
2: Joint Distributions

Bertille Antoine
(adapted from notes by Brian Krauth and Simon Woodcock)

In econometrics we are almost always interested in the relationship between two or more
random variables. For example, we might be interested in the relationship between interest
rates and unemployment. Or we might want to characterize a firm’s technology as the
relationship between its employment, capital stock, and output. Examples abound.

The joint density function of two random variables X and Y is denoted fXY (x, y) .
In the discrete case, fXY (x, y) = Pr (X = x, Y = y) . More generally, fXY (x, y) is defined so
that

Pr (a ≤ X ≤ b, c ≤ Y ≤ d) =

{ ∑
a≤x≤b

∑
c≤y≤d

fXY (x, y) if X, Y are discrete,∫ b

a

∫ d

c
fXY (x, y) dydx if X, Y are continuous.

As in the univariate case, joint densities satisfy:

fXY (x, y) ≥ 0 (1)∑
x

∑
y fXY (x, y) = 1 if X, Y are discrete,∫

X

∫
Y
fXY (x, y) dydx = 1 if X, Y are continuous.

(2)

We define the cumulative distribution analogously. It describes the probability of a joint
event:

FXY (x, y) = Pr (X ≤ x, Y ≤ y)

=

{ ∑
X≤x

∑
Y≤y

fXY (x, y) if X, Y are discrete,∫ x

−∞

∫ y

−∞ fXY (s, t) dtds if X, Y are continuous.

Marginal Distributions

A marginal probability density describes the probability distribution of one random
variable. We obtain the marginal density from the joint density by summing or integrating
out the other variable(s):

fX (x) =

{ ∑
y fXY (x, y) if Y is discrete∫∞

−∞ fXY (x, t) dt if Y is continuous

and similarly for fY (y) .

Example 1 Define a joint pdf by

fXY (x, y) =

{
6xy2 0 < x < 1 and 0 < y < 1

0 otherwise.
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Verify for yourself that (1) and (2) are satisfied. Let’s compute the marginal density of X.
First note that for x ≥ 1 or x ≤ 0, fXY (x, y) = 0 for all values of y. Thus,

fX (x) =

∫ ∞
−∞

fXY (x, y) dy = 0 for x ≥ 1 or x ≤ 0.

For 0 < x < 1, fXY (x, y) is nonzero only if 0 < y < 1. Thus,

fX (x) =

∫ ∞
−∞

fXY (x, y) dy =

∫ 1

0

6xy2dy = 2xy3
∣∣1
0

= 2x for 0 < x < 1.

Definition 2 Random variables X and Y are independent iff

fXY (x, y) = fX (x) fY (y) .

An equivalent definition involves the cdfs: X and Y are independent iff FXY (x, y) =
FX (x)FY (y) . If two random variables are independent, knowing the value of one provides
no information about the value of the other. We’ll see another (equivalent) formal definition
of independence in a minute.

Expectations, Covariance, and Correlation

The moments of variables in a joint distribution are defined with respect to the marginal
distributions. For example,

E [X] =

∫
X

xfX (x) dx

=

∫
X

∫
Y

xfXY (x, y) dydx

V ar [X] =

∫
X

(x− E [X])2 fX (x) dx

=

∫
X

∫
Y

(x− E [X])2 fXY (x, y) dydx.

Using summation instead of integration yields analogous results for the discrete case.
For any function g (X, Y ) of the random variables X and Y, we compute the expected

value as:

E [g (X, Y )] =

∫
X

∫
Y

g (x, y) fXY (x, y) dydx (3)

and similarly for the discrete case. The covariance between X and Y , usually denoted σXY ,
is a special case of (3).

Definition 3 The covariance between two random variables X and Y is

Cov [X, Y ] = E [(X − E [X]) (Y − E [Y ])]

= E [XY ]− E [X]E [Y ] .
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Definition 4 The correlation between two random variables X and Y is

ρXY =
Cov [X, Y ]

σXσY

where σX is the standard deviation of X, and σY is the standard deviation of Y.

The covariance and correlation are almost equivalent measures of the association between
two variables. Positive values imply co-movement of the variables (positive association) while
negative values imply the reverse. However, the scale of the covariance is the product of
scales of the two variables. This sometimes makes it difficult to determine the magnitude of
association between two variables. In contrast, −1 ≤ ρXY ≤ 1 is scale-free, which frequently
makes it a preferred measure of association.

Theorem 5 If X and Y are independent, then σXY = ρXY = 0.

Proof. When X and Y are independent, fXY (x, y) = fX (x) fY (y) . Thus if E [X] = µX

and E [Y ] = µY

σXY =

∫
X

∫
Y

(x− µX) (y − µY ) fX (x) fY (y) dydx

=

∫
X

(x− µX) fX (x) dx

∫
Y

(y − µY ) fY (y) dy

= E [X − µX ]E [Y − µY ]

= 0.

Note that the converse of Theorem 5 is not true: in general σXY = 0 does not imply
that X and Y are independent. An important exception is when X and Y have a bivariate
normal distribution (below).

