
Swarm Dynamics on the Sphere
Beril Zhang, Supervised by Razvan C. Fetecau and Weiran Sun

Department of Mathematics, Simon Fraser University

Objective

The integro-differential equation on the sphere:
ρt +∇ · (ρv) = 0,
v = −∇K ∗ ρ,

where ρ denotes density and v denotes velocity.
Goal: Look for a potentialK that gives a steady
state of even density distribution over the sphere.

Motivation for the choice of K

In R2, let r be the Euclidean distance between two
points and G the Green’s function to the Laplacian
given by

G(r) = − 1
2π

log r.

It is shown in [1] that, the desired interaction poten-
tial is a modification of the Green’s function:

K(r) = − 1
2π

log r + 1
2
r2.

Sketch of idea: The key observation is that K
satisfies

∆K = −δ + 2.

Along the characteristic path X(α, t) of a particle
with α as its initial position, ρ(X(α, t), t) satisfies

D

Dt
ρ = ∇ρ · v + ρt

= −ρ∇ · v
= −ρ(−∆K ∗ ρ)
= −ρ(ρ− 2M),

whereM denotes the constant total mass in 2D free
space. The global attractor for this ODE is then
ρ0 = 2M .

2D Case

Dynamics on the sphere

Motivated by the R2 case, we look for an interaction
potential K on the sphere such that it satisfies

∆SK = −δ + C,

where ∆S is the Laplace-Beltrami operator on the
sphere. A natural choice is the generalized Green’s
function of ∆S:

Choice of K

Let θ be the angle between two points on the
sphere, then the interaction potential K and its
Laplace-Beltrami are:

K(θ) = − 1
2π

log sin θ
2
, (1)

∆K = −δ + 1
4π
. (2)

Main Result: Using K in (1), we show that:
• the uniform density distribution ρ0 = 1

4π over the
whole sphere is an equilibrium state.

•ρ0 is the global attractor, that is, any initial state
will converge to ρ0 as t→∞.

Sketch of idea: Similarly, along the characteristic
path X(α, t), we have

D

Dt
ρ = −ρ(ρ− 1

4π
).

By conservation of mass, the density is uniform over
the whole sphere.

Numerics

Rewrite v = −∇K ∗ ρ in terms of particle paths:
d~Xi

dt
= − 1

N

∑
j=1...N
j 6=i

∇iK(~Xi, ~Xj).

Expand these terms in spherical basis:
d~Xi

dt
= ∂ ~Xi

∂θi

dθi
dt

+ ∂ ~Xi

∂φi

dφi
dt

= R
dθi
dt
~eθi + R sin θi

dφi
dt
~eφi

∇iK(~Xi, ~Xj) = 1
R

∂K

∂θi
~eθi + 1

R sin θi
∂K

∂φi
~eφi

Compare coefficients of the spherical basis to obtain
the ODE equations:

dθi
dt

= − 1
N

∑
j=1..N
j 6=i

1
R2
∂K

∂θi

dφi
dt

= − 1
N

∑
j=1..N
j 6=i

1
R2 sin2 θi

∂K

∂φi

(a) Initial State (b) Steady State, particle paths traced

Extension: with an obstacle

If we add a barrier at θ = θ0 and redefine the velocity
at the boundary as

v = Proj(−∇K ∗ ρ),
then numerics show that new equilibrium state is:
• constant density ρ0 = 1

4π in the interior.
• another constant density depending on θ0 on the
boundary, with zero projected velocity.

Figure: Equilibrium state with θ0 = π

Future Work

•Understand analytically the approach to
equilibrium in the case with an obstacle.

•Study dynamics on more general surfaces and
develop effective numerical schemes.

References

[1] R. C. Fetecau, Y. Huang and T. Kolokolnikov,
Swarm dynamics and equilibria for a nonlocal
aggregation model , Nonlinearity, Vol. 24, No.
10, 2681-2716 (2011)

[2]Yoshifumi Kimura, Vortex motion on surfaces
with constant curvature, Proc. R. Soc. Lond. A
(1999) 455, 245-259


