h ≤ 25), and the examined time series data is the resid-
ual of the dimensionless output number of the training
target dataset. In Equation 8, N is the total amount of
data in the training target dataset and e represents the
residual.

Rh = Ch

C0
(8)

where,

Ch = 1
N

N−h∑
t=1

(et − ē)(et+h − ē)
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The underlying hypothesis is that altering the distri-
bution of the dimensionless input numbers will result
in a corresponding change in the residual autocorre-
lation of the predictive model. The purpose is to find
the UCVs that leads to the lowest residual autocorre-
lation. To achieve this objective, the maximum value
of the residual autocorrelations among the first 25 lags
(R1,R2,R3, . . . ,R25) is minimised. This optimisation
problem is formulated in Equation 9. The user should
determine the bounds for the UCVs, and these bounds
hinge on the range of variation for the correspond-
ing dimensionless number. It’s imperative to note that,
irrespective of the problem, the bounds should not fall
below zero, given that standard deviations are inher-
ently positive numbers.

UCVs∗ = Argmin(max{R1,R2,R3, . . . ,R25}) (9)

Subject to:

�0 ≤ UCVsmin ≤ UCVs ≤ UCVsmax

2.5. Validation hypothesis test

The next step is to check the validity of the calibrated
model and UCVs on the validation target dataset. The
hypothesis test checks if the residual autocorrelation
falls within the CI for all the lag values. The calcula-
tion of the CI for the significance level α is presented
in Equation 10 (Chatfield, 2013).

CI =
[
−z1− α

2√
N

,+z1− α
2√
N

]
(10)

In Equation 10,N is the sample size and z is the cumu-
lative distribution function of the standard normal
distribution. The residual autocorrelation for differ-
ent lags on the target validation dataset is calculated
and checked if it falls within the CI. The validation
process is terminated if all the autocorrelations lie
within the CI, otherwise, the proposed approach uses
the calibrated UCVs as the initial guess to perform
bias calibration (Section 2.3). Then, the new calibrated
model and UCVs are used to conduct the validation
hypothesis test. This iterative process continues until
the change in the UCVs in two consecutive iterations,
is less than ε (|UCVi − UCVi−1| < ε), i.e. a conver-
gence criterion, or the number of iterations exceeds the
maximum number of iterations (Iter > Itermax). If the
convergence criterion or stopping criteria are met and

the framework still cannot generate a valid model, it
indicates the need for additional target training data.
This iterative strategy has been shown to ensure the
validity and accuracy of the final model not contingent
on the initially-assumed UCVs (Rahmani Dehaghani
et al., 2022).

3. Case study 1: melt pool widthmodelling in
DED processes

The described framework for TL and uncertainty cal-
ibration in dynamic MIMO systems can be univer-
sally applied, provided certain assumptions hold true.
Firstly, the MIMO system must be representable as a
linear time-invariant system; secondly, it is assumed
that the outputs of the system are mutually inde-
pendent, allowing an ‘m’-output MIMO system to be
treated as ‘m’ separateMISO systems. In this study, the
framework is specifically applied to the field of metal
AM. The source dataset is compiled by the Stevens
Institute of Technology, encompassing the DED-LB/P
process (Akhavan et al., 2023). The target data, on the
other hand, is acquired from experiments conducted
at the University West in Sweden, specifically focus-
ing onDED-LB/Wprocess (RahmaniDehaghani et al.,
2024). The input process parameters of the deposition
process include the deposition rate (DR), laser power
(LP), and travel speed (TS), which are systematically
varied during the part deposition. Stainless steel 316L
(SS316L) powder is employed in the DED-LB/P pro-
cess, while duplex stainless steel 2209 (DSS2209) wire
with a 1.2 mm diameter is used in the DED-LB/W
process. In order to incorporate material characteris-
tics and properties into the modeling, two additional
input parameters, density (ρ) and latent heat of fusion
(Lf ), are considered. Consequently, a total of five input
parameters are involved in the dimensional analysis,
denoted by ‘n = 5.’

Both of the source and target data captured coax-
ial images of the melt pool during the deposition of
the parts. Melt pool width (MPW) is calculated from
the images as the output of the MISO system. Table 1
reports the range of all the input and output parame-
ters in the source and target dataset. The dimensions
of the parameters are provided in the third column
of Table 1 where L, T, M, and θ represent length,
time, mass, and temperature, respectively. Analysing
the dimensions of the input and output parameters,
it becomes evident that the fundamental dimensions
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Table 1. Input, output, and auxiliary parameters, their dimensions, and ranges in source and target datasets for case study 1.

