Please note:

To view the current Academic Calendar, go to www.sfu.ca/students/calendar.html.

Department of Mathematics | Faculty of Science Simon Fraser University Calendar | Summer 2024

Mathematics Honours

Bachelor of Science

This program leads to a bachelor of science (BSc) honours degree.

Prerequisite Grade Requirement

To enroll in a course offered by the Department of Mathematics, a student must obtain a grade of C- or better in each prerequisite course. Some courses may require higher prerequisite grades. Check the MATH course’s Calendar description for details.

Students will not normally be permitted to enroll in any course for which a D grade or lower was obtained in any prerequisite. No student may complete, for further credit, any course offered by the Department of Mathematics which is a prerequisite for a course the student has already completed with a grade of C- or higher, without permission of the department.

Program Requirements

Students complete 120 units, as specified below.

Lower Division Requirements

Students complete either

both of

CMPT 120 - Introduction to Computing Science and Programming I (3)

An elementary introduction to computing science and computer programming, suitable for students with little or no programming background. Students will learn fundamental concepts and terminology of computing science, acquire elementary skills for programming in a high-level language, e.g. Python. The students will be exposed to diverse fields within, and applications of computing science. Topics will include: pseudocode; data types and control structures; fundamental algorithms; recursion; reading and writing files; measuring performance of algorithms; debugging tools; basic terminal navigation using shell commands. Treatment is informal and programming is presented as a problem-solving tool. Prerequisite: BC Math 12 or equivalent is recommended. Students with credit for CMPT 102, 128, 130 or 166 may not take this course for further credit. Students who have taken CMPT 125, 129, 130 or 135 first may not then take this course for further credit. Quantitative/Breadth-Science.

Section Instructor Day/Time Location
D100 Gregory Baker
May 6 – Aug 2, 2024: Mon, Wed, Fri, 10:30–11:20 a.m.
Burnaby
CMPT 129 - Introduction to Computing Science and Programming for Mathematics and Statistics (3)

A second course in computing science and programming intended for students studying mathematics, statistics or actuarial science and suitable for students who already have some background in computing science and programming. Topics include: a review of the basic elements of programming: use and implementation of elementary data structures and algorithms; fundamental algorithms and problem solving; basic object-oriented programming and software design; computation and computability and specification and program correctness. Prerequisite: CMPT 102 or CMPT 120, with a minimum grade of C-. Students with credit for CMPT 125 or 135 may not take this course for further credit. Quantitative.

(Students transferring into a math program should contact the math undergraduate advisor if they have already completed equivalent courses.)

or both of 

CMPT 130 - Introduction to Computer Programming I (3)

An introduction to computing science and computer programming, using a systems oriented language, such as C or C++. This course introduces basic computing science concepts. Topics will include: elementary data types, control structures, functions, arrays and strings, fundamental algorithms, computer organization and memory management. Prerequisite: BC Math 12 (or equivalent, or any of MATH 100, 150, 151, 154, or 157, with a minimum grade of C-). Students with credit for CMPT 102, 120, 128 or 166 may not take this course for further credit. Students who have taken CMPT 125, 129 or 135 first may not then take this course for further credit. Quantitative/Breadth-Science.

CMPT 135 - Introduction to Computer Programming II (3)

A second course in systems-oriented programming and computing science that builds upon the foundation set in CMPT 130 using a systems-oriented language such as C or C++. Topics: a review of the basic elements of programming; introduction to object-oriented programming (OOP); techniques for designing and testing programs; use and implementation of elementary data structures and algorithms; introduction to embedded systems programming. Prerequisite: CMPT 130 with a minimum grade of C-. Students with credit for CMPT 125, 126, or 129 may not take this course for further credit. Quantitative.

and all of

MACM 101 - Discrete Mathematics I (3)

Introduction to graph theory, trees, induction, automata theory, formal reasoning, modular arithmetic. Prerequisite: BC Math 12 (or equivalent), or any of MATH 100, 150, 151, 154, 157. Quantitative/Breadth-Science.

