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EULERIAN AND BIPARTITE ORIENTABLE MATROIDS

Laura E. Chávez Lomeĺı and Luis A. Goddyn

Welsh [6] extended to the class of binary matroids a well-known theorem
regarding Eulerian graphs.

Theorem 2.1 Let M be a binary matroid. The ground set E(M) can be
partitioned into circuits if and only if every cocircuit of M has even cardinality.

Further work of Brylawski and Heron (see [4, p. 315]) explores other char-
acterizations of Eulerian binary matroids. They showed, independently, that a
binary matroid M is Eulerian if and only if its dual, M∗, is a binary affine
matroid. More recently, Shikare and Raghunathan [5] have shown that a binary
matroid M is Eulerian if and only if the number of independent sets of M is
odd.

This chapter is concerned with extending characterizations of Eulerian graphs
via orientations. An Eulerian tour of a graph G induces an orientation with
the property that every cocircuit (minimal edge cut) in G is traversed an
equal number of times in each direction. In this sense, we can say that the
orientation is balanced. Applying duality to planar graphs, these notions produce
characterizations of bipartite graphs. Indeed the notions of flows and colourings
of regular matroids can be formulated in terms of orientations, as was observed
by Goddyn et al. [2]. The equivalent connection for graphs had been made by
Minty [3].

In this chapter, we further extend these notions to oriented matroids. Infor-
mally, an oriented matroid is a matroid together with additional sign informa-
tion. This is roughly analogous to orienting the edges in an undirected graph.

We assume that the reader is familiar with basic matroid theory. In
Section 2.1, we develop a view of oriented matroids which is suited to our
purposes, and which should be accessible to a reader familiar with graphs and
matroids at the graduate level.

2.1 Orientations without vertices

The concept of orienting a graph can be understood by a child. Since a matroid
has no vertices, one must work harder to understand oriented matroids. There
are two equivalent definitions of oriented matroids: axiomatic and geometric.
Each view offers advantages in understanding and working with these objects.
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For completeness we give precise definitions of general oriented matroids, even
though most of our results regard the simpler rank-3 case. The general definitions
are a bit involved. However, the reader may elect to skim the second subsection
below without risking a significant loss of understanding.

2.1.1 Axiomatic definition

An oriented matroid may be defined to be a matroid with additional sign
information on its circuits and cocircuits. We use graph orientations to motivate
and illustrate the definition. Recall that in a graphic matroid M = M(G), the
ground set is E(G), the circuits of M are edge sets of graph cycles, and the
cocircuits of M are the bonds (minimal edge cuts) of G. Throughout this chapter
all graphs are assumed to be connected, but loops and multiple edges are allowed.
Let C = C(M) (and B = B(M)) denote the collections of circuits (and cocircuits)
of a matroid M .

A signing of a set X is an unordered partition �X = {X+,X−} of X = X+ ∪
X−, where either part may be empty. A signing of a family X of sets is a set
{ �X | X ∈ X}, where each �X is a signing of X. Let G be a graph. Any orientation
�G of G naturally induces a signing �C of the family C of circuits of G, and induces
a signing �B of the family B of cocircuits of G. In particular, each signed circuit
�C = {C+, C−} and signed cocircuit �B = {B+, B−} in �C ∪ �B is determined by the
directions in which edges of �G traverse the cycle and the bond corresponding
to C and B. The triple (M(G), �C, �B) is called the (graphic) oriented matroid
corresponding to �G. This oriented matroid is denoted by �O(�G). If �G′ is obtained
from �G by reversing all directed edges, then �O(�G) = �O(�G′). Conversely, one can
prove that if two directed graphs �G and �H satisfy �O(�G) = �O( �H) and G is 2-
edge connected, then �H = �G or �H = �G′. Thus, the correspondence �G �→ �O(�G)
is 2-to-1 for 2-edge connected graphs G.

If a circuit C intersects a cocircuit B in M(G), then the bond in G corre-
sponding to B is crossed at least once in each direction when traversing C in
G. We may restate this fact as follows. Let �G be any orientation of G and let
(M, �C, �B) be the oriented matroid corresponding to �G.

Then every pair (�C, �B) ∈ �C × �B satisfies the following.