Parameter range

Parameter type Parameter Dimension DED-LW/P DED-LW/W

Input(n = 5) Deposition rate (gr/s), DR [M][L−1] 0.083–0.158 0.265–0.323
Travel speed (mm/s), TS [L][T−1] 5–10 8–12
Laser power (W), LP [M][L2][T−3] 300–500 2800–3200
Density (gr/mm3), ρ [M][L−3] 7.98e-3 (Azom, n.d.) 7.80e-3 (Matweb, n.d.-a)
Latent heat of fusion (J/gr), Lf [L2][T−2] 272 (Azom, n.d.) 264 (Matweb, n.d.-a)

Output Melt pool width (mm),MPW [L] 0.65–0.95 4.7–5.4
Auxiliary Specific heat capacity, Cp(J/oCgr) [L2][T−2][θ−1] 0.5 (Matweb, n.d.-b) 0.48 (Matweb, n.d.-a)

Melting point (oC), Tmelt [θ ] 1425 (Matweb, n.d.-b) 1375 (Matweb, n.d.-a)

Figure 2. Imageprocessingprocedure to find theMPW(Rahmani
Dehaghani et al., 2024).

required for the dimensional analysis consist of three
key dimensions, encompassing length, time, and mass
(k = 3).

The process of extracting the MPW from the
coaxial images involves several key steps, including
image cropping, thresholding, and the placement of
an inscribed circle within the melt pool. The diam-
eter of the largest inscribed circle is then selected as
the MPW. A detailed explanation of this procedure
can be found in Reference (Rahmani Dehaghani et al.,
2024). For a visual depiction of the image processing
steps, please refer to Figure 2, where the diameter of
the smaller circle is chosen as the MPW. In the DED-
LB/P process, a total of 30 beads are printed, and one
process parameter is altered three times during the
deposition of each individual bead. The data from the
different beads are concatenated, creating one contin-
uous time series data. A parallel concatenation process
is implemented for the target data stemming from the
DED-LB/W process. However, in this case, only the
data from the printing of 3 beads is utilised as the target
data, and one process parameter is altered twice during
the deposition of each bead.

3.1. Dimensionless numbers construction

After converting the parameters of source and target
data to the same units and creating one continuous
time series data for either of the source and target
datasets, it is time to create the dimensionless num-
bers using the Buckingham-� theorem. Given the
total number of parameters involved in the modelling
process is six (n+ 1 = 6) and hence the number of
dimensionless parameters is 3 (n+ 1-k = 3). Applying
the theorem, the dimensionless numbers are found as
below:

π1 = TS√
LP
DR

π2 =
LP
DR
Lf

π3 = MPW√
DR
ρTS

(11)

π3 is the dimensionless number that includes the out-
put and hence, it is called the output dimensionless
number. Moreover, it is the ratio of the MPW to the
square root of the cross-sectional area of the bead.
Hence,π3 value of onemeans that the height andwidth
of the bead is quite close to each other. The other
two dimensionless numbers are the input dimension-
less numbers. π1 is called πprocess since it is defined by
process parameters. Lastly, π2 is the ratio of the input
energy from the heat source to the energy the material
needs to melt. Thus, π2 is called πenergy. This formu-
lation of πenergy does not consider the energy that the
material needs to reach the melting point. This energy
is quantified in Equation 12.

Q = Lf + Cp(Tmelt − T0) (12)

In Equation 12, Cp is the specific heat capacity, Tmelt
is the melting point of the alloy and T0 is the ambi-
ent temperature which is 25oC. Q needs to be placed
in the denominator of the πenergy to reflect the real-
ity more closely. The values of Cp and Tmelt for either
of the source and target data are introduced under
the Auxiliary parameters of Table 1. In conclusion,
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Figure 3. Numerical bode plots between dimensionless inputs and the output.

the final input and output dimensionless numbers are
introduced in Equation 13.

πprocess = TS√
LP
DR

πenergy =
LP
DR

Lf + Cp
T

πoutput = MPW√
DR
ρTS

(13)

After calculating the dimensionless number for each
sample time, the dimensionless numbers are norm-
alised using the normal standard distribution.