Section Instructor Day/Time Location
D100 Steve Pearce
May 6 – Aug 2, 2024: Tue, 10:30–11:20 a.m.
May 6 – Aug 2, 2024: Thu, 9:30–11:20 a.m.
Burnaby
Burnaby
D101 May 6 – Aug 2, 2024: Wed, 2:30–3:20 p.m.
Burnaby
D102 May 6 – Aug 2, 2024: Wed, 2:30–3:20 p.m.
Burnaby
D103 May 6 – Aug 2, 2024: Wed, 3:30–4:20 p.m.
Burnaby
D104 May 6 – Aug 2, 2024: Wed, 3:30–4:20 p.m.
Burnaby
D105 May 6 – Aug 2, 2024: Wed, 4:30–5:20 p.m.
Burnaby
D106 May 6 – Aug 2, 2024: Wed, 4:30–5:20 p.m.
Burnaby
D107 May 6 – Aug 2, 2024: Wed, 5:30–6:20 p.m.
Burnaby
D108 May 6 – Aug 2, 2024: Wed, 5:30–6:20 p.m.
Burnaby
MACM 201 - Discrete Mathematics II (3)

A continuation of MACM 101. Topics covered include graph theory, trees, inclusion-exclusion, generating functions, recurrence relations, and optimization and matching. Prerequisite: MACM 101 or (ENSC 251 and one of MATH 232 or MATH 240). Quantitative.

MACM 203 - Computing with Linear Algebra (2) +

Using a mathematical software package for doing calculations in linear algebra. Development of computer models that analyze and illustrate applications of linear algebra. All calculations and experiments will be done in the Matlab software package. Topics include: large-scale matrix calculations, experiments with cellular automata, indexing, searching and ranking pages on the internet, population models, data fitting and optimization, image analysis, and cryptography. Prerequisite: One of CMPT 102, 120, 126, 128 or 130 and one of MATH 150, 151, 154 or 157 and one of MATH 232 or 240. MATH 232 or 240 can be taken as corequisite. Students in excess of 80 units may not take MACM 203 for further credit. Quantitative.

MACM 204 - Computing with Calculus (2) +

Using a mathematical software package for doing computations from calculus. Development of computer models that analyze and illustrate applications of calculus. All calculations and experiments will be done in the Maple software package. Topics include: graphing functions and data, preparing visual aids for illustrating mathematical concepts, integration, Taylor series, numerical approximation methods, 3D visualization of curves and surfaces, multi-dimensional optimization, differential equations and disease spread models. Prerequisite: One of CMPT 102, 120, 126, 128 or 130 and MATH 251. MATH 251 can be taken as a corequisite. Students in excess of 80 units may not take MACM 204 for further credit. Quantitative.

MATH 242 - Introduction to Analysis I (3)

Mathematical induction. Limits of real sequences and real functions. Continuity and its consequences. The mean value theorem. The fundamental theorem of calculus. Series. Prerequisite: MATH 152 with a minimum grade of C-; or MATH 155 or 158 with a grade of B. Quantitative.

MATH 251 - Calculus III (3)

Rectangular, cylindrical and spherical coordinates. Vectors, lines, planes, cylinders, quadric surfaces. Vector functions, curves, motion in space. Differential and integral calculus of several variables. Vector fields, line integrals, fundamental theorem for line integrals, Green's theorem. Prerequisite: MATH 152 with a minimum grade of C-; or MATH 155 or MATH 158 with a grade of at least B. Recommended: It is recommended that MATH 240 or 232 be taken before or concurrently with MATH 251. Quantitative.

Section Instructor Day/Time Location
D100 Paul Tupper
May 6 – Aug 2, 2024: Mon, Wed, Fri, 1:30–2:20 p.m.
Burnaby
D200 Randall Pyke
May 6 – Aug 2, 2024: Mon, Wed, Fri, 9:30–10:20 a.m.
Surrey
OP01 TBD
OP02 TBD
MATH 252 - Vector Calculus (3)

Vector calculus, divergence, gradient and curl; line, surface and volume integrals; conservative fields, theorems of Gauss, Green and Stokes; general curvilinear coordinates and tensor notation. Introduction to orthogonality of functions, orthogonal polynomials and Fourier series. Prerequisite: MATH 240 or 232, and 251, all with a minimum grade of C-. MATH 240 or 232 may be taken concurrently. Students with credit for MATH 254 may not take MATH 252 for further credit. Quantitative.

MATH 260 - Introduction to Ordinary Differential Equations (3)

First-order differential equations, second- and higher-order linear equations, series solutions, introduction to Laplace transform, systems and numerical methods, applications in the physical, biological and social sciences. Prerequisite: MATH 152 with a minimum grade of C-; or MATH 155 or 158, with a grade of at least B; MATH 232 or 240, with a minimum grade of C-. Students with credit for MATH 310 may not take this course for further credit. Quantitative.

