Lecture 11 - Rotating coordinate systems

Text: similar to Fowles and Cassiday, Chap. 5

We start our discussion of rotating coordinate systems with the case of pure rotation about a common origin. The notation is as follows

Stationary system: Cartesian unit vectors **i**, **j**, **k** Rotating system: Cartesian unit vectors **i**', **j**', **k**'

Thus a point *P* can alternately be described by the vector $\mathbf{r} = x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$ or $\mathbf{r}' = x'\mathbf{i}' + y'\mathbf{j}' + z'\mathbf{k}'$, where (x, y, z) do not necessarily have the same numerical values as (x', y', z'):

The notation is subtle. The vectors **r** and **r**' represent the same point, and have the same magnitude $|\mathbf{r}| = |\mathbf{r}'|$, but the triple of points (x', y', z') do not have the same appearance in their respective frames. As a two-dimensional example, consider the point (x, y) = (1,1) as seen in a frame rotated by 45° counter-clockwise:

Further, the velocities do not have the same magnitudes: $|\mathbf{v}| | |\mathbf{v}'|$, as we show later.

The moving system rotates about an axis with an angular velocity ω , defined by the usual convention that ω points towards the viewer when the motion down the rotational axis is counter-clockwise.

Let's examine how i', j', k' behave as seen by the stationary system. Since the coordinate system rotates, then clearly i', j', k' may be time-dependent. Hence, their time derivatives like di' / dt may be non-zero.

As we discussed in Lecture 1 in a similar context, the change in **i**' in time *t*, defined as **i**', cannot be along **i**' since it is a unit vector. In fact, the change in **i**' must be perpendicular to the plane formed by **i**' and ω , and in the direction of $\omega \mathbf{x}\mathbf{i}$ ' (note the order in the cross product).

If we look down the ω axis, then the projection of **i**' on a plane perpendicular to the ω -axis is $\sin\varphi$, where φ is the angle between ω and **i**'. Now **i**' equals the projection of **i**' (*i.e.*, $\sin\varphi$) times the angle θ that the **i**'-axis sweeps out in time t: But $\sin\varphi = |\omega \mathbf{x}\mathbf{i}'|$ / ω , so that

 $\mathbf{i}' = \left[\left(\omega \mathbf{x} \mathbf{i}' \right) / \omega \right] \bullet \quad \boldsymbol{\theta}.$

Dividing both side by t and using $\omega = \theta / t$, we find $\mathbf{i}' / t = [(\omega \mathbf{x} \mathbf{i}') / \omega] \bullet \theta / t = [(\omega \mathbf{x} \mathbf{i}') / \omega] \omega$

or applying the infinitesimal limit

 $d\mathbf{i}'/dt = \omega \mathbf{x}\mathbf{i}'$ (the order of the cross-product is important)

Similar relationships apply to the other vectors as well $d\mathbf{j}'/dt = \omega \mathbf{x}\mathbf{j}'$ $d\mathbf{k}'/dt = \omega \mathbf{x}\mathbf{k}'$

Next we determine how a velocity vector behaves in a rotating frame. We start with the position vector

r = r'

which in component language reads $x\mathbf{i} + y\mathbf{j} + z\mathbf{k} = x'\mathbf{i}' + y'\mathbf{j}' + z'\mathbf{k}'$

and take the derivative

 $(dx / dt) \mathbf{i} + (dy / dt) \mathbf{j} + (dz / dt) \mathbf{k}$ $= (dx' / dt) \mathbf{i}' + (dy' / dt) \mathbf{j}' + (dz' / dt) \mathbf{k}' + x' (d\mathbf{i}' / dt) + y' (d\mathbf{j}' / dt) + z' (d\mathbf{k}' / dt)$

Substituting $\mathbf{v} = v_x \mathbf{i} + v_y \mathbf{j} + v_z \mathbf{k}$ and the definition $\mathbf{v}' = v_x' \mathbf{i}' + v_y' \mathbf{j}' + v_z' \mathbf{k}'$ gives

$$\mathbf{v} = \mathbf{v}' + x' (d\mathbf{i}' / dt) + y' (d\mathbf{j}' / dt) + z' (d\mathbf{k}' / dt).$$