3.2. DED-LB/P system identification (source dataset)

The subsequent stage in the MIMO system TL frame-
work involves the development of source models. To
accomplish this, numerical Bode plots are generated
for each dimensionless input and output, as depicted
in Figure 3. The plots on the left side of Figure 3 illus-
trate the Bode plots from πprocess to πoutput , while those
on the right side display the Bode plots from πenergy
to πoutput . The magnitude plots in decibels (dB) reveal
that the gain remains relatively constant, with a slight
decrease around 30 Hz (dashed red line) before stabil-
ising oncemore. This behaviour indicates the presence
of one pole and one zero in the dynamic system. This
conclusion holds true for both sets of plots, indicating
that p∗ = 1 and o∗ = 1. It’s worth noting that models
with different numbers of poles and zeros around the
selected points are also constructed and subsequently
compared.

A time series dataset, comprising 20,228 data
points sampled at 100 Hz, is created through the

Figure 4. Source models’ comparison based on the source vali-
dation dataset.

concatenation of data from the 30 beads in the source
dataset. Within this dataset, 25% of the data is ear-
marked for validation, while the remaining 75% is
utilised for training. Various selections of first, second,
third, and fourth-order models are constructed using
the MATLAB System Identification Toolbox. These
models are compared based on their performances
against the source validation dataset, as depicted in
Figure 4. The R-squared, NRMSE, and MAPE values
for each model on the validation data are reported for
the purpose of comparison.

The model’s characteristics, including the number
of poles, the presence of a zero, and the inclusion of
a delay term, are denoted by the model’s name. For
instance, the model ‘P1DZ’ represents a first-order
model (P1) that includes a zero (Z) and a delay term
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(D). The plots indicate that the model with one pole
and one zero attains the highest accuracy, achieving an
R-squared, NRMSE, andMAPE values of 0.783, 0.034,
and 7.75%, respectively (the dashed orange line). This
conclusion aligns with the results presented in Figure
3, where it was deduced that the model possesses one
pole and one zero for both input-output pairs. The
‘P1DZ’ model is subsequently employed as the base
model in the following sections, and it is calibrated
using the target data.

3.3. Model calibration on DED-LB/W target data

Before performing the bias calibration, UCVs should
be defined. With reference to Equation 5, the UCVs is
defined as below:

UCVs = (μπ process,μπ energy) (14)

The initial values for the UCVs are selected as
UCVs = (0, 0). The P1DZ models developed in the
previous step has the following structure (o = 1 and
p = 1):

πoutput(s) = e−0.011s−0.013s + 0.74
0.00071s + 1

πprocess(s)

+ e−0.016s 0.85s + 0.66
1.19s + 1

πenergy(s) (15)

According to Equation 6, the bias parameters (θ) to be
determined in this step consist of six parameters: three
parameters (o+ p+ 1 = 3) for each of the transfer
functions at the right-hand side of Equation 15. Three
bias parameters areα1,β1,and τd.With the assumption
that the delay between the source and target systems is
equal, and therefore, the delay bias parameter (τd) is
set to zero. As a result, the total number of parameters
is reduced to four. This assumption is deemed valid
since the delay is contingent on how rapidly the com-
mand is applied and the output is changed, a factor
that remains consistent in both the source and target
processes, given their similar command system. Con-
sequently, models with the bias parameters (θ) can be
represented as:

πoutput(s) = e−0.011s (−0.013+α11)s+ 0.74
(0.00071+β11)s+ 1

πprocess(s)

+ e−0.016s (0.85 + α12)s + 0.66
(1.19 + β12)s + 1

πenergy(s)

(16)

The bias parameters (α11,α12,β11,β12) are deter-
mined through the optimisation problem outlined in
Equation 7. The target data for the DED-LB/W comes
from printing three single beads, each with one input
parameter change during the deposition. This sce-
nario, reflecting a limited dataset, includes 755 data
points recorded at a sampling interval of 0.03 s, which
are then divided into training and validation datasets.
To identify the most suitable ratio for the training
dataset, a comprehensive study is conducted, and the
results are illustrated in Figure 5. In this study, the
training-to-whole-dataset ratio is varied from 0.1–0.9,
and three distinct models are compared:

(1) The model derived from the optimisation of
Equation 7, trained on the source data and cali-
brated on the target data, referred to as the cal-
ibrated source model (depicted by the blue line
with circular markers).

(2) The source model without calibration on the tar-
get data, known as the source model (represented
by the red line with triangular markers).

(3) Themodel trained solely on the target data, oblivi-
ous to the source data, denoted as the targetmodel
(shown by the yellow line with square markers).