Section Instructor Day/Time Location
D100 Jingzhou Na
May 6 – Aug 2, 2024: Mon, Wed, Fri, 12:30–1:20 p.m.
Burnaby
D101 May 6 – Aug 2, 2024: Mon, 4:30–5:20 p.m.
Burnaby
D102 May 6 – Aug 2, 2024: Mon, 5:30–6:20 p.m.
Burnaby
D103 May 6 – Aug 2, 2024: Tue, 9:30–10:20 a.m.
Burnaby
D104 May 6 – Aug 2, 2024: Tue, 10:30–11:20 a.m.
Burnaby
D105 May 6 – Aug 2, 2024: Tue, 11:30 a.m.–12:20 p.m.
Burnaby
D200 May 6 – Aug 2, 2024: Mon, Wed, Fri, 12:30–1:20 p.m.
Surrey
D201 May 6 – Aug 2, 2024: Wed, 2:30–3:20 p.m.
Surrey
D202 May 6 – Aug 2, 2024: Wed, 3:30–4:20 p.m.
Surrey
STAT 270 - Introduction to Probability and Statistics (3)

Basic laws of probability, sample distributions. Introduction to statistical inference and applications. Prerequisite: or Corequisite: MATH 152 or 155 or 158, with a minimum grade of C-. Students wishing an intuitive appreciation of a broad range of statistical strategies may wish to take STAT 100 first. Quantitative.

Section Instructor Day/Time Location
D100 Scott Pai
May 6 – Aug 2, 2024: Wed, 11:30 a.m.–12:20 p.m.
May 6 – Aug 2, 2024: Fri, 10:30 a.m.–12:20 p.m.
Burnaby
Burnaby
OL01 Gamage Perera
Online
OP01 TBD

and one of

MATH 150 - Calculus I with Review (4)

Designed for students specializing in mathematics, physics, chemistry, computing science and engineering. Topics as for Math 151 with a more extensive review of functions, their properties and their graphs. Recommended for students with no previous knowledge of Calculus. In addition to regularly scheduled lectures, students enrolled in this course are encouraged to come for assistance to the Calculus Workshop (Burnaby), or Math Open Lab (Surrey). Prerequisite: Pre-Calculus 12 (or equivalent) with a grade of at least B+, or MATH 100 with a grade of at least B-, or achieving a satisfactory grade on the Simon Fraser University Calculus Readiness Test. Students with credit for either MATH 151, 154 or 157 may not take MATH 150 for further credit. Quantitative.

Section Instructor Day/Time Location
D100 Mahsa Faizrahnemoon
May 6 – Aug 2, 2024: Mon, Wed, Fri, 1:30–2:20 p.m.
Burnaby
D101 May 6 – Aug 2, 2024: Tue, 8:30–9:20 a.m.
Burnaby
D102 May 6 – Aug 2, 2024: Tue, 9:30–10:20 a.m.
Burnaby
D103 May 6 – Aug 2, 2024: Tue, 10:30–11:20 a.m.
Burnaby
OP01 TBD
MATH 151 - Calculus I (3) *

Designed for students specializing in mathematics, physics, chemistry, computing science and engineering. Logarithmic and exponential functions, trigonometric functions, inverse functions. Limits, continuity, and derivatives. Techniques of differentiation, including logarithmic and implicit differentiation. The Mean Value Theorem. Applications of differentiation including extrema, curve sketching, Newton's method. Introduction to modeling with differential equations. Polar coordinates, parametric curves. Prerequisite: Pre-Calculus 12 (or equivalent) with a grade of at least A, or MATH 100 with a grade of at least B, or achieving a satisfactory grade on the Simon Fraser University Calculus Readiness Test. Students with credit for either MATH 150, 154 or 157 may not take MATH 151 for further credit. Quantitative.

MATH 154 - Mathematics for the Life Sciences I (3) **

Designed for students specializing in the life sciences. Topics include: limits, growth rate and the derivative; elementary functions, optimization and approximation methods, and their applications, integration, and differential equations; mathematical models of biological processes and their implementation and analysis using software. Prerequisite: Pre-Calculus 12 (or equivalent) with a grade of at least B, or MATH 100 with a grade of at least C-, or achieving a satisfactory grade on the Simon Fraser University Calculus Readiness Test. Students with credit for either MATH 150, 151 or 157 may not take MATH 154 for further credit. Quantitative.