(C+ ∩ B+) ∪ (C− ∩ B−) = ∅ ⇐⇒ (C+ ∩ B−) ∪ (C− ∩ B+) = ∅. (2.1)

Any two signed sets �C, �B which satisfy (2.1) are said to be orthogonal. It turns
out that orthogonality is a characterizing property for those signings of graph
circuits and cocircuits which are induced by graph orientations.

Proposition 2.2 Let �C and �B be signings of the families of circuits and
cocircuits of a graph G. Then �C and �B are both induced by some orientation
of G if and only if every pair (�C, �B) ∈ �C × �B is orthogonal.

This motivates the following definition, which is attributed to Bland and Las
Vergnas [1, p. 118].



chapter02 OUP012/McDiarmid (Typeset by SPi, Delhi) 13 of 27 July 4, 2006 13:12

ORIENTATIONS WITHOUT VERTICES 13

Definition 2.3 An oriented matroid on the ground set E is a triple �O =
(M, �C, �B) where:

1. M is a matroid with ground set E, circuits C and cocircuits B.
2. �C = {�C | C ∈ C} and �B = { �B | B ∈ B} are signings of the circuits and cocir-

cuits of M such that each pair in �C × �B is orthogonal.

The oriented matroid �O = (M, �C, �B) is called an orientation of M , and M is
said to be orientable.

Not every matroid is orientable. For example the Fano matroid and its dual
are not orientable. As we see shortly, every matroid M which is representable
over the reals is orientable. Not every orientable matroid is representable over
the reals.

To reverse the orientation of a set F ⊆ E of elements of �O is to replace
each signed circuit and cocircuit {X+,X−} ∈ C ∪ B with {X+ 
 F, X− 
 F}
where 
 denotes symmetric difference. For directed graphs, this operation
corresponds to reversing the direction of the set F of edges in �G. For general
oriented matroids, one can show that reversing the orientation of F preserves
the orthogonality condition, and thus results in another oriented matroid. Any
oriented matroid obtained from �O in this way is called a reorientation of �O.
Unlike directed graphs, reversing the orientation of all elements E of �O results
in the same oriented matroid �O. Thus reorienting on F yields the same oriented
matroid as reorienting E − F . In fact, every connected oriented matroid �O of
order n has exactly 2n−1 distinct reorientations. The set of reorientations of �O
is called a reorientation class of M and is denoted by O = O(M). This notation
suggests that a graph G which underlies a directed graph �G can be identified
with the reorientation class O(�G).

Unlike a graph, an orientable matroid M should not be identified with the
reorientation class O of one of its orientations �O. This is because M may have
several orientations which belong to distinct reorientation classes. For example,
the uniform matroid U3,6 has precisely 4 × 25 distinct orientations, which are
partitioned into 4 reorientation classes. Under the definition of eulerian that we
propose below, only one of these four reorientation classes is eulerian. In other
words, ‘eulerian’ is not a well-defined property of orientable matroids M . It is,
however a well-defined property of a reorientation class O.

2.1.2 Geometric definition

A topological description of oriented matroids was first given by Folkman and
Lawrence, and independently by Edmonds and Mandel (again, see [1]). This
definition is most accessibly introduced with reference to matroids represented
by real matrices. Let A be an r × n real matrix of rank r. The matroid M(A)
represented by A has an element corresponding to each column of A. Independent
sets in M correspond to linearly independent sets of columns of A. In fact, A
determines an orientation �O(A) of M(A) as follows. A circuit C is a minimally
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dependent set of columns. That is, a circuit is the support of a non-zero element
of the nullspace {f ∈ R

n | Af = 0}, where that support is minimal with respect
to inclusion. If f , f ′ are two vectors in the nullspace supporting the same circuit
C, then f = αf ′ for some non-zero scalar α. Thus the sign patterns f and f ′

are equal, up to total reversal of signs. In this way, a signing {C+, C−} of each
circuit C of M(A) is well defined. Each cocircuit B of M(A) is the support
of an element of the rowspace {ytA | y ∈ R

r}, where that support is minimal
with respect to inclusion. Again, the sign pattern of any rowspace vector with
support B is unique up to total sign reversal. So the signing {B+, B−} of B is
well defined. Using the fact that the nullspace and rowspace of A are orthogonal
vector subspaces, one easily verifies (2.1), so �O(A) = (M(A), �C, �B) is an oriented
matroid.