Proposition 6 Some useful results on expectations in joint distributions:

E [aX + bY + c] = aE [X] + bE [Y ] + c

V ar [aX + bY + c] = a2V ar [X] + b2V ar [Y ] + 2abCov [X, Y ]

Cov [aX + bY, cX + dY ] = acV ar [X] + bdV ar [Y ] + (ad+ bc)Cov [X, Y ]

and if X and Y are independent, we have

E [g1 (X) g2 (Y )] = E [g1 (X)]E [g2 (Y )] .
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Bivariate Transformations

Last day we discussed transformations of random variables in the univariate case. Things
are a little more complicated in the bivariate case, but not much.

Suppose that X1 and X2 have joint distribution fX (x1, x2) , and that y1 = g1 (x1, x2)
and y2 = g2 (x1, x2) are functions of X1 and X2. Let A = {(x1, x2) : fX (x1, x2) > 0} and
B = {(y1, y2) : y1 = g1 (x1, x2) , y2 = g2 (x1, x2) for some (x1, x2) ∈ A} . Assume that g1 and
g2 are continuous, differentiable, and define a one-to-one transformation of A onto B. The
latter assumption implies the inverses of g1 and g2 exist. (Note: we’re assuming that g1 and
g2 are “one-to-one and onto” functions; they are onto by the definition of B. A sufficient,
but stronger, condition for the inverses to exist is that g1 and g2 are monotone). Denote
the inverse transformations by x1 = h1 (y1, y2) and x2 = h2 (y1, y2) . We define the Jacobian
Matrix of the transformations as the matrix of partial derivatives:

J =

[
∂h1(y1,y2)

∂y1

∂h1(y1,y2)
∂y2

∂h2(y1,y2)
∂y1

∂h2(y1,y2)
∂y2

]
.

Then the joint distribution of Y1 and Y2 is

fY (y1, y2) = fX (h1 (y1, y2) , h2 (y1, y2)) abs (|J|) .

The distribution only exists if the Jacobian has a nonzero determinant, i.e., if the transfor-
mations h1 and h2 (and hence g1 and g2) are functionally independent.

Example 7 Let X1 and X2 be independent standard normal random variables. Consider
the transformation Y1 = X1 + X2 and Y2 = X1 − X2 (that is, g1 (x1, x2) = x1 + x2 and
g2 (x1, x2) = x1 − x2). Because X1 and X2 are independent, their joint pdf is the product of
two standard normal densities:

fX (x1, x2) = fX1 (x1) fX2 (x2) =
1

2π
e(−x

2
1/2)e(−x

2
2/2), −∞ < x1, x2 <∞.

So the set A = R2. The first step is to find the set B where fY (y1, y2) > 0. That is, the set
of values taken by y1 = x1 + x2 and y2 = x1 − x2 as x1 and x2 range over the set A = R2.
Notice we can solve the system of equations y1 = x1 + x2 and y2 = x1 − x2 for x1 and x2 :

x1 = h1 (y1, y2) =
y1 + y2

2
(4)

x2 = h2 (y1, y2) =
y1 − y2

2
.

This shows two things. First, for any (y1, y2) ∈ R2 there is an (x1, x2) ∈ A (defined by h1
and h2) such that y1 = x1 + x2 and y2 = x1 − x2. Thus B = R2. Second, since the solution
(4) is unique, the transformation g1 and g2 is one-to-one and onto, and we can proceed. It
is easy to verify that

J =

[
1
2

1
2

1
2
−1

2

]
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and thus |J| = −1
2
. Therefore

fY (y1, y2) = fX (h1 (y1, y2) , h2 (y1, y2)) abs (|J|)

=
1

2π
exp

(
−((y1 + y2) /2)2

2

)
exp

(
−((y1 − y2) /2)2

2

)
1

2

=

(
1√

2π
√

2
e−y

2
1/4

)(
1√

2π
√

2
e−y

2
2/4

)
−∞ < y1, y2 <∞

after some rearranging. Notice that the joint pdf of Y1 and Y2 factors into a function of Y1
and a function of Y2. Thus they are independent. In fact, we note that the two functions are
pdfs of N (0, 2) random variables – that is, Y1, Y2 iid N (0, 2) .

Conditional Distributions

When random variables are jointly distributed, we are frequently interested in representing
the probability distribution of one variable (or some of them) as a function of others. This
is called a conditional distribution. For example if X and Y are jointly distributed,
the conditional distribution of Y given X describes the probability distribution of Y as a
function of X. This conditional density is

fY |X (y|x) =
fXY (x, y)

fX (x)
.

Of course we can define the conditional distribution of X given Y , fX|Y (x|y) analogously.

Theorem 8 If X and Y are independent, fY |X (y|x) = fY (y) and fX|Y (x|y) = fX (x) .

Proof. This follows immediately from the definition of independence.
The definition of a conditional density implies the important result

fXY (x, y) = fY |X (y|x) fX (x) = fX|Y (x|y) fY (y)

from which we can derive Bayes’ Rule:

fY |X (y|x) =
fX|Y (x|y) fY (y)

fX (x)
.