MATH 157 - Calculus I for the Social Sciences (3) **

Designed for students specializing in business or the social sciences. Topics include: limits, growth rate and the derivative; logarithmic, exponential and trigonometric functions and their application to business, economics, optimization and approximation methods; introduction to functions of several variables with emphasis on partial derivatives and extrema. Prerequisite: Pre-Calculus 12 (or equivalent) with a grade of at least B, or MATH 100 with a grade of at least C, or achieving a satisfactory grade on the Simon Fraser University Calculus Readiness Test. Students with credit for either MATH 150, 151 or 154 may not take MATH 157 for further credit. Quantitative.

Section Instructor Day/Time Location
D100 Paul Tupper
May 6 – Aug 2, 2024: Mon, Wed, Fri, 11:30 a.m.–12:20 p.m.
Burnaby
OP01 TBD

and one of

MATH 152 - Calculus II (3) *

Riemann sum, Fundamental Theorem of Calculus, definite, indefinite and improper integrals, approximate integration, integration techniques, applications of integration. First-order separable differential equations and growth models. Sequences and series, series tests, power series, convergence and applications of power series. Prerequisite: MATH 150 or 151, with a minimum grade of C-; or MATH 154 or 157 with a grade of at least B. Students with credit for MATH 155 or 158 may not take this course for further credit. Quantitative.

Section Instructor Day/Time Location
D100 Stephen Choi
May 6 – Aug 2, 2024: Mon, Wed, Fri, 8:30–9:20 a.m.
Burnaby
OP01 TBD
MATH 155 - Mathematics for the Life Sciences II (3) **

Designed for students specializing in the life sciences. Topics include: vectors and matrices, partial derivatives, multi-dimensional integrals, systems of differential equations, compartment models, graphs and networks, and their applications to the life sciences; mathematical models of multi-component biological processes and their implementation and analysis using software. Prerequisite: MATH 150, 151 or 154, with a minimum grade of C-; or MATH 157 with a grade of at least B. Students with credit for MATH 152 or 158 may not take this course for further credit. Quantitative.

Section Instructor Day/Time Location
D100 Veselin Jungic
May 6 – Aug 2, 2024: Mon, Wed, Fri, 8:30–9:20 a.m.
Burnaby
OP01 TBD
MATH 158 - Calculus II for the Social Sciences (3) **

Designed for students specializing in business or the social sciences. Topics include: theory of integration, integration techniques, applications of integration; functions of several variables with emphasis on double and triple integrals and their applications; introduction to differential equations with emphasis on some special first-order equations and their applications; sequences and series. Prerequisite: MATH 150 or 151 or 154 or 157, with a minimum grade of C-. Students with credit for MATH 152 or 155 may not take MATH 158 for further credit. Quantitative.

and one of

MATH 232 - Applied Linear Algebra (3) **

Linear equations, matrices, determinants. Introduction to vector spaces and linear transformations and bases. Complex numbers. Eigenvalues and eigenvectors; diagonalization. Inner products and orthogonality; least squares problems. An emphasis on applications involving matrix and vector calculations. Prerequisite: MATH 150 or 151 or MACM 101, with a minimum grade of C-; or MATH 154 or 157, both with a grade of at least B. Students with credit for MATH 240 may not take this course for further credit. Quantitative.

Section Instructor Day/Time Location
D100 May 6 – Aug 2, 2024: Mon, Wed, Fri, 1:30–2:20 p.m.
Surrey
OP01 TBD
MATH 240 - Algebra I: Linear Algebra (3) *

Linear equations, matrices, determinants. Real and abstract vector spaces, subspaces and linear transformations; basis and change of basis. Complex numbers. Eigenvalues and eigenvectors; diagonalization. Inner products and orthogonality; least squares problems. Applications. Subject is presented with an abstract emphasis and includes proofs of the basic theorems. Prerequisite: MATH 150 or 151 or MACM 101, with a minimum grade of C-; or MATH 154 or 157, both with a grade of at least B. Students with credit for MATH 232 cannot take this course for further credit. Quantitative.