Reorienting �O(A) corresponds to multiplying some of the columns of A
by −1. If each column of A contains at most one 1, at most one −1 and all
other entries are 0, then �O(A) is the oriented matroid of a directed graph.

Suppose �O = �O(A), where A is a real r × n matrix of rank r with no
zero-column. Let R

r be the column space of A, and let S = {x ∈ R
r | ||x|| = 1}

be the unit (r − 1)-sphere. Let e be an element of �O, so e is a column of A. Let
Se be the (r − 2)-sphere consisting of points in S which are linearly orthogonal
to e.

Each Se is called a hypersphere of S. Each simply connected component
of S − Se is homeomorphic to a (r − 1)-ball, which is called a side of Se. The
side of Se whose points have positive inner product with e is called the positive
side of Se, denoted by S+

e ; the other side, S−
e , is the negative side of Se. The

intersection of any non-empty subset of {Se | e ∈ E} is a k-subsphere of S for
some 0 ≤ k ≤ r − 2. The collection of all such subspheres is called the sphere
complex represented by A, denoted by S(A). It is well known that the matroid
M(A) is faithfully encoded by the sphere complex S(A). For example, the rank of
a set F ⊆ E in M(A) is precisely r − 1 − k, where the subsphere ∩{Se | e ∈ F}
is a k-subsphere in S(A). Every 0-subsphere in S(A) is a pair of opposite points
on S. The set of hyperspheres containing that 0-subsphere therefore corresponds
to a maximal set F of matroid elements having rank r − 1. That is, F is a
flat of rank (r − 1) in the matroid M(A). It is well known that cocircuits B
of M(A) are precisely sets of the form E − F where F is a flat of rank r − 1
in M(A). Therefore cocircuits of M(A) are easy to describe in terms of the
sphere complex S(A): each 0-subsphere S0 ∈ S(A) corresponds bijectively to the
cocircuit {e ∈ E | S0 �⊆ Se}.

The points of S \ {Se | e ∈ E(M)} are partitioned into arcwise
connected regions called topes. Each tope is homeomorphic to an
(r − 1)-ball.

Every point in the sphere can be encoded by a {+,−, 0}-valued vector as
follows: first order the elements S1, . . . , Sn, of S, then assign to entry i the value
+ or − whenever the point is in the positive or negative side of Si, respectively,
and 0 otherwise. These sign vectors are called covectors. Thus, the two points
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in a 0-subsphere have opposite covectors. Furthermore, the covector of a tope is
well defined, since any two points in the same tope have equal covectors. The
covector of a tope has no zero entries.

The orientation �O(A) of M(A) is determined by the selection of positive
and negative sides for each hypersphere Se. Let �S(A) = (S(A), f) where f maps
each hypersphere Se to its positive side S+

e . The signing �B of a cocircuit B is
easy to recognize in �S(A). Let x be one of the two points which comprise the
0-sphere S0 corresponding to E − B. We define B+ = {e ∈ B | x ∈ S+

e }, and
B− = {e ∈ B | x ∈ S−

e }. Then {B+, B−} is the signed cocircuit in the oriented
matroid �O(A). Reorienting an element e in �O(A) corresponds to interchanging
the positive and negative sides of Se. The reorientation class O(A) containing
�O(A) is thus faithfully represented by the hypersphere complex S(A).

The geometric description of a general (non-linear) oriented matroid of rank r

is only slightly more involved than the sphere complex �S(A) of a matrix A. We
still have a family {Se | e ∈ E} of hyperspheres in the unit (r − 1)-sphere S, and
the complex S of subspheres of S which are intersections of these hyperspheres.
Each Se is homeomorphic to an (r − 2)-sphere. However, the hyperspheres Se

no longer need be linear; they may ‘wobble’ a bit. For this reason, each element
of S is called a pseudopsphere. Each Se is called a pseudohypersphere, and S is
called a pseudopsphere complex or PSC for short. In order to avoid distracting
topological complications, the unit sphere S is usually taken to be a piecewise
linear set in R

r which is homeomorphic to an (r − 1)-sphere. A formal definition
follows.

Definition 2.4 Let {Se | e ∈ E} be a finite family of pseudohyperspheres of a
piecewise-linear (r − 1)-sphere S such that

1. For every non-empty F ⊆ E, the intersection SF := ∩e∈F Se is homeomorphic
to a k-sphere for some 0 ≤ k ≤ r − 2.

2. For every such non-empty intersection SF and every e ∈ E such that SF �⊆ Se,
the intersection SF ∩ Se is a pseudosphere in SF with sides S+

F = SF ∩ S+
e

and S−
F = SF ∩ S−

e .

