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Lecture 6 - Damped harmonic motion

Text: Fowles and Cassiday, Chap. 3

Simple harmonic motion is an idealization of most physical systems: in general
there is some dissipative force present that robs the system of energy and reduces the
amplitude of vibration.  Here, we consider the damping effects of a drag force that is
linear in velocity, which should be applicable at low speeds.  We add -cdx / dt to the
force in F = ma  to obtain

md 2x / dt 2 = -c(dx / dt) - kx
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Given that d 2x / dt 2 represents the successive operation (d /dt) (d /dt)x, we can regard
the differential equation as
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This expression can be factored by introducing a constant q in the form
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We immediately make the following replacement to simplify the notation,

≡
c

2m

To regain the original expression, the product of the constant terms must satisfy
(  + q) • (  - q) = k / m
-q 2 +   2 = k / m
=> q = [  2 - k / m ]1/2 (take the positive root)

The differential equation we must solve is thus
(d /dt +  + q) • (d /dt +  - q)x = 0

Since each (d /dt + )x = 0 has the solution A exp(- t) , then
x(t) = A1exp(-[  + q]t) + A2exp(-[  - q]t)

is an appropriate trial solution.  The proof is by explicit substitution:
(d /dt +  + q) • (d /dt +  - q) • {A1exp(-[  + q]t) + A2exp(-[  - q]t) }
= (d /dt +  + q) { -[  + q]A1exp(-[  + q]t) + (  - q)A1exp(-[  + q]t)

 - [  - q]A2exp(-[  - q]t) + [  - q]A2exp(-[  - q]t) }
= (d /dt +  + q) {-2qA1exp(-[  + q]t) }
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= -2qA1 {-[  + q]exp(-[  + q]t) + (  + q)exp(-[  + q]t) } = 0
Now, depending on the magnitudes of k , m and c , the combination represented by q
could be real or imaginary.  There is nothing in principle (like conservation of energy)
preventing this possibility.  Three situations arise, each with a specific name

q is real and > 0 overdamping
q = 0 critical damping
q is imaginary underdamping.

We take each of these in turn.

I.        q              is       real        and        >        0       :        overdamping    

Since  > q for q real (since  2 = q 2 + k/m) then both  - q and  + q are positive, so that
exp[-(  + q)t] and exp[-(  - q)t] both decay with time.  There is no oscillatory motion.

II.        q               =        0       :        critical        damping

The solution that we have obtained becomes x(t) = (A1 + A2)exp(- t).  While this is still
valid, it is not the most general solution of  (d /dt + ) (d /dt + )x = 0, since application of
the first  (d /dt + )  to x(t) immediately yields zero.  We proceed by noting that the entire
(d /dt + )x(t) in the equation

(d /dt + )(d /dt + )x(t) = 0

must be of the form B exp(- t) to satisfy the leftmost (d /dt + ).  Thus, we have
(d / dt + )x(t) = Bexp(- t). (1)

This can be solved via:
exp(+ t)•(d / dt + )x(t) = B (2)

Now the product x(t) exp(+ t) behaves like
d/dt [x(t) exp(+ t)] = exp(+ t) (dx/dt) + x exp(+ t) = exp(+ t) (d / dt + ) x(t) (3)

So (2) + (3) implies
d /dt [x(t) exp(+ t)] = B

Since d /dt [f(t)] = B has the solution f(t) = A +Bt , then
x(t) = (A + Bt ) exp(- t)

The special solution with B = 0 is what we obtained previously for q = 0.  The values of
A and B are set by the initial position (A) and initial velocity B- t (found from d / dt  t=0).

As with the overdamped case, this solution decays to x = 0 as t → ∞ without oscillating.

III.               q                     imaginary:        underdamping    
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If q is imaginary, the solution for x(t) is still valid, and becomes oscillatory since exp(i )
= cos + isin .  The oscillations are not simple harmonic motion because:

• the oscillations are damped:
exp[-(  - q)t] → exp(- t) exp(qt)

→ exp(- t) (cos + i sin  )
• the period of oscillation is lengthened because of the damping force.

To see how the solution behaves, we perform a number of changes of variables.  First,
change q to i d , where d is real:

q = (  2 - k /m)1/2 = i (k /m -  2)1/2 = i ( o
2 -  2)1/2 = i d

o is just the SHM result o = (k /m)1/2.  The solution is thus
x(t) = A1 exp(- t) exp(-i dt) + A2 exp(- t) exp(i dt)
       = exp(- t) • [A1 exp(-i dt) + A2 exp(i dt)]

Now, A1 and A2 may be complex.  In fact, if x is to be real, then A1 and A2 are complex
conjugates:

x(t) = exp(- t) • [A1 exp(-i dt) + A2 exp(i dt)]
          x*(t) = exp(- t) • [A2* exp(-i dt) + A1* exp(i dt)]

=> A1 = A2*

Now we can express a complex number in terms of two real numbers by writing
A1 = (A /2) exp(-i ) A2 = (A /2) exp(i )

so that
x(t) = exp(- t ) {[A /2] exp[-i( dt +  )] + [A /2] exp[i( dt +  )]}

Expanding the exponentials as cos + isin, the imaginary terms all cancel, and one has
x(t) = exp(- t) 2 (A /2) cos( dt +  )
       = exp(- t) A cos( dt +  )

This expression now looks like SHM except:
(i)  the amplitude is damped like exp(- t) A
(ii)  the angular frequency is reduced from o to d since d

2 = o
2 -  2.

Physically, we expect d to be less than o because friction slows down the oscillator.

Summary



PHYS 211 Lecture 6 - Damped harmonic motion 6 - 4

© 2001 by David Boal, Simon Fraser University.  All rights reserved; further copying or resale is strictly prohiited.

In total, the behavior of a damped harmonic oscillator can be described by

         q imaginary          q = 0   q > 0 (real)

   

c = 0           c2 / 4m2 < k / m   c2 / 4m2 = k / m          c2 / 4m2 > k / m

SHM underdamped critically damped overdamped

              

exp(- t)

x(t)

t

overdamped:
         exp(- [ -q]t)~e-γ t

critical

~t • e-γ t
t

x(t)

For a car suspension, you want q ~ 0:
if q is too large, the ride is stiff and responds harshly to every bump
if q is imaginary, the car oscillates over every pothole.

Quality       factor        or         Q      (Chap. 3 Quality Factor)

The rate of energy loss of an oscillator is an important characteristic.
Sometimes, one wants a high energy loss (say in the suspension of a car) while other
times one wants a minimal energy loss (as in the crystal of a watch).  The quality factor
is

Q = 2π (Energy stored in oscillator / Energy lost per period)

After some work, one can show that
Q = d / 2  ≅ o / 2 .

The larger  is, the faster the amplitude of oscillation dies away and the smaller is the
value of Q.  Some examples from the text:

     System                                                                                                                                                                                                                                                                                   Q     
Earth (i.e., earthquakes) ~ 103

Piano string 3000
Neutron star 1012