Next, replace the time derivatives of the rotating basis vectors:

 $\mathbf{v} = \mathbf{v}' + \mathbf{x}' (\omega \mathbf{x} \mathbf{i}') + \mathbf{y}' (\omega \mathbf{x} \mathbf{j}') + \mathbf{z}' (\omega \mathbf{x} \mathbf{k}')$

and rearrange

$$\mathbf{v} = \mathbf{v}' + \omega \mathbf{x} (x' \mathbf{i}' + y' \mathbf{j}' + z' \mathbf{k}')$$

$$\mathbf{v} = \mathbf{v}' + \omega \mathbf{x} \mathbf{r}'$$
(1)

Clearly, it's not just a matter of \mathbf{v} being rotated with respect to \mathbf{v} ': they have completely different magnitudes.

One can obtain a relationship between the acceleration vectors by starting with $\mathbf{v} = \mathbf{v}' + \omega \mathbf{x} \mathbf{r}'$ and taking the time derivative:

$$d\mathbf{v} / dt = d\mathbf{v}' / dt + (d\omega / dt)\mathbf{x}\mathbf{r}' + \omega\mathbf{x}(d\mathbf{r}' / dt)$$
(2)

Now, $d\mathbf{v} / dt$ is just the acceleration **a**. But $d\mathbf{v}' / dt$ must be found in the same way as $d\mathbf{r}' / dt$ because of the rotating basis set:

$$\frac{d\mathbf{v}'}{dt} = (\frac{dv_x'}{dt})\mathbf{i}' + (\frac{dv_y'}{dt})\mathbf{j}' + (\frac{dv_z'}{dt})\mathbf{k}' + \frac{v_x'}{dt} + \frac{v_y'}{dt} + \frac{$$

But, in analogy with the definition of \mathbf{v}' , $(dv_x'/dt)\mathbf{i}' + (dv_y'/dt)\mathbf{j}' + (dv_z'/dt)\mathbf{k}' = a_x'\mathbf{i}' + a_y'\mathbf{j}' + a_z'\mathbf{k}' = \mathbf{a}'$,

so, after substituting for the rotating basis vectors

$$d\mathbf{v}' / dt = \mathbf{a}' + \omega \mathbf{x} \mathbf{v}' \tag{3}$$

Then Eq. (2) becomes

 $\mathbf{a} = \mathbf{a}' + \omega \mathbf{x} \mathbf{v}' + (d\omega / dt) \mathbf{x} \mathbf{r}' + \omega \mathbf{x} (d\mathbf{r}' / dt)$

Lastly, replace $d\mathbf{r}'/dt = \mathbf{v}' + \omega \mathbf{x}\mathbf{r}'$ to obtain

 $\mathbf{a} = \mathbf{a}' + \omega \mathbf{x} \mathbf{v}' + (d\omega / dt) \mathbf{x} \mathbf{r}' + \omega \mathbf{x} \mathbf{v}' + \omega \mathbf{x} (\omega \mathbf{x} \mathbf{r}')$

or

$$\mathbf{a} = \mathbf{a}' + 2\omega \mathbf{x}\mathbf{v}' + (d\omega / dt)\mathbf{x}\mathbf{r}' + \omega\mathbf{x}(\omega\mathbf{x}\mathbf{r}')$$

Summary of notation

r, **v**, **a** are the usual kinematic quantities in the stationary frame (x', y', z') (v_x', v_y', v_z') are quantities observed in the rotating frame **r**', **v**', **a**' are vectors from the rotating frame $v_{x'} = dr_{x'}/dt$ and $a_{x'} = dv_{x'}/dt$ as expected.