The family S = {SF | ∅ �= F ⊆ E} is called a pseudosphere complex (PSC) of
rank r. The pair �S = (S, f), where f maps each pseudohypersphere to its positive
side is called an oriented PSC of rank r.

Theorem 2.5 (Edmonds et al.) There is a bijective correspondence between
PSCs S of rank r and reorientation classes O of rank r. Moreover, there is a
bijective correspondence between oriented PSCs �S of rank r and oriented matroids
�O of rank r.

2.1.3 Wiring diagrams

This chapter is concerned primarily with oriented matroids of rank 3. A PSC
of rank 3 is a family {Se | e ∈ E(M)} of simple closed curves in the 2-sphere S.
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Fig. 2.1. Wiring diagrams for the four reorientation classes of U3,6.

Each of these closed curves may be called a pseudocircle. Any two pseudocircles
intersect in a 0-sphere. These 0-spheres naturally partition each pseudocircle
into segments which we naturally view to be edges of a graph embedded on S
whose vertex set is the union of the 0-spheres. The faces of this graph are the
topes of the complex.

There is a convenient affine representation of a PSC of rank 3 which is called a
wiring diagram. A wiring diagram is obtained from a rank-3 PSC as follows. The
axioms ensure that there is another simple closed curve C in S which is in general
position. That is, C intersects each pseudocircle Se in two points (where they
cross). Furthermore the two points comprising any 0-subsphere in the complex
lie on opposite sides of C. By deleting one side of C, we obtain a disc D whose
boundary is C. Within D is drawn a family of pseudolines or wires {We =
Se ∩ D | e ∈ E(M)}. We usually draw D as a circular disc, and each pseudoline
We is a curve joining opposite points of the boundary C. Any two pseudolines
intersect at a point, and each such point x corresponds bijectively to the cocircuit
{e ∈ E(M) | x /∈ We}. An orientation of the PSC corresponds to a selection of a
positive side W+

e for each pseudoline We. The signing {B+, B−} of a cocircuit
corresponding to x is determined by B+ = {e ∈ E(M) | x ∈ W+

e }. Because of the
arbitrary choice in the selection of the C, different wiring diagrams may represent
the same oriented matroid of rank 3. The wiring diagrams corresponding the four
reorientation classes of the uniform matroid U3,6 are depicted in Fig. 2.1.

2.1.4 Eulerian and bipartite oriented matroids

Definition 2.6 Given an orientation �O of a reorientation class O of a
matroid M , the discrepancy of a circuit is: δ(C) = | |C+| − |C−| |, and that of a
cocircuit B is: δ(B) = | |B+| − |B−| |.

Definition 2.7 A reorientation class O is Eulerian if it admits an orientation �O
where all cocircuits B satisfy δ(B) = 0. It is bipartite if it admits an orientation
�O such that all circuits C satisfy δ(C) = 0.

Graph theorists may recognize these definitions as extensions of the following
elementary facts:
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1. The graph G is Eulerian if and only if G has an orientation such that all
cocircuits B, where B partitions the vertex set of G into V = X ∪ Y, contain
equal numbers of edges oriented out of X and in to X.

2. The graph G is bipartite if and only if it has an orientation such that, every
circuit C contains equal numbers of ‘clockwise’ and ‘anticlockwise’ edges.

Recall that each cocircuit of O corresponds to a vertex (0-sphere) of the
complex S. Thus, a reorientation class O is Eulerian if it is possible to select, for
each element in the PSC representing it, a positive side so that all the vertices
in this configuration lie in equal numbers of positive and negative sides. That is,
their covectors have equal number of + and − entries.