Section Instructor Day/Time Location
D100 Imin Chen
May 6 – Aug 2, 2024: Mon, Wed, Fri, 11:30 a.m.–12:20 p.m.
Burnaby
D101 May 6 – Aug 2, 2024: Thu, 9:30–10:20 a.m.
Burnaby
D102 May 6 – Aug 2, 2024: Thu, 2:30–3:20 p.m.
Burnaby
D103 May 6 – Aug 2, 2024: Thu, 3:30–4:20 p.m.
Burnaby

and at least one of

CMPT 225 - Data Structures and Programming (3)

Introduction to a variety of practical and important data structures and methods for implementation and for experimental and analytical evaluation. Topics include: stacks, queues and lists; search trees; hash tables and algorithms; efficient sorting; object-oriented programming; time and space efficiency analysis; and experimental evaluation. Prerequisite: (MACM 101 and (CMPT 125, CMPT 129 or CMPT 135)) or (ENSC 251 and ENSC 252), all with a minimum grade of C-. Quantitative.

Section Instructor Day/Time Location
D100 Anne Lavergne
May 6 – Aug 2, 2024: Mon, Wed, Fri, 1:30–2:20 p.m.
Burnaby
D101 May 6 – Aug 2, 2024: Tue, 2:30–3:20 p.m.
Burnaby
D102 May 6 – Aug 2, 2024: Tue, 2:30–3:20 p.m.
Burnaby
D103 May 6 – Aug 2, 2024: Tue, 3:30–4:20 p.m.
Burnaby
D104 May 6 – Aug 2, 2024: Tue, 3:30–4:20 p.m.
Burnaby
D105 May 6 – Aug 2, 2024: Tue, 4:30–5:20 p.m.
Burnaby
D106 May 6 – Aug 2, 2024: Tue, 4:30–5:20 p.m.
Burnaby
D107 May 6 – Aug 2, 2024: Tue, 5:30–6:20 p.m.
Burnaby
D108 May 6 – Aug 2, 2024: Tue, 5:30–6:20 p.m.
Burnaby
D200 Victor Cheung
May 6 – Aug 2, 2024: Tue, 4:30–5:20 p.m.
May 6 – Aug 2, 2024: Thu, 3:30–5:20 p.m.
Surrey
Surrey
D201 May 6 – Aug 2, 2024: Tue, 9:30–10:20 a.m.
Surrey
D202 May 6 – Aug 2, 2024: Tue, 9:30–10:20 a.m.
Surrey
D203 May 6 – Aug 2, 2024: Tue, 10:30–11:20 a.m.
Surrey
D204 May 6 – Aug 2, 2024: Tue, 10:30–11:20 a.m.
Surrey
D205 May 6 – Aug 2, 2024: Thu, 9:30–10:20 a.m.
Surrey
D206 May 6 – Aug 2, 2024: Thu, 9:30–10:20 a.m.
Surrey
D207 May 6 – Aug 2, 2024: Thu, 10:30–11:20 a.m.
Surrey
D208 May 6 – Aug 2, 2024: Thu, 10:30–11:20 a.m.
Surrey
STAT 285 - Intermediate Probability and Statistics (3)

This course is a continuation of STAT 270. Review of probability models. Procedures for statistical inference using survey results and experimental data. Statistical model building. Elementary design of experiments. Regression methods. Introduction to categorical data analysis. Prerequisite: STAT 270 and one of MATH 152, MATH 155, or MATH 158, all with a minimum grade of C-. Quantitative.

and an additional six units from the Faculty of Science outside of the departments of Mathematics and Statistics and Actuarial Science and excluding PHYS 100, BISC 100 and CHEM 110/111.

+The following substitutions are also permitted.

They may not be used to satisfy the upper division requirements below.

MACM 409 - Numerical Linear Algebra: Algorithms, Implementation and Applications (3) for MACM 203.

MACM 401 - Introduction to Computer Algebra (3) for MACM 204.

MACM 442 - Cryptography (3) for MACM 204.

* strongly recommended

** with a B grade or better

Upper Division Requirements

Students complete at least 48 units of which at least 15 must be at the 400 level. Students complete all of

MATH 320 - Introduction to Analysis II (3)

Sequences and series of functions, topology of sets in Euclidean space, introduction to metric spaces, functions of several variables. Prerequisite: MATH 242 and 251, with a minimum grade of C-. Quantitative.

MATH 322 - Complex Variables (3)

Functions of a complex variable, differentiability, contour integrals, Cauchy's theorem, Taylor and Laurent expansions, method of residues. Prerequisite: MATH 251 with a minimum grade of C-. Students with credit for MATH 424 may not take this course for further credit. Quantitative.