The accuracy of these models is assessed based on
the validation target dataset and is plotted in Figure 5.
The maximum accuracy is achieved by the calibrated
source model when the target training ratio is set to
0.7. Figure 5 further illustrates that training a MISO
model with a limited amount of data without incor-
porating TL does not yield acceptable accuracies. This

Figure 5. Performance comparison of the calibrated source
model, non-calibrated source model, and target model under
varying training ratios, assessed on the validation target dataset.
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is evident as the target model line (yellow line with
square markers) results in negative R-squared values,
emphasising the necessity of TL when dealing with
limited data.

The assumption that both of the source and target
domains share same feature spaces holds true since
in all of the training ratios the blue line with circular
markers is higher than the yellow line with the square
markerswhich indicates that the transfer is always pos-
itive. This also can be understood by taking a look at
the source model accuracies (red line with triangular
markers). Although this model is blind to the target
data during the training it shows a relatively acceptable
accuracy on the target dataset in most of the cases. It
implies that the source and target domains have similar
feature spaces.

According to Figure 5, 70% of the target data is
used as the training dataset to perform the opti-
misation problem and find the bias parameters (θ).
After performing the optimisation using genetic
algorithm, these optimal bias parameters are found
to be:

θ∗ = (α∗
11,α

∗
12,β

∗
11,β

∗
12)

= (0.0022, 0.00011, 0.22, 1.028) (17)

Consequently, the calibratedmodel is representable as:

πoutput(s) = e−0.011s−0.011s + 0.74
0.00082s + 1

πprocess(s)

+ e−0.016s 1.07s + 0.66
2.22s + 1

πenergy(s) (18)

The models compared in Figure 5 are consolidated
with the validation data to assess their performances
on the time series data in Figure 6. It can be seen
that the blue line with the circular markers (cal-
ibrated model) represents a refined version of the
red line with the triangular markers (source model),
evident in the closer alignment with the valida-
tion data. The R-squared of the calibrated model
on the validation target data is determined to be
0.632 signifying a commendable level of perfor-
mance. Furthermore, the performance of the defined
models, assessed using various metrics, is compiled
in Table 2. This demonstrates that the calibrated
model achieves the best performance, with R-squared,
NRMSE, and MAPE values of 0.0.632, 0.076, and
9.71%, respectively.

Figure 6. Performance comparison of the models on the target
validation data.

Table 2. Performance metrics comparison of the models on the
target system validation data.

Model name R2 NRMSE MAPE (%)

Calibrated model 0.632 0.103 11.2%
Source model 0.531 0.112 13.9%
Target model 0.398 0.133 16.7%

3.4. Modelling: process parameters vs.
dimensionless numbers

To see the effect of using dimensionless numbers, the
same methodology is employed to construct models
on the target data directly using process parameters,
including LP, TS, and DR, with MPW as the out-
put. The hypothesis posits that utilising dimension-
less numbers enhances model accuracy by reducing
dimensionality (from three inputs to two) and impart-
ing more physical meaning to parameters (e.g. πenergy
as the ratio of input energy to the energy needed for
melting). This hypothesis is tested by plotting the cal-
ibrated model, source model, and the target model
trained with process parameters (utilising 3 inputs and
1 output), as presented in Figure 7. Figure 7 mirrors
Figure 6, with the only distinction being the absence
of transformation to dimensionless parameters, using
instead the usual process parameters for model con-
struction.

Observing the behaviour of the lines in Figure 7,
it becomes evident that none of the models accu-
rately capture the process dynamics. This is fur-
ther supported by the accuracy of the models, none
of which surpasses R2 = 0.452, NRMSE = 0.146,
and MAPE = 19.3%. These findings substantiate the
hypothesis that incorporating dimensionless numbers
in modelling MISO systems enhances both accuracy
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Figure 7. Comparing the models trained and evaluated using
the process parameters based on the R-squared value on the
validation target data.

and efficiency. An important observation in Figure 7
is that the accuracy of the calibrated model (blue line
with circular markers) is lower than that of the source
model (red line with triangular markers). This dis-
crepancy indicates that the increase of dimensionality
hampers the calibration process, resulting in a deteri-
oration of model accuracy rather than improvement.