Example Uniform circular motion in which frame O' is co-rotating, so $\mathbf{v}' = 0$

Since the motion is uniform, $(d\omega / dt) = 0$ and $\mathbf{a}' = d\mathbf{v}' / dt - \omega \mathbf{x} \mathbf{v}' = 0$. Hence

 $\mathbf{a} = \mathbf{a}' + 2\omega \mathbf{x}\mathbf{v}' + (d\omega / dt)\mathbf{x}\mathbf{r}' + \omega \mathbf{x}(\omega \mathbf{x}\mathbf{r}')$

becomes

 $\mathbf{a} = \mathbf{0} + \mathbf{0} + \mathbf{0} + \omega \mathbf{x}(\omega \mathbf{x} \mathbf{R}) = -\omega^2 R.$

Thus, $\omega \mathbf{x}(\omega \mathbf{xr'})$ is the centripetal acceleration.

Example Now let the particle move at constant speed in the stationary frame

so that

 $(dx'/dt) = v \cos(\omega t) - v\omega t \sin(\omega t) \qquad (dy'/dt)$

$$(dy' / dt) = -v \sin(\omega t) - v \omega t \cos(\omega t).$$

Then the magnitude of v' is

$$(dx'/dt)^{2} + (dy'/dt)^{2} = [v\cos(\omega t) - v\omega t\sin(\omega t)]^{2} + [-v\sin(\omega t) - v\omega t\cos(\omega t)]^{2}$$
$$= v^{2} + v^{2}t^{2}\omega^{2}$$

i.e.

 $\mathbf{v}'^{2} = (dx' / dt)^{2} + (dy' / dt)^{2} = v^{2} (1 + \omega^{2} t^{2}).$

Even though $|\mathbf{v}|$ is constant, $|\mathbf{v}'|$ grows with time, since the object moves away from the origin and the distance swept out in a turn of the coordinate system increases like *t*. This expression also can be obtained from $\mathbf{v} = \mathbf{v}' + \omega \mathbf{x}\mathbf{r}'$, whence

 $\mathbf{v}'^{2} = (\mathbf{v} - \omega \mathbf{x}\mathbf{r}')^{2} = \mathbf{v}^{2} + (\omega \mathbf{x}\mathbf{r}')^{2} = v^{2} + \omega^{2}r'^{2}.$

The acceleration in the rotating frame has two components:

-2 ω **xv**' is perpendicular to **v**' and increases with $v(1 + \omega^2 t^2)^{1/2}$

- $\omega \mathbf{x}(\omega \mathbf{xr'})$ is radially outwards, and increases as *vt*.

Acceleration plus rotation

For the general expression for translating + rotating coordinate systems, simply add V_{\circ} and A_{\circ} to the expressions for rotating systems.

$$\mathbf{v} = \mathbf{v}' + \omega \mathbf{x}\mathbf{r}' + \mathbf{V}_{o}$$

$$\mathbf{a} = \mathbf{a}' + 2\omega \mathbf{x}\mathbf{v}' + (d\omega / dt)\mathbf{x}\mathbf{r}' + \omega \mathbf{x}(\omega \mathbf{x}\mathbf{r}') + \mathbf{A}_{o}$$

Forces in a rotating frame

With our expression for the acceleration, it is easy to relate the forces applicable in each frame. Transposing to separate the frame-dependent components:

$$m\mathbf{a}' = m\mathbf{a} - 2m\omega \mathbf{x}\mathbf{v}' - m(d\omega / dt)\mathbf{x}\mathbf{r}' - m\omega \mathbf{x}(\omega \mathbf{x}\mathbf{r}')$$

 $\mathbf{F}' = \mathbf{F} + \mathbf{F}'_{cor} + \mathbf{F}'_{trans} + \mathbf{F}'_{cen}$

 $\mathbf{F'}_{cor} = Coriolis \text{ force} = -2 m \omega \mathbf{x} \mathbf{v}'$

 $\mathbf{F}'_{\text{trans}} = \text{transverse force} = -m(d\omega / dt)\mathbf{xr'}$

$$\mathbf{F}'_{cen} = centrifugal$$
 force = $-m\omega \mathbf{x}(\omega \mathbf{xr'})$

The forces that apply in the rotating frame include several components that appear only because of the rotating coordinate system. If $\mathbf{F} = m\mathbf{a}$ were completely absent, then fictitious forces would still be needed in the rotating frame to explain why the object in question did not follow a straight line in that frame.