MATH 340 - Algebra II: Rings and Fields (3)

The integers, fundamental theorem of arithmetic. Equivalence relations, modular arithmetic. Univariate polynomials, unique factorization. Rings and fields. Units, zero divisors, integral domains. Ideals, ring homomorphisms. Quotient rings, the ring isomorphism theorem. Chinese remainder theorem. Euclidean, principal ideal, and unique factorization domains. Field extensions, minimal polynomials. Classification of finite fields. Prerequisite: MATH 240 with a minimum grade of C- or MATH 232 with a grade of at least B. Students with credit for MATH 332 may not take this course for further credit. Quantitative.

MATH 341 - Algebra III: Groups (3)

Finite groups and subgroups. Cyclic groups and permutation groups. Cosets, normal subgroups and factor groups. Homomorphisms and isomorphisms. Fundamental theorem of finite abelian groups. Sylow theorems. Prerequisite: MATH 340 or 342 or 332, with a minimum grade of C-. Students with credit for MATH 339 may not take this course for further credit.

MATH 498 - Communication and Research Skills in the Mathematical Sciences (1)

Students will develop skills required for mathematical research. This course will focus on communication in both written and oral form. Students will write documents and prepare presentations in a variety of formats for academic and non-academic purposes. The LaTeX document preparation system will be used. Course will be given on a pass/fail basis. Corequisite: MATH 499W. Students must have an approved project prior to enrollment.

MATH 499W - Honours Research Project (5)

An honours research project in mathematics is an original presentation of an area or problem in mathematics. A typical project is an original synthesis of knowledge generated from students research experience. A project can contain substantive, original mathematics, but need not. The presentation consists of a written report and an oral presentation both of which must be completed before the end of the exam period. Prerequisite: 18 units of upper division MATH or MACM courses. Must be in an honours program with a GPA of at least 3.0. Corequisite: MATH 498. Students must have an approved project prior to enrollment. Writing.

and one of

MATH 343 - Applied Discrete Mathematics (3)

Structures and algorithms, generating elementary combinatorial objects, counting (integer partitions, set partitions, Catalan families), backtracking algorithms, branch and bound, heuristic search algorithms. Prerequisite: MACM 201 with a minimum grade of C-. Recommended: Knowledge of a programming language. Quantitative.

MATH 345 - Introduction to Graph Theory (3)

Fundamental concepts, trees and distances, matchings and factors, connectivity and paths, network flows, integral flows. Prerequisite: MACM 201 with a minimum grade of C-. Quantitative.

MATH 408 - Discrete Optimization (3)

Model building using integer variables, computer solution, relaxations and lower bounds, heuristics and upper bounds, branch and bound algorithms, cutting plane algorithms, valid inequalities and facets, branch and cut algorithms, Lagrangian duality, column generation of algorithms, heuristics algorithms and analysis. Prerequisite: MATH 308 with a minimum grade of C-. Quantitative.

MATH 443 - Combinatorial Theory (3)

Design theory: Steiner triple systems, balanced incomplete block designs, latin squares, finite geometries. Enumeration: generating functions. Burnside's Lemma, Polya counting. Prerequisite: MATH 340 with a minimum grade of C- and either MATH 343 with a minimum grade of C- or MACM 201 with a minimum grade of B+. Quantitative.

MATH 447 - Coding Theory (3)

An introduction to the theory and practice of error-correcting codes. Topics will include finite fields, polynomial rings, linear and non-linear codes, BCH codes, convolutional codes, majority logic decoding, weight distribution of codes, and bounds on the size of codes. Prerequisite: MATH 340 or 332, with a minimum grade of C-. Quantitative.

In addition to the above core requirement of 21 units, students must complete the requirements for at least one of the three concentrations below and three additional units of upper division MATH or MACM courses.

Algebra and Number Theory Concentration

Students complete at least nine units from the following list of which at least three units must be at the 400 level.

MACM 401 - Introduction to Computer Algebra (3)

Data structures and algorithms for mathematical objects. Topics include long integer arithmetic, computing polynomial greatest common divisors, the fast Fourier transform, Hensel's lemma and p-adic methods, differentiation and simplification of formulae, and polynomial factorization. Students will use a computer algebra system such as Maple for calculations and programming. Prerequisite: CMPT 307 or ((MATH 340 or MATH 342) and (CMPT 225 or MACM 204)). Quantitative.