3.5. Uncertainty calibration of DED-LB/W process
andmodel validation

The subsequent step involves calibrating the uncer-
tainty of the parameters, as detailed in Section 2.4.
Autocorrelation of the residuals is computed for the
first 25 lags and minimised using the training target
data through Equation 9. Figure 8 illustrates the resid-
ual autocorrelation on the validation data across dif-
ferent iterations. The shaded gray region between the
red lines represents the CI calculated from Equation
10. Notably, the model becomes valid after the third
iteration (the solid line without markers), with the
exception of lags two and eight, which are marginally
validated.

In each iteration, UCVs are optimised, and if the
autocorrelation does not lie in the confidence inter-
val, the optimised UCVs are utilised to perform bias
and uncertainty calibration once again. This iterative
process continues until a valid model is found or the
convergence criterion or stopping criteria (i.e. Iter >

Itermax = 10) are satisfied. The convergence criterion,
represented by dashed red line in Figure 9, is set to
0.01. Figure 9 displays the change in the absolute
values of the UCVs for each iteration. The frame-
work concludes after the third iteration, meeting the

convergence criterion. This termination aligns with
the point where the framework reaches the validated
autocorrelation, depicted by the purple solid line with-
out markers in Figure 8.

4. Case study 2: reactant concentration
modelling in continuous stirred-tank reactor

In this section, the framework is applied to a non-
linear case study involving a CSTR with a first-order,
temperature-dependent reaction. The objective is to
demonstrate that the framework can be effectively
applied to nonlinear systems, provided that these sys-
tems can be adequately linearised with acceptable
accuracy. The focus of this case study is to model the
concentration of the reactant inside the reactor, given
the temperature, inlet concentration, and flow rate of
the reactant as controllable inputs. The general non-
linear governing differential equation for the system is
presented below (Doraiswamy, 1992; Oza et al., 2000):

dC(t)
dt

= F(t)
V

(Cin(t) − C(t)) − k0e
− Ea

RT(t)C(t) (19)

where C(t) represents the reactant concentration
inside the reactor (output); Cin(t) is the reactant con-
centration at the reactor inlet (controllable input 1);
F(t) denotes the flow rate of the reactant into the reac-
tor (controllable input 2); V is the reactor volume;
k0 is the pre-exponential factor (frequency factor) of
the reaction rate; Ea is the activation energy of the
reaction; R is the universal gas constant; and T(t) is
the temperature inside the reactor (controllable input
3). The approach involves two distinct reactors with
different volumes, reaction rates, and activation ener-
gies, with one being designated as the source reactor
and the other as the target system. Source and tar-
get datasets are generated for each system using the
governing equation provided. These datasets are then
utilised in subsequent sections to apply the framework
and evaluate its effectiveness. The involved parame-
ters, along with their dimensions and values for the
source and target systems, are described in Table 3.

To create the source and target datasets, different
trends for the input parameters are applied to both
the source and target systems. These input parameters,
along with the nonlinear governing Equation 19, are
used to generate the output data for each system. The
initial reactant concentration is set at 2 mol/L, and a
sampling time of 0.1 s is used. For the source system,
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Figure 8. Residual autocorrelation on the validation data in different iterations.

Table 3. Input and output parameters, their dimensions, and ranges/values in source and target reactors for case study 2.

Parameter range/value

Parameter type Parameter Dimension Source reactor Target reactor

Input(n = 7) reactant inlet concentration (mol/L), Cin [M][L−3] 1–3 1–3
Reactant inlet flow rate, (L/s), F [L3][T−1] 20–50 30–50
Reactor temperature (o C), T [θ ] 300–800 300–800
Reactor volume (L), V [L3] 100 50
Activation energy (J/mol), Ea [M][L2][T−2] 50000 45000
Universal gas constant (J/mol.K), R [M][L2][T−2][θ−1] 8.314
Pre-exponential factor (1/s), k0 [T−1] 5000 3000

Output reactant concentration (mol/L), C [M][L−3] 0.154–2.432 0.932–2.689

Figure 9. Convergence criterion limit and the change of theUCVs
absolute value in each iteration.

10,000 data points are generated, while only 750 data
points are produced for the target system to simulate
the limited availability of data for the target system.
The framework is then applied to this case study and
to be discussed in the following subsections.

