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Lecture 6 - Damped harmonic motion
Text: Fowles and Cassiday, Chap. 3

Simple harmonic motion is an idealization of most physical systems: in general
there is some dissipative force present that robs the system of energy and reduces the
amplitude of vibration. Here, we consider the damping effects of a drag force that is
linear in velocity, which should be applicable at low speeds. We add -cdx / dt to the
force in F = ma to obtain

md 2x / dt2 = -c(dx / dt) - kx
or
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—+——+—x=0
dt mdt m

Given that d °x / dt? represents the successive operation (d /dt) (d /dt)x, we can regard
the differential equation as
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This expression can be factored by introducing a constant g in the form

iai+i+qd.ial+L_qu(t):o
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We immediately make the following replacement to simplify the notation,

ol

2m
To regain the original expression, the product of the constant terms must satisfy
(r+a)s@G-9)=k/m
g%+ y?=k/m
=>q=[y%-k/m]*” (take the positive root)

The differential equation we must solve is thus
(dMdt+y+q)ed/dt+y-gq)x=0

Since each (d /dt + a)x = 0 has the solution A exp(-at) , then
x(8) = Aexp(-[y +qlt) + Aexp(-[y - qJ9

is an appropriate trial solution. The proof is by explicit substitution:
(d/dt+y+q)e(d/dt+y-q)e{Aexp(-[y +qlt) + Aexp(-[y - qlt) }
= (d/dt+y+q){-[v + alAexp(-[y +alt) + (v - A)A,exp(-[y + qlf)
- [y - alAexp(-[y - alt) + [y - alAexp(-[y - alf) }
= (d /dt +v +q) {-29A,exp(-[y + q]f) }
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=-29A, {-ly + qlexp(-[y + q]t) + (+ + q)exp(-[y +q]t) } = 0
Now, depending on the magnitudes of k, m and c , the combination represented by q
could be real or imaginary. There is nothing in principle (like conservation of energy)
preventing this possibility. Three situations arise, each with a specific name

gisrealand >0 overdamping
g=0 critical damping
g is imaginary underdamping.

We take each of these in turn.

I.gis real and >0 : overdamping

Since y > q for g real (since y? =q? + k/m) then both y - q and y + g are positive, so that
exp[-(y + )t] and exp[-(y - q)t] both decay with time. There is no oscillatory motion.

Il.g =0 : critical damping

The solution that we have obtained becomes x(t) = (A, + A,)exp(-yt). While this is still
valid, it is not the most general solution of (d /dt +y) (d /dt + y)x = 0, since application of
the first (d /dt +vy) to x(t) immediately yields zero. We proceed by noting that the entire
(d /dt +y)x(t) in the equation

(d /dt +y)(d /dt +y)x(t) =0

must be of the form B exp(-yt) to satisfy the leftmost (d /dt +vy). Thus, we have
(d /dt +y)x(t) = Bexp(-yt). Q)

This can be solved via:
exp(+yt)e(d /dt +y)x(t) =B (2)

Now the product x(t) exp(+yt) behaves like
d/dt [x(t) exp(+yt)] = exp(+yt) (dx/dt) + yx exp(+yt) = exp(+yt) (d /dt +v) x(t) (3)

So (2) + (3) implies
d /dt [x(t) exp(+yt)] =B

Since d /dt [f(t)] = B has the solution f(t) = A +Bt, then
X(t) = (A + Bt) exp(-yt)

The special solution with B = 0 is what we obtained previously for g = 0. The values of
A and B are set by the initial position (A) and initial velocity B-yt (found from d / dt U ).

As with the overdamped case, this solution decays to x =0 ast® ¥ without oscillating.

lll. g imaginary: underdamping
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If g is imaginary, the solution for x(t) is still valid, and becomes oscillatory since exp(if)
= cos6 +isinf. The oscillations are not simple harmonic motion because:

the oscillations are damped:
exp[-(y -q)t] ® exp(-yt) exp(qt)
® exp(-yt) (cosb +isinb )
the period of oscillation is lengthened because of the damping force.

To see how the solution behaves, we perform a number of changes of variables. First,
change q toiw, , where w,is real:
q - (,YZ _ k/m)1/2 :i (k/m _Y2)1/2 :i (woz _,Y2)1/2 - | (Dd

, is just the SHM result w, = (k /m)*?. The solution is thus
X(t) = A, exp(-yt) exp(-imgt) + A, exp(-yt) exp(iw,t)
= exp(-yt) * [A, exp(-imgt) + A, exp(iogt)]

Now, A, and A, may be complex. In fact, if x is to be real, then A, and A, are complex
conjugates:

X(1) = exp(-yt) « [A, exp(-iwgt) + A, exp(io,D)]
x*(t) = exp(-v1) « [A* exp(-ioyt) + A,* exp(io,t)]

=> Al = Az*

Now we can express a complex number in terms of two real numbers by writing
A, = (A/2) exp(-id) A, = (A/2) exp(id)

so that

x() = exp(-yt) {[A /2] exp[-i(wyt + 8 )] + [A /2] exp[i(w,t + & )]}

Expanding the exponentials as cos + isin, the imaginary terms all cancel, and one has
X(t) = exp(-yt) 2 (A /2) cos(wyt +9)
= exp(-yt) A cos(mw,t +9)
This expression now looks like SHM except:
(i) the amplitude is damped like exp(-yt) A
(i) the angular frequency is reduced from w, to w, since w2 = w,? - y2.

Physically, we expect w, to be less than w, because friction slows down the oscillator.

Summary
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In total, the behavior of a damped harmonic oscillator can be described by

g imaginary g=0 g > 0 (real)
c=0 c2/4m2 <k/m c2/4m2 =k/m c2/4m2 >k/m
SHM underdamped critically damped overdamped

X(1) X(t) overdamped:

exp(-yt) ~e~0t exp(- [y-q]t)

critical

—+

For a car suspension, you want g ~ O:
if g is too large, the ride is stiff and responds harshly to every bump
if g is imaginary, the car oscillates over every pothole.

Quiality factor or Q (Chap. 3 Quality Factor)

The rate of energy loss of an oscillator is an important characteristic.
Sometimes, one wants a high energy loss (say in the suspension of a car) while other
times one wants a minimal energy loss (as in the crystal of a watch). The quality factor
is

Q = 2p (Energy stored in oscillator / Energy lost per period)

After some work, one can show that
Q=w,/2y @Quw,/ 2y.

The larger vy is, the faster the amplitude of oscillation dies away and the smaller is the
value of Q. Some examples from the text:

System Q
Earth (i.e., earthquakes) ~10°
Piano string 3000
Neutron star 10
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