Lecture 11 - Rotating coordinate systems

Text: similar to Fowles and Cassiday, Chap. 5

We start our discussion of rotating coordinate systems with the case of pure rotation about a common origin. The notation is as follows

Stationary system: Cartesian unit vectors **i**, **j**, **k** Rotating system: Cartesian unit vectors **i**', **j**', **k**'

Thus a point *P* can alternately be described by the vector **r** = *x***i** + *y***j** + *z***k** or $\bf{r}' = x'i' + y'j' + z'k'$, where (x, y, z) do not necessarily have the same numerical values as (*x*'*, y*'*, z*'):

The notation is subtle. The vectors **r** and **r**' represent the same point, and have the same magnitude $|\mathbf{r}| = |\mathbf{r}'|$, but the triple of points (x', y', z') do not have the same appearance in their respective frames. As a two-dimensional example, consider the point $(x, y) = (1, 1)$ as seen in a frame rotated by 45^o counter-clockwise:

Further, the velocities do not have the same magnitudes: |**v**| |**v**'|, as we show later.

The moving system rotates about an axis with an angular velocity ω , defined by the usual convention that ω points towards the viewer when the motion down the rotational axis is counter-clockwise.

Let's examine how **i**', **j**', **k**' behave as seen by the stationary system. Since the coordinate system rotates, then clearly **i**', **j**', **k**' may be time-dependent. Hence, their time derivatives like *d***i**' / *dt* may be non-zero.

As we discussed in Lecture 1 in a similar context, the change in **i**' in time *t*, defined as **i**', cannot be along **i**' since it is a unit vector. In fact, the change in **i**' must be perpendicular to the plane formed by **i**' and ω , and in the direction of ω **xi**' (note the order in the cross product).

If we look down the ω axis, then the projection of \mathbf{i}' on a plane perpendicular to the ω -axis is sin φ , where φ is the angle between ω and **i**[']. Now **i**['] equals the projection of **i**' (*i.e.*, sin φ) times the angle θ that the **i**'-axis sweeps out in time *t* : But sin $\varphi = |\omega \times \mathbf{x}|$ $/$ ₀. so that

 $\mathbf{i}' = [(\omega \mathbf{X} \mathbf{i}') / \omega] \bullet \quad \theta.$

Dividing both side by *t* and using $\omega = \theta / t$, we find $\mathbf{i}' / t = [(\omega \mathbf{X} \mathbf{i}') / \omega] \bullet \theta / t = [(\omega \mathbf{X} \mathbf{i}') / \omega] \omega$

or applying the infinitesimal limit

 $d\mathbf{i}'$ / $dt = \omega \mathbf{xi}'$ (the order of the cross-product is important)

Similar relationships apply to the other vectors as well $d\mathbf{i}'$ /*dt* = $\omega \mathbf{x} \mathbf{i}'$ *dk'* /*dt* = $\omega \mathbf{x} \mathbf{k}'$

Next we determine how a velocity vector behaves in a rotating frame. We start with the position vector

 $r = r'$

which in component language reads *x***i** +*y***j** + *z***k** = *x'* **i**' + *y'* **j**' + *z'* **k**'

and take the derivative

(*dx* / *dt*) **i** + (*dy* / *dt*) **j** + (*dz* / *dt*) **k** = (dx'/dt) i' + (dy'/dt) j' + (dz'/dt) k' + x' (dt) + y' $(di') / dt$) + z' $(dk') dt$

Substituting $\mathbf{v} = v_x \mathbf{i} + v_y \mathbf{j} + v_z \mathbf{k}$ and the definition $\mathbf{v}' = v_x' \mathbf{i}' + v_y' \mathbf{j}' + v_z' \mathbf{k}'$ gives

$$
v = v' + x' (di' / dt) + y' (dj' / dt) + z' (dk' / dt).
$$

Next, replace the time derivatives of the rotating basis vectors:

 $V = V' + X'$ (ω **xi**[']) + V' (ω **xj**[']) + Z' (ω **xk**['])

and rearrange

$$
\mathbf{v} = \mathbf{v}' + \omega \mathbf{x} (\mathbf{x}' \mathbf{i}' + \mathbf{y}' \mathbf{j}' + \mathbf{z}' \mathbf{k}')
$$

\n
$$
\mathbf{v} = \mathbf{v}' + \omega \mathbf{x} \mathbf{r}'
$$
 (1)

Clearly, it's not just a matter of **v** being rotated with respect to **v**': they have completely different magnitudes.

One can obtain a relationship between the acceleration vectors by starting with $v = v' + \omega x r'$ and taking the time derivative:

$$
d\mathbf{v} / dt = d\mathbf{v}' / dt + (d\omega / dt) \mathbf{x} \mathbf{r}' + \omega \mathbf{x} (d\mathbf{r}' / dt)
$$
 (2)

Now, *d***v** / *dt* is just the acceleration **a**. But *d***v**' / *dt* must be found in the same way as *d***r**' / *dt* because of the rotating basis set:

$$
\begin{aligned} d\mathbf{v}' \ / \ dt \\ &= (d\mathbf{v_x}' \ / \ dt) \ \mathbf{i}' + (d\mathbf{v_y}' \ / \ dt) \ \mathbf{j}' + (d\mathbf{v_z}' \ / \ dt) \ \mathbf{k}' + \mathbf{v_x}' \ (d\mathbf{i}' \ / \ dt) + \mathbf{v_y}' \ (d\mathbf{j}' \ / \ dt) + \mathbf{v_z}' \ (d\mathbf{k}' \ / \ dt) \end{aligned}
$$