4.1. Dimensionless numbers and source CSTR
system identification

Following Table 3, the number of base dimensions
involved in this study is four (k = 4), while there are

eight different parameters involved (namely, C, Cin, F,
T, R, k0, V, and Ea). Therefore, the number of dimen-
sionless numbers is four (n+ 1 – k = 7+ 1 – 4 = 4).
According to the�-Buckingham theorem, the dimen-
sionless numbers are as follows:

πinput1 = RT
Ea

, πinput2 = V
5
3 k20Cin

Ea
,

πinput3 = F
Vk0

, πoutput = V
5
3 k20C
Ea

(20)

There are three input dimensionless numbers and
one output. These dimensionless numbers are calcu-
lated using the datasets from both the source and
target systems and are utilised within the framework.
The next step involves constructing the CSTR model
for the source system. As indicated by Equation 19,
the system exhibits first-order behaviour, suggesting
that a first-order linear model can effectively approx-
imate the nonlinear dynamics of the source system.
To evaluate this, 75% of the source dataset is used
for training, while the remaining 25% is reserved for
validation. Figure 10 illustrates the performance of
various models on the validation dataset. Linear mod-
els are trained on the source dimensionless dataset,
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Figure 10. Source model construction comparison for the CSTR case study.

and their approximation capabilities are compared to
evaluate their effectiveness in capturing the system’s
behaviour. Although the original system is nonlinear, it
is well predicted by linearmodels, particularly the first-
order model with one pole and one zero (R2 = 0.834,
NRMSE = 0.066, and MAPE = 9.00%). The ‘P1DZ’
model is used as the base model in the following sec-
tions and is transferred to the target dataset. Notably,
since the original system is a first-order nonlinear sys-
tem, it is approximated more accurately by first-order
linear models than by higher-order linear models, as
shown in Figure 10.

4.2. Model and uncertainty calibration on target
CSTR system

In this section, the constructed source model is trans-
ferred to the target system through two key steps:
bias calibration and uncertainty calibration. Equation
21 presents the constructed source model in the fre-
quency domain. The model includes six bias param-
eters (α11,α12,α13,β11,β12,β13), which need to be
determined by optimising Equation 7.

πoutput(s) = (−0.117 + α11)s + 0.818
(1.44 + β11)s + 1

πinput1(s)

+ (0.325 + α12)s + 0.548
(4.004)s + 1

πenergy(s)

+ (14.9 + α13)s + 1.73
(272.9 + β13)s + 1

πinput3(s) (21)

The target data training ratio is set to 0.75, and optimi-
sation is performed to determine the bias parameters.
After completing the optimisation, the bias parameters
are identified as follows:

θ∗ = (α∗
11,α

∗
12,α

∗
13,β

∗
11,β

∗
12,β

∗
13)

= (0.302,−0.814, 0.591,−3.09, 0.283,−50) (22)

After calibrating the bias parameters and transferring
the source model to the target system, the accuracy of
the calibrated model is evaluated using the validation
target dataset, as shown in Figure 11. The definitions
of the models in Figure 11 are consistent with those
in Case Study 1. From Figure 11, it is evident that due
to the system’s nonlinearity and the limited amount
of available data, the source and target models alone
are unable to accurately approximate the real system.
However, the calibrated model demonstrates signifi-
cantly improved accuracy, with anR2 of 0.956,NRMSE
of 0.0865, and MAPE of 9.24%. The superior perfor-
mance of the calibrated model is also apparent in the
plot, where it more effectively captures the dynamics
of the target system compared to both the source and
target models.
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Figure 11. Performance comparison of the models on the target
validation data of the CSTR nonlinear system.

The next step involves performing uncertainty cal-
ibration and final model validation using autocorre-
lation residual optimisation and validation. For this
case study, there are three UCVs, corresponding to
the three dimensionless input parameters, each requir-
ing calibration of their standard deviation. Initially, the
standard deviations of the dimensionless numbers are
set to zero before the bias calibration; however, these
values need to be optimised in this step. The calibrated
uncertainties of the dimensionless input parameters
are determined by optimising Equation 9. The upper
bound values for the UCVs are set to 0.3. The optimi-
sation is performed, resulting in the following optimal
UCV parameters:

UCVs∗ = (St.D.π ∗
input1, St.D.π

∗
input2, St.D.π

∗
input3)

= (0.163, 0.132, 0.012) (22)

The above optimal parameters are used to compute
the autocorrelation of the validation output parame-
ters and perform the validation test. A total of 75 data
points (25% of the 300 data points) are used as valida-
tion data, resulting in a CI of [−0.226,0.226] with 95%
confidence, as calculated using Equation 10. Figure 12
displays the autocorrelation of the output dimension-
less number on the validation data before and after
uncertainty calibration, with the shaded area repre-
senting the CI. Prior to uncertainty calibration, the
autocorrelation at lags 1, 5, 24, and 25 falls outside
the confidence interval. However, after calibration, all
autocorrelations for the different lags fall within the
95% confidence interval. Since the model is validated

Figure 12. Autocorrelation residual on the validation target data
for the first 25 lags before and after uncertainty calibration along
with the CI.

in the first iteration, the framework concludes without
the need for further iterations.