A conditional expectation or conditional mean is just the mean of the conditional
distribution:

E [Y |X] =

∫
Y

yfY |X (y|x) dy

in the continuous case. Sometimes the conditional mean function E [Y |X] is called the
regression of y on x.

The conditional variance is just the variance of the conditional distribution:

V ar [Y |X] = E
[
(Y − E [Y |X])2 |X

]
=

∫
Y

(y − E [Y |X])2 fY |X (y|x) dy
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if Y is continuous. A convenient simplification is V ar [Y |X] = E [Y 2|X]−E [Y |X]2 . Some-
times the conditional variance is called the scedastic function, and when it doesn’t depend
on X we say that Y is homoscedastic.

Some Useful Results

Theorem 9 (Law of Iterated Expectations) For any two random variables X and Y ,
E [X] = E [E [X|Y ]] .

Proof. By definition,

E [X] =

∫
Y

∫
X

xfXY (x, y) dxdy

=

∫
Y

[∫
X

xfX|Y (x|y) dx

]
fY (y) dy

=

∫
Y

E [X|y] fY (y) dy

= E [E [X|Y ]] .

Proposition 10 (Decomposition of Variance) For any two random variables X and Y ,
V ar [X] = E [V ar [X|Y ]] + V ar [E [X|Y ]] .

The Bivariate Normal Distribution

The bivariate normal is a joint distribution that appears over and over in econometrics. The
density is

fXY (x, y) =
1

2πσxσy
√

1− ρ2
exp

(
−1

2

[
z2x + z2y − 2ρzxzy

1− ρ2

])
where zx =

x− µx

σx
, zy =

y − µy

σy
.

Here, µx, σx, µy, and σy are the means and standard deviations of the marginal distributions
of X and Y , respectively, and ρ is the correlation between X and Y . The covariance is
σxy = ρσxσy. The bivariate normal has lots of nice properties. In particular, if (X, Y ) ∼
N2

[
µx, µy, σ

2
x, σ

2
y, ρ
]

then:

1. The marginal distributions are also normal:

fX (x) = N
[
µx, σ

2
x

]
,

fY (y) = N
[
µy, σ

2
y

]
.
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2. The conditional distributions are normal:

fY |X (y|x) = N
[
α + βx, σ2

y

(
1− ρ2

)]
where α = µy − βµx and β =

σxy
σ2
y

and similarly for X. Note that the conditional expectation (i.e., the regression function)
is linear, and the conditional variance doesn’t depend on X (it’s homoscedastic). These
results motivate the classical linear regression model (CLRM).

3. X and Y are independent if and only if ρ = 0. Note that the “only if” part implies that
if ρ = 0, then X and Y are independent. This is the important exception where the
converse to Theorem 5 is true. Furthermore, we know that when X and Y are inde-
pendent the joint density factors into the product of marginals. Because the marginals
are normal, this means the joint density factors into the product of two univariate
normals. We saw an instance of this in Example 7.

The Multivariate Normal Distribution

We can generalize the bivariate normal distribution to the case of more than two random
variables. Let (x1, x2, ..., xn)′ = x be a vector of n random variables, µ their mean vector,
and Σ = E

[
(x− µ) (x− µ)′

]
their covariance matrix. The multivariate normal density is

fX (x) = (2π)−n/2 |Σ|−1/2 exp
{

(−1/2) (x− µ)′Σ−1 (x− µ)
}
.

A special case is the multivariate standard normal, where µ = 0 and Σ = In (here In is the
identity matrix of order n) and

fX (x) = (2π)−n/2 exp {−x′x/2} .

Those properties of the bivariate normal that we outlined above have counterparts in the
multivariate case. Partition x, µ, and Σ conformably as follows:

x =

[
x1

x2

]
, µ =

[
µ1

µ2

]
, Σ =

[
Σ11 Σ12

Σ21 Σ22

]
.

Then if [x1,x2] have a joint multivariate normal distribution:

1. The marginal distributions are also normal:

x1 ∼ N [µ1,Σ11] ,

x2 ∼ N [µ2,Σ22] .

2. The conditional distributions are normal:

x1|x2 ∼ N [µ1.2,Σ11.2]

7



where µ1.2 = µ1 + Σ12Σ
−1
22 (x2 − µ2)

and Σ11.2 = Σ11 −Σ12Σ
−1
22 Σ21

by the partitioned inverse and partitioned determinant formulae (see Greene, equations
(A-72) and (A-74)). Again, the conditional expectation is linear and the conditional
variance is constant.

3. x1 and x2 are independent if and only if Σ12 = Σ21 = 0.

Some more useful results:

Proposition 11 If x ∼ N [µ,Σ] , then Ax + b ∼ N [Aµ+ b,AΣA′] .

Proposition 12 If x has a multivariate standard normal distribution, then

x′x =
n∑

i=1

x2i ∼ χ2
n.

Furthermore, if A is any idempotent matrix, then x′Ax ∼ χ2
rank(A).

Proposition 13 If x ∼ N [µ,Σ] then Σ−1/2 (x− µ) ∼ N [0, In] . Furthermore,

(x− µ)′Σ−1 (x− µ) ∼ χ2
n.
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