But, in analogy with the definition of **v**', (dv_x' / dt) **i**' + (dv_y' / dt) **j**' + (dv_z' / dt) **k**' = a_x '**i**' + a_y '**j**' + a_z '**k**' = **a**',

so, after substituting for the rotating basis vectors

$$
d\mathbf{v}' / dt = \mathbf{a}' + \omega \mathbf{x} \mathbf{v}' \tag{3}
$$

Then Eq. (2) becomes

 $a = a' + \omega xv' + (d\omega / dt)xr' + \omega x (dr'/dt)$

Lastly, replace $d\mathbf{r}'$ $dt = \mathbf{v}' + \omega \mathbf{x} \mathbf{r}'$ to obtain

 $\mathbf{a} = \mathbf{a}' + \omega \mathbf{x} \mathbf{v}' + (d\omega / dt) \mathbf{x} \mathbf{r}' + \omega \mathbf{x} \mathbf{v}' + \omega \mathbf{x} (\omega \mathbf{x} \mathbf{r}')$

or

 $\mathbf{a} = \mathbf{a}' + 2\omega \mathbf{x} \mathbf{v}' + (d\omega / dt) \mathbf{x} \mathbf{r}' + \omega \mathbf{x} (\omega \mathbf{x} \mathbf{r}')$

Summary of notation

r, **v**, **a** are the usual kinematic quantities in the stationary frame (*x'*, *y'*, *z'*) (*v*^x *'*, *v*^y *'*, *v*^z *'*) are quantities observed in the rotating frame **r**', **v**', **a**' are vectors from the rotating frame $v_x' = dr_x' / dt$ and $a_x' = dv_x' / dt$ as expected.

Since the motion is uniform, $(d\omega/dt) = 0$ and $\mathbf{a}' = d\mathbf{v}' / dt - \omega \mathbf{x} \mathbf{v}' = 0$. Hence

 $a = a' + 2\omega xv' + (d\omega / dt)xr' + \omega x(\omega xr')$

becomes

 $a = 0 + 0 + 0 + \omega x(\omega xR) = -\omega^2 R$.

Thus, $\omega x(\omega x r')$ is the centripetal acceleration.

Example Now let the particle move at constant speed in the stationary frame

so that

 $(dx'/dt) = v \cos(\omega t) - v \omega t \sin(\omega t)$

$$
(dy'/dt) = -v \sin(\omega t) -v \omega t \cos(\omega t).
$$

Then the magnitude of **v**' is

$$
(dx'/dt)^{2} + (dy'/dt)^{2} = [v \cos(\omega t) - v \omega t \sin(\omega t)]^{2} + [-v \sin(\omega t) - v \omega t \cos(\omega t)]^{2}
$$

= $v^{2} + v^{2}t^{2}\omega^{2}$

i.e.

v^{α} = (*dx'* / *dt*)^{2} + (*dy'* / *dt*)^{2} = v ^{2} (1 + ω ^{2}*t*^{2}).

Even though |**v**| is constant, |**v**'| grows with time, since the object moves away from the origin and the distance swept out in a turn of the coordinate system increases like *t*. This expression also can be obtained from $v = v' + \omega x r'$, whence

v^{2} = **(v** - ω **xr**['])² = **v**² + $(\omega$ **xr**['])² = v^2 + ω ²*r*[']².

The acceleration in the rotating frame has two components:

-2 ω xv' is perpendicular to v' and increases with $v(1 + \omega^2 t^2)^{1/2}$

- **x**(**xr**') is radially outwards, and increases as *vt*.

Acceleration plus rotation

For the general expression for translating $+$ rotating coordinate systems, simply add V_o and \textbf{A}_\circ to the expressions for rotating systems.

$$
\mathbf{v} = \mathbf{v}' + \omega \mathbf{x} \mathbf{r}' + \mathbf{V}_{\circ}
$$

$$
\mathbf{a} = \mathbf{a}' + 2\omega \mathbf{x} \mathbf{v}' + (d\omega / dt) \mathbf{x} \mathbf{r}' + \omega \mathbf{x}(\omega \mathbf{x} \mathbf{r}') + \mathbf{A}_{\circ}
$$

Forces in a rotating frame

With our expression for the acceleration, it is easy to relate the forces applicable in each frame. Transposing to separate the frame-dependent components:

$$
m\mathbf{a}' = m\mathbf{a} - 2m\omega\mathbf{x}\mathbf{v}' - m(d\omega/dt)\mathbf{x}\mathbf{r}' - m\omega\mathbf{x}(\omega\mathbf{x}\mathbf{r}')
$$

$$
\mathbf{F}' = \mathbf{F} + \mathbf{F}'_{cor} + \mathbf{F}'_{trans} + \mathbf{F}'_{cen}
$$

 \mathbf{F}'_{cor} = Coriolis force = -2 $m\omega$ **xv**' $\mathbf{F'}_{\text{trans}}$ = transverse force = - $m(d\omega/dt)\mathbf{x}\mathbf{r}'$ \mathbf{F}'_{cen} = centrifugal force = $-m\omega\mathbf{x}(\omega\mathbf{x}\mathbf{r}')$

The forces that apply in the rotating frame include several components that appear only because of the rotating coordinate system. If $F = ma$ were completely absent, then fictitious forces would still be needed in the rotating frame to explain why the object in question did not follow a straight line in that frame.