5. Discussion

The proposed framework was applied to two case
studies: the first involves the DED-LB process, and
the second focuses on the reactant concentration in a
CSTR with a nonlinear, temperature-dependent reac-
tion. The framework demonstrated success in both
applications, achieving high accuracy on the target val-
idation data with R2 = 0.632, NRMSE = 0.103, and
MAPE = 11.21% for the DED process case study, and
R2 = 0.956, NRMSE = 0.0865, and MAPE = 9.24%
for the CSTR nonlinear system. This performance is
particularly remarkable given the following challenges:

• The studied systems are MISO systems with three
input parameters, making system identification
computationally demanding and complex.

• The target data is severely limited, originating from
the printing of three single beads for case study 1
and 300 data points for case study 2.

• In case study 2, the system is originally nonlinear,
adding further complexity to themodelling process.

In the following two subsections, the results of each
case study are discussed separately, followed by an
outline of the limitations of the proposed framework.

5.1. Case study 1 discussion

While the TL framework efficiently captures the
dynamics of the DED-LB/W MISO system, it’s
essential to note that the final model exhibits marginal
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validation. As seen in Figure 9, the residual autocor-
relation at lags 2 and 8 slightly falls outside of the
CI, raising concerns about the model’s validity. To
enhance the model’s accuracy and agreement with
the data, one potential solution is to conduct addi-
tional experiments on the target system. By iteratively
incorporating new data into the framework, there is
a possibility of improving the model’s performance
and achieving better alignment with the experimental
observations.

In Section 3.4, a comparison is drawn between util-
ising the usual process parameters and dimension-
less numbers. While there is no universal rule for
choosing between these two approaches, the hypoth-
esis that employing dimensionless numbers reduces
input dimensionality for modelling, adds more phys-
ical meaning to the parameters, and consequently
results in models with higher accuracies and reduced
computational complexity is substantiated by the com-
parison made in Section 3.4. However, the decision
to choose between process parameters or dimension-
less numbers depends on the modelling objective.
For example, although the represented model with
dimensionless numbers exhibited higher accuracies
compared to the usual process parameters modelling,
it does not directly model the MPW but charac-
terises the geometry of the cross-section of the printed
bead (owing to the definition of πoutput). Importantly,
there is no obligation to exclusively use one type of
parameters compared in this research (dimension-
less parameters vs. usual parameters). For instance,
one can choose MPW as the output of the mod-
elling, employing dimensionless input numbers as
inputs, allowing for the direct modelling and control
of MPW.

The calibration of the uncertainty of the input
dimensionless numbers aims to enhance the agree-
ment between the developedmodels and experimental
data. It’s important to acknowledge that while this
approach improves the model’s fit, it doesn’t quantify
the uncertainties inherent in the process. Quantifying
process uncertainties typically requires a substantial
amount of data, especially in the field of metal AM,
where various sources of uncertainties come into play
(Hu &Mahadevan, 2017; Mahadevan et al., 2022).

For the bias calibration, as outlined in Section 2.3, it
is crucial for users to personally define the bounds for
optimisation parameters in Equation 7. Lack of famil-
iarity with the stability principles of dynamic systems

in control theory may lead to a situation where opti-
mal bias parameters derived from Equation 7 result
in unstable models, albeit accurate within the tested
data range. In the specific case study presented, the
bias parameter β11 is a critical example. Values less
than –0.00071 (as per Equation 16) should be avoided
to prevent the model from having a pole on the right
side of the complex number plane, rendering it unsta-
ble. Without applying this constraint to the parame-
ter bounds, the value might fall to –0.00083, causing
model instability. Importantly, this instability might
go unnoticed by the framework if the user fails to
impose the necessary constraint, as the model contin-
ues to produce reasonable responses within the avail-
able dataset. It’s important to highlight that for the
models in the presented case study, which are relatively
simple (first-order models), ensuring system stability
by setting bounds for the bias parameters is a practical
approach. However, for more complex models, espe-
cially those of higher order or nonlinearity, the inclu-
sion of stability theorems such as Lyapunov theory as
constraints to Equation 7 becomes essential.

