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Lecture 11 - Rotating coordinate systems

Text: similar to Fowles and Cassiday, Chap. 5

We start our discussion of rotating coordinate systems with the case of pure rotation
about a common origin.  The notation is as follows

Stationary system:  Cartesian unit vectors i, j, k
Rotating system:  Cartesian unit vectors i', j', k'

Thus a point P can alternately be described by the vector  r = xi + yj + zk or
r' = x'i' + y'j' + z'k', where (x, y, z) do not necessarily have the same numerical values
as (x', y', z'):

x        

z'      z    

y'      

y   

x'     

r(x, y, z)  or  r'(x', y', z')   

The notation is subtle.  The vectors r and r' represent the same point, and have the
same magnitude |r| = |r'|, but the triple of points (x', y', z') do not have the same
appearance in their respective frames.  As a two-dimensional example, consider the
point (x, y) = (1,1) as seen in a frame rotated by 45o counter-clockwise:

x

y

(x, y) = (1,1)

x'  y'  

(x' , y' ) = (√2,0)

x'  

y'  

Further, the velocities do not have the same magnitudes: |v| ≠ |v'|, as we show later.

The moving system rotates about an axis with an angular velocity , defined by the
usual convention that  points towards the viewer when the motion down the rotational
axis is counter-clockwise.
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x'     

 

z'     

y'     

Let’s examine how i', j', k' behave as seen by the stationary system.  Since the
coordinate system rotates, then clearly i', j', k' may be time-dependent.  Hence, their
time derivatives like di' / dt  may be non-zero.

As we discussed in Lecture 1 in a similar context, the change in i' in time ∆t,
defined as ∆i', cannot be along i' since it is a unit vector.  In fact, the change in i' must
be perpendicular to the plane formed by i' and , and in the direction of xi ' (note the
order in the cross product).

k'  

i'      

∆i'   

j'      
projection of i'

           

  axis 

∆ swept out in time ∆t

magnitude of the 
projection of i' is
sin  = | xi '| / ω   

∆i' = ∆  ( xi ')/

If we look down the  axis, then the projection of i' on a plane perpendicular to the    
-axis is sin , where  is the angle between  and i'.  Now ∆i' equals the projection of

i' (i.e., sin ) times the angle ∆   that the i'-axis sweeps out in time ∆t :  But sin  = | xi '|
/ , so that

∆i' = [( xi ') / ] • ∆ .

Dividing both side by ∆t  and using  = ∆   /∆t , we find
∆i' /∆t = [( xi ') / ] • ∆  /∆t = [( xi ') / ] 

or applying the infinitesimal limit
di' /dt = xi ' (the order of the cross-product is important)

Similar relationships apply to the other vectors as well
dj' /dt = xj ' dk' /dt = xk'
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Next we determine how a velocity vector behaves in a rotating frame.  We start with the
position vector

r = r'

which in component language reads
xi +yj + zk = x' i' + y' j' + z' k'

and take the derivative
(dx / dt) i + (dy / dt) j + (dz / dt) k
= (dx' / dt) i' + (dy' / dt) j' + (dz' / dt) k' + x' (di' / dt) + y' (dj' / dt) + z' (dk' / dt)

Substituting v = vxi + vyj + vzk  and the definition v' = vx' i' + vy' j' + vz' k' gives

v = v' + x' (di' / dt) + y' (dj' / dt) + z' (dk' / dt).

Next, replace the time derivatives of the rotating basis vectors:
v = v' + x' ( xi ') + y' ( xj ') + z' ( xk')

and rearrange
v  = v' + x(x' i' + y' j' + z' k')
v = v' + xr' (1)

Clearly, it's not just a matter of v being rotated with respect to v': they have completely
different magnitudes.