Regarding bipartite orientations, note that if a matroid contains a circuit C
of size 3, then no orientation of the matroid makes δ(C) = 0. This is a particular
consequence of a parity condition that is born from our use of orientations
to define bipartite and Eulerian matroids. It is a consequence of our use of
bipartitions. Thus, to characterize simple, rank-3 bipartite matroids, we need
only consider matroids of girth 4, which are orientations of the uniform matroid
U3,n. A 4-circuit C, in such a matroid is a set of 4 pseudolines and the partition
{C+, C−} is encoded in the arrangement as follows. In Fig. 2.2(a), the bold
edges induce the signed circuit (+,+, 0,−,−) (or (−,−, 0,+,+)) in U3,5. The
orientation is determined by comparison with the reference orientation indicated
in Fig. 2.2(b). Once again, a graph theorist may be reminded of orientations of
circuits, where edges are positively or negatively oriented depending on whether
their orientation agrees, or disagrees with a reference orientation, namely clock-
wise or anticlockwise. We can fall back to the representable case to seek intuition
of why the reference orientation is the one described in the figure. The positive
sides of the hyperplanes in such a collection of planes determine the direction of
the vectors representing the elements in C. Note that the positive half spaces of

(b)(a)

5

4

3

2
1

Fig. 2.2. (a) A 4-circuit in an oriented, uniform matroid. (b) The orientation of
reference for such a 4-circuit.
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these 4 planes cover the entire space. Hence, �0 is in the interior of the positive
cone of these vectors, thus �0 is a positive linear combination of the vectors in C.

The circuit in Fig. 2.2 is balanced, that is, it has equal numbers of + and −
signs. A cocircuit with this property is also called balanced.

2.2 Bipartite characterizations

Let O be a reorientation class, represented by a PSC. A tope of the PSC is big if
every element of the matroid intersects the boundary of the tope in a facet (an
(r − 2)-cell). Thus a big tope in a rank-3, order-n matroid is a polygonal face of
size n. Then we have the following:

Proposition 2.8 A 4-circuit C in a rank-3, oriented matroid �O is balanced if
and only if the restriction �O|C has an all-positive big tope, that is, a 4-tope with
covector (+,+, · · · ,+).

The restriction of �O to a set S is simply the matroid obtained by deleting all
elements in the complement of S.

Proposition 2.9 In a configuration with a big tope T, all edges on the border
of T separate T from a triangular face.

To see this consider the intersection of elements e1, e2 in Fig. 2.3. If the face
adjacent to T, incident with e, in this configuration is not a triangle, then there
must be at least one element f crossing e1 and e2, at some point between their
intersection with e and with each other. Since f intersects e1 and e2 at these
points, it cannot intersect them again, which prevents f from meeting T .

Theorem 2.10 Let O be a reorientation class of a simple rank-3 matroid on n
elements. O is bipartite if and only if the underlying matroid is uniform and the
pseudosphere arrangement representing O has a big tope.

e

e1

f

T

e2

Fig. 2.3. A face adjacent to a big tope must be triangular.
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Proof That we need only be concerned with uniform matroids follows from
our comments at the end of the previous section.

Suppose that O has a big tope. Then orient all the elements so that this tope
is all positive. Any 4 lines define a circuit, C, and the all-positive region in O|C
is 4-sided. By Proposition 2.8, these circuits are balanced, thus O is bipartite.

Conversely, suppose that O is bipartite. Take a bipartite orientation �O of
O, that is, one with the property that |C+| = |C−| for all circuits C. Again,
we know that the underlying matroid of O is uniform and we may assume that
the number n of elements is at least 4. Otherwise, the matroid has no circuits.
Further, if n = 4, the all-positive region is 4-sided, and there is nothing to show.

If n > 4, since O is bipartite, there exists a bipartite orientation �O and this
orientation must be acyclic (has no totally oriented circuit). Thus it contains an
all-positive tope, T [1, p. 122]. We must show that this tope is bounded by n
lines.

Suppose, towards a contradiction, that T is bounded by fewer than n lines,
which we label e1, . . . , ek cyclically around T . Thus, there is at least a line e
not incident with T . In what follows, we are only concerned with the elements
e, e1, . . . , ek and temporarily delete all other elements of O. We will produce an
unbalanced 4-circuit.