5.2. Case study 2 discussion

The application of the framework to the CSTR with
a nonlinear, temperature-dependent reaction demon-
strates its effectiveness in modelling nonlinear sys-
tems, even when facing significant challenges such
as limited data availability and inherent system non-
linearity. The results underscore the potential of the
framework to adaptively calibrate bias and uncertainty
parameters, allowing for the successful transfer of a
source model to a target system with distinct charac-
teristics. The calibration steps are crucial in refining
the model to account for discrepancies between the
source and target data, showcasing the framework’s
capacity to bridge gaps between datasets in nonlinear
contexts, as shown by Figure 11.

Furthermore, although the framework shows
promising results in capturing the dynamics of non-
linear systems, it is limited to systems that can be
adequately approximated with linear models. In other
words, the approach used in this study involves lin-
earising the source and target systems before applying
the framework. If a system is inherently nonlinear and
cannot be accurately approximated by a linear model,
this framework may fail to capture its true dynamics.
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While the proposed framework effectively captures
the dynamics of MISO systems through TL, it does
have certain limitations. Notably:

• Sensitivity to ε selection: Care should be taken
when choosing the convergence criterion (ε). In the
provided case study, setting ε to 0.05 led the frame-
work to ask for more experimental data after the
second iteration, while a more appropriate choice
(ε = 0.01) would have resulted in a valid model
after the third iteration (Figure 8). The selection
of ε impacts the efficiency and outcome of the
framework.

• Dependency on initial UCVs: The efficiency of
the framework is highly dependent on the initially
assumedUCVs, chosen before bias calibration. Dif-
ferent UCVs can lead to distinct models, influenc-
ing the number of iterations and overall efficiency of
the framework. Careful consideration in selecting
initial UCVs is crucial for optimal performance.

• Limited scope to linear models: The framework
presented here focuses on the transfer learning
of MISO systems specifically for linear models.
Nonlinear models are not addressed in this work.
Enhancing the framework to include the transfer
of nonlinear models from source datasets to target
datasets is identified as a subject for future research.

6. Conclusions

In conclusion, this paper introduces a novel frame-
work for transfer learning and uncertainty calibration
using dimensionless numbers, specifically designed
for system identification of multiple-input multiple-
output (MIMO) systems with only a limited amount of
data. The framework is applied to two demanding case
studies: the first involves metal additive manufactur-
ing, specifically laser-blown directed energy deposi-
tion (DED-LB) as the source domain and laser hotwire
directed energy deposition (DED-LB/W) as the target
domain; the second focuses on modelling the reac-
tant concentration in aContinuous Stirred-TankReac-
tor (CSTR) with a nonlinear, temperature-dependent
reaction. The framework demonstrates robust perfor-
mance across both applications, achieving accurate
system identification despite the limited data avail-
ability. In the DED-LB/W case study, the framework
achieves a commendable R-squared, normalised root
mean square error, and mean absolute percentage
error of 0.632, 0.103, and 11.21%, respectively, on the

target system with data from only three beads, each
with a single step change in one of the inputs. In the
CSTR case study, the framework effectively models the
nonlinear dynamics, achieving R-squared, normalised
root mean square error, and mean absolute percent-
age error of 0.956, 0.0865, and 9.24%, respectively. This
highlights the framework’s power in modelling non-
linear systems and adapting to varying system dynam-
ics, even under conditions of extreme data scarcity.
To the authors’ knowledge, this is the first success-
ful application of transfer learning for MIMO system
identification under such challenging conditions, and
the inaugural investigation of its kind within metal
additive manufacturing processes.

Apart from the framework’s capability to capture
the dynamics of a MIMO system with a very low
amount of data, it leverages a novel uncertainty cali-
bration approach. This method minimises autocorre-
lation of residuals to fine-tune the standard deviations
of dimensionless input numbers. Such adjustments
significantly improve the agreement between the
developedmodels and experimental data by effectively
calibrating the inherent uncertainties of input param-
eters. Additionally, the framework employs dimen-
sionless numbers which contribute enhancing model
accuracy and reducing computational complexity, as
proven through a comparative study. Future work will
focus on minimising the sensitivity of the proposed
approach to the convergence criterion, extending the
framework to nonlinear models, and integrating real-
time data.
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