One can obtain a relationship between the acceleration vectors by starting with
v = v' + xr' and taking the time derivative:

dv / dt = dv' / dt + (d  / dt)xr' + x(dr'/ dt) (2)

Now, dv / dt  is just the acceleration a .  But dv' / dt  must be found in the same way as
dr' / dt  because of the rotating basis set:

dv' / dt
= (dvx' / dt) i' + (dvy' / dt) j' + (dvz'  / dt) k' + vx' (di' / dt) + vy' (dj' / dt) + vz' (dk' / dt)

But, in analogy with the definition of v',
(dvx' / dt) i' + (dvy' / dt) j' + (dvz'  / dt) k' = ax'i' + ay'j' + az'k' = a ',

so, after substituting for the rotating basis vectors
dv' /dt = a ' + xv' (3)

Then Eq. (2) becomes
a  = a ' + xv' + (d  / dt)xr' + x(dr'/ dt)

Lastly, replace dr'/ dt = v' + xr' to obtain
a  = a ' + xv' + (d  / dt)xr' + xv' + x ( xr')



PHYS 211 Lecture 11 - Rotating coordinate systems 11 - 4

© 2001 by David Boal, Simon Fraser University.  All rights reserved; further copying or resale is strictly prohibited.

or
a  = a ' + 2 xv' + (d  / dt)xr' + x( xr')

Summary        of        notation    
r, v, a  are the usual kinematic quantities in the stationary frame
(x', y', z')  (vx', vy', vz') are quantities observed in the rotating frame
r', v', a ' are vectors from the rotating frame
vx'  = drx' / dt and ax'  = dvx' / dt as expected.

Example    Uniform circular motion in which frame O' is co-rotating, so v' = 0

x

y

x'  

y'  
as seen by stationary
frame

as seen by rotating
frame

=>  v = v' + xR --> v = xR as expected

Since the motion is uniform, (d  / dt) = 0  and a ' = dv' / dt  - xv' = 0.  Hence
a   = a ' + 2 xv' + (d  / dt)xr' + x( xr')

becomes
a  = 0 + 0 + 0 + x( xR) = -  2R.

Thus, x( xr') is the centripetal acceleration.

Example      Now let the particle move at constant speed in the stationary frame

x

y

x'  

y'  
as seen by stationary
frame

as seen by rotating
frame

In the stationary frame:
vx = v vy = 0 x = vt y = 0.

In the rotating frame
x' = vt cos( t) y' = -vt sin( t)
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so that
(dx' / dt) = v cos( t) -v t sin( t) (dy' / dt) = -v sin( t) -v t cos( t).

Then the magnitude of v' is
(dx' / dt)2 + (dy' / dt)2 = [v cos( t) -v t sin( t)]2 + [ -v sin( t) -v t cos( t)]2

= v 2 + v 2t 2  2

i.e.

v'  2 = (dx' / dt)2 + (dy' / dt)2 = v 2 (1 +  2t 2).

Even though |v| is constant, |v'| grows with time, since the object moves away from the
origin and the distance swept out in a turn of the coordinate system increases like t.
This expression also can be obtained from v = v' + xr', whence

v'  2 = (v - xr')2 = v 2 + ( xr')2 = v 2 +  2r'  2.

The acceleration in the rotating frame has two components:
-2 xv' is perpendicular to v' and increases with v (1 +  2t 2)1/2

- x( xr') is radially outwards, and increases as vt.

Acceleration        plus       rotation    

For the general expression for translating + rotating coordinate systems, simply add Vo
and Ao to the expressions for rotating systems.

v = v' + xr' + Vo

a   = a ' + 2 xv' + (d  / dt)xr' + x( xr') + Ao

Forces       in        a       rotating       frame    

With our expression for the acceleration, it is easy to relate the forces applicable in
each frame.  Transposing to separate the frame-dependent components:

ma '  = ma  - 2m xv' - m(d  / dt)xr' - m x( xr')
  F'   =   F   +   F'cor    +     F'trans      +     F'cen

F'cor = Coriolis force = -2m xv'

F'trans = transverse force = -m(d  / dt)xr'

F'cen = centrifugal force = -m x( xr')

The forces that apply in the rotating frame include several components that appear
only because of the rotating coordinate system.  If F = ma  were completely absent,
then fictitious forces would still be needed in the rotating frame to explain why the
object in question did not follow a straight line in that frame.