Since e does not intersect the tope T , it must intersect all elements bounding
T at points outside the closure of T . If e goes through the (triangular) face
adjacent to T, formed by 3 consecutive elements around T , then the 4-circuit
indicated in darker lines in Fig. 2.4(a) is unbalanced in �O by Proposition 2.8.
In fact, the same can be said if e goes through a triangular face formed by any
3 elements from e, e1, . . . , ek. Otherwise, we have a situation that can be more
clearly drawn with e as the outside circle (see Fig. 2.4(b)). Once again, the circuit

T

e

T

e

(b)(a)

e1

e2

e3

e1

e2

e3

Fig. 2.4. Unbalanced 4-circuits in a matroid without a big tope.
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pictured in darker lines is unbalanced, according to Proposition 2.8. Either way
we obtain a contradiction. �

Unfortunately, Theorem 2.10 does not directly generalize to higher rank
cases. Suppose that O is a representation of U5,n with a big tope. A circuit
C of O is formed by any set of 6 elements and in the restriction of O to this
circuit, any big tope is a 4-polytope which is isomorphic to the prism T × [0, 1]
over a tetrahedron T (see [7, p. 10]). The signing of such a circuit induces a
partition {C+, C−} no more balanced than one with sizes 4 and 2.

There exist, however, bipartite, higher rank, uniform, reorientation classes.
For example, consider alternating matroids, denoted Cn,r, of odd rank r and
order n (see [1, §8.2 and 9.4]). These are characterized by the fact the their
element sets can be ordered in such a way that all bases are positively oriented.
This, in turn, implies that the sign pattern on any circuit alternates. Since these
matroids are uniform, circuits have size r + 1, which is even. Thus, alternating
matroids of odd rank are bipartite. If r > 3, Cn,r is realizable and represented
by a Vandermonde matrix,

⎛
⎜⎜⎜⎜⎜⎝

1 1 · · · 1 1
t1 t2 · · · tn−1 tn
t21 t22 · · · t2n−1 t2n
...

...
...

...
tr−1
1 tr−1

2 · · · tr−1
n−1 tr−1

n

⎞
⎟⎟⎟⎟⎟⎠

where t1 < t2 < · · · < tn. All submatrices are Vandermonde, hence have positive
determinants.

2.3 Eulerian reorientation classes

Regarding characterizations of Eulerian, rank-3 matroids, we restrict our atten-
tion to uniform matroids. Consider the 2-dimensional cells T in the cell decom-
position of a PSC representing an Eulerian, rank-3, oriented matroid O. This
orientation of O must be such that every T is bounded by a set of elements
oriented in one of two possible ways, namely:

1. Alternating towards and away from T (alternating).
2. All pointing towards or all away from T (consistent).

To see this, recall that the orientation balances all vertices perfectly, so an
exploration of adjacent vertices along a cell T shows that if two consecutive lines
along the border of T are oriented consistently (both in or both out), then all
other lines around T are also oriented consistently, while if they alternate, all
other lines must also alternate. In Fig. 2.5 vertices u and v lie on the border of a
(consistent) tope, T1. Thus the only covector entries that differ between these two
vertices correspond to the elements 2 and 3. If 1 and 2 are oriented consistently, 3
must also be consistent, so that the changing covector entries are 0,+ and +,0 as
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T
2

v

w

1

2 3

4

0
0
+

−

−

+
0

0

u

1
T

Fig. 2.5. A local exploration of the changes in sign vectors on adjacent vertices.

indicated. Now consider vertices u and w which are incident with a neighbouring
tope, T2. We must argue that T2 is alternating. In this case, the covector entries
that differ between u and w are those corresponding to elements 1 and 4. Thus the
orientation of 1 and 2 force the orientation of 4 so that we get covector entries 0,−
and −, 0 as indicated. Furthermore, note that two adjacent cells T1, T2 (separated
by one element of O) cannot be of the same type. Thus the 2-cells of such
pseudosphere arrangements are properly 2-coloured, according to their type, as
above. Indeed, if we regard this PSC as an embedded, planar graph, (vertices,
the 0-dimensional cells, edges corresponding to 1-dimensional cells and faces, the
2-dimensional cells), we have a 4-regular graph which can be face coloured with
two colours.

We can construct two graphs out of these arrangements, having vertices
corresponding to the cells T with colour 1 and colour 2, respectively. Two vertices
are adjacent if the corresponding cells are incident with a common vertex in the
arrangement. One of these graphs, which we call G is bipartite and the other
one, called H, is Eulerian. We will see that these graphs, in fact, provide a
characterization of Eulerian reorientation classes of U3,n.

As an example, note that a bipartite reorientation class of U3,n, with n
even, is also Eulerian. The Eulerian orientation is obtained by making the
big tope alternating. One of the graphs associated to such a configuration is
a spiderweb with n spokes and n/2 levels (see Fig. 2.6(a), and identify all the
vertices in the outside face. Counting the high-degree vertices, we have a total
of n/2 + 1 levels) and the other one is a cylindrical grid of width n and with n/2
levels (see Fig. 2.6(b)). These two graphs are simple, planar, and duals of each
other.
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(b)
(a)

Fig. 2.6. The dual pair of plane graphs obtained from an Eulerian orientation
of U3,8.

Theorem 2.11 A reorientation class O of the matroid U3,n is Eulerian if and
only if n is even and the dual pair of graphs H and G, described above, form an
Eulerian–bipartite pair.

Proof First assume that O is an Eulerian reorientation class of U3,n. We must
show that n is even and that G and H are a bipartite–Eulerian pair.

All cocircuits of U3,n have cardinality n − 2. Thus if O is Eulerian, it follows
that n must be even. Since O admits an Eulerian orientation, let �O be such
an orientation. From the discussion preceding this theorem, it follows that the
topes of �O are all of the two types alternating and consistent. Furthermore,
this partition defines the vertex set of a dual pair of graphs H and G. Since
any alternating tope must be of even cardinality, the graph with vertex set
corresponding to alternating topes is Eulerian. It follows that the other graph is
bipartite.

Conversely, suppose that O is a representation of U3,n whose topes induce
an Eulerian–bipartite pair of graphs. We must show that there is an orientation
�O of O, which balances all vertices of the configuration.

To describe this orientation, consider a two-colouring of the vertices of the
bipartite graph and orient all elements incident with topes T , corresponding to
vertices of colour one, so that T is in their positive side or in, and those of colour 2
so that T is in their negative side or out. This will induce an orientation for all
elements in the matroid, provided we are able to show that it is well defined.
That is, that once an element e is oriented one way, because of incidence with
some tope T1, there is no other tope T2 forcing a different orientation on e. This
follows from the fact that the graph defining the orientation is bipartite and such
a contradiction would imply the existence of an odd circuit.

Finally, it must be shown that all vertices have zero discrepancy. It suffices
to show that all vertices have equal discrepancy, since we know that antipodal
vertices have discrepancies that are negatives of each other. This equality follows



chapter02 OUP012/McDiarmid (Typeset by SPi, Delhi) 23 of 27 July 4, 2006 13:12

EULERIAN REORIENTATION CLASSES 23

from the same analysis of adjacent vertices done before. These vertices appear
consecutively around the border of some consistent tope and the covectors of
these vertices differ in only two entries which are zero in one vector and both +,
or both −, in the other (see Fig. 2.5). The observation that all vertices in the
arrangement are incident with one such tope concludes the proof. �

Our goal now is to show that U3,n has a very large number of Eulerian
orientations which belong to distinct orientation classes. As discussed is Section
2.1.3, reorientation classes for U3,n correspond to pseudocircle arrangements on
a 2-sphere. These naturally correspond to certain 4-regular graphs embedded
on the sphere, which is reminiscent of the theory of knots. By analogy with
Reidemeister moves, there is a local transformation that changes one Eulerian
orientation of U3,n into another Eulerian orientation of U3,n which belongs to a
different reorientation class.

The transformation, which we call an e-move, involves four pseudocircles
bounding a quadrilateral tope Q. An e-move at Q is defined if and only if Q is
adjacent to two triangular topes, T1, T2. An e-move is depicted in Fig. 2.7(a).
Since antipodal symmetry of a pseudosphere arrangement must be preserved, an
e-move is simultaneously applied to the antipodal quadrilateral tope.

We consider the effect of an e-move on the associated plane bipartite graph G.
This is illustrated in Fig. 2.7(b). Here G contains adjacent vertices t1, t2 of
degree 3, which correspond to the triangular topes T1, T2. The edge e = t1t2 is
incident to a face Q′ of length 4 which corresponds to the quadrilateral tope Q.

(b)

(a)

Fig. 2.7. An Eulerian orientation preserving transformation on the bipartite
graph G.
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x0xn−1 x1 x2 x3 xn

Fig. 2.8. A sequence of transformations in a subgraph of G.

Since two pseudocircles cross exactly twice, one easily sees that the other face of
G incident with e has length at least 6. Let x, y be the neighbours of t1, t2 which
lie on the boundary of the bigger face. The effect of performing an e-move at e
is to delete e and add the edge xy. One might recognize that an e-move can be
realized as a combination of four ∆ − Y operations on the graph G (and, dually,
on the graph H).

Let n ≥ 6 be an even integer, and let �O be an Eulerian orientation of the
reorientation class of U3,n with a big tope. The plane bipartite graph G associated
with �O is depicted in Fig. 2.6(b) (for n = 8).

Let x0x1x2 · · ·xn−1x0 be the cycle in G which bounds one of the two faces of
length n. For some positive integer k0 ≤ n−2

2 , let y2, y3, · · · , yk0 a sequence of
vertices in G as illustrated in Fig. 2.8. In that diagram we illustrate a sequence
of e-moves, performed successively on the edges

x0x1, x1y2, y2y3, y3y4, . . . , yk0−1yk0 .

These moves are, of course, mirrored on the opposite side of the sphere. The
final graph, G′, in this sequence is the result of growing a ladder of length k0

starting from x0x1.
We now select another integer 1 ≤ k1 ≤ n−2

2 . Starting with G′, we grow a
ladder of length k1 starting from x3x4. The two ladders we have grown do
not interfere with each other, nor with the corresponding ladders on the other
side of the sphere. Continuing in this way we see that, for any sequence of
positive integers k0, k1, . . . , k� where � ≤ �n/3� and with each ki ≤ n−2

2 , we may
sequentially grow ladders of length ki starting from x3ix3i+i. In Fig. 2.9 we
present a schematic illustration of the result of this construction for some n ≥ 24
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94 2115

942115

Fig. 2.9. A schematic look at the graph G associated with a reorientation class
produced by a sequence of switches.

where (k0, k1, k2, k3, k4) = (5, 11, 2, 4, 9). Clearly, two sequences (ki) and (k′
i) will

result in non-isomorphic graphs provided (k′
i) is not a rotation or reflection of the

sequence (ki). Each such graph represents a distinct Eulerian reorientation class
of U3,n. Therefore there exist at least 1

2 (n
2 )�n/3�−1 distinct Eulerian reorientation

classes for U3,n.
An interesting example is the matroid U3,6. There are 4 reorientation classes

of this matroid, only one of which is Eulerian. The graphs H and G associated
with these classes are double covers of graphs in the Petersen family. That is,
identifying antipodal vertices in G and H produces projective embeddings of
these graphs. It is surprising, on the basis of small examples such as this one,
that the number of Eulerian classes should grow superexponentially.

These are not the only Eulerian classes for U3,n. Others can be derived from
the configuration with the big tope using e-moves. For example, some ladders
can be grown towards the South-West as well as towards the South-East. Still
there is a construction due to D. Archdeacon, which results in a large family of
Eulerian reorientation classes of U3,n, none of which can be obtained by applying
e-moves to the configuration with the big tope.
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x

y

Fig. 2.10. The configuration associated with the sequence aaabba.

Consider a disc and take two diameters, x, y to be pseudolines. This cuts
the perimeter of the disc in four intervals; North, South, East, and West. Now
add, repeatedly, pairs of pseudolines which run from North to South, but are
‘almost parallel’ to x and to y. Each successive added pair are made to intersect
either above (a) or below (b), all existing lines. In this way we construct one
wiring diagram for each sequence of ‘a’ and ‘b’. In Fig. 2.10 we see the diagram
corresponding to the sequence aaabba. To see that each resulting configuration
is Eulerian, we orient x and y so that the West interval is on the positive side of
both pseudolines. The remaining pseudolines are alternatingly oriented starting
from x and y as illustrated. It is not hard to see this is an Eulerian orientation
of the wiring diagram. It is also not hard to see that this construction yields an
exponential number of pairwise distinct reorientation classes for U3,n, for even
integers n.

2.4 Conclusions

Many questions remain unanswered in this chapter. Clearly there is much work
to do on higher rank characterizations, and even in the non-uniform rank-3 case.
Questions remain regarding uniform matroids of rank 3. For example, can one
classify Eulerian orientations of U3,n up to equivalence under e-moves? This may
be very difficult, for example, most configurations having the form of Fig. 2.10
appear to be pairwise non-equivalent under the transformation.
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Evidently D. Welsh’s early foray into extending graph properties to matroids
has opened up a wealth of interesting and difficult questions.
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