MACM 442 - Cryptography (3)

An introduction to the subject of modern cryptography. Classical methods for cryptography and how to break them, the data encryption standard (DES), the advanced encryption standard (AES), the RSA and ElGammal public key cryptosystems, digital signatures, secure hash functions and pseudo-random number generation. Algorithms for computing with long integers including the use of probabilistic algorithms. Prerequisite: (CMPT 201 or 225) and one of (MATH 340 or 332 or 342); or CMPT 405. Students with credit for MACM 498 between Fall 2003 and Spring 2006 may not take this course for further credit. Quantitative.

MATH 338 - Advanced Linear Algebra (3)

Linear Algebra. Vector space and matrix theory. Prerequisite: MATH 340 or 332, with a minimum grade of C- or permission of the instructor. Students with credit for MATH 438 may not take this course for further credit. Quantitative.

MATH 342 - Elementary Number Theory (3)

The prime numbers, unique factorization, congruences and quadratic reciprocity. Topics include the RSA public key cryptosystem and the prime number theorem. Prerequisite: MATH 240 or 232, with a minimum grade of C-, and one additional 200-level MATH or MACM course. Quantitative.

Section Instructor Day/Time Location
D100 Imin Chen
May 6 – Aug 2, 2024: Mon, 2:30–4:20 p.m.
May 6 – Aug 2, 2024: Wed, 2:30–3:20 p.m.
Burnaby
Burnaby
D101 May 6 – Aug 2, 2024: Wed, 10:30–11:20 a.m.
Burnaby
D102 May 6 – Aug 2, 2024: Wed, 11:30 a.m.–12:20 p.m.
Burnaby
D103 May 6 – Aug 2, 2024: Wed, 9:30–10:20 a.m.
Burnaby
D104 May 6 – Aug 2, 2024: Wed, 12:30–1:20 p.m.
Burnaby
MATH 440 - Galois Theory (3)

An introduction to the theory of fields, with emphasis on Galois theory. Prerequisite: MATH 340 or 332, with a minimum grade of C-. Quantitative.

MATH 441 - Commutative Algebra and Algebraic Geometry (3)

A study of ideals and varieties. Topics include affine varieties, ideals, Groebner bases, the Hilbert basis theorem, resultants and elimination, Hilbert's Nullstellensatz, irreducible varieties and prime ideals, decomposition of varieties, polynomial mappings, quotient rings, projective space and projective varieties. Prerequisite: MATH 340 with a minimum grade of C-. Students who have taken this course as MATH 439 Special Topics may not complete this course for further credit.

MATH 443 - Combinatorial Theory (3)

Design theory: Steiner triple systems, balanced incomplete block designs, latin squares, finite geometries. Enumeration: generating functions. Burnside's Lemma, Polya counting. Prerequisite: MATH 340 with a minimum grade of C- and either MATH 343 with a minimum grade of C- or MACM 201 with a minimum grade of B+. Quantitative.

MATH 447 - Coding Theory (3)

An introduction to the theory and practice of error-correcting codes. Topics will include finite fields, polynomial rings, linear and non-linear codes, BCH codes, convolutional codes, majority logic decoding, weight distribution of codes, and bounds on the size of codes. Prerequisite: MATH 340 or 332, with a minimum grade of C-. Quantitative.

Analysis and Optimization Concentration

Students complete at least nine units from the following list of which at least three units must be at the 400 level.

MACM 316 - Numerical Analysis I (3)

A presentation of the problems commonly arising in numerical analysis and scientific computing and the basic methods for their solutions. Prerequisite: MATH 152 or 155 or 158, and MATH 232 or 240, and computing experience. Quantitative.

Section Instructor Day/Time Location
D100 Jane MacDonald
May 6 – Aug 2, 2024: Mon, Wed, Fri, 10:30–11:20 a.m.
Burnaby
D101 May 6 – Aug 2, 2024: Wed, 2:30–3:20 p.m.
Burnaby
D102 May 6 – Aug 2, 2024: Wed, 3:30–4:20 p.m.
Burnaby
D103 May 6 – Aug 2, 2024: Wed, 4:30–5:20 p.m.
Burnaby
D104 May 6 – Aug 2, 2024: Thu, 9:30–10:20 a.m.
Burnaby
D105 May 6 – Aug 2, 2024: Thu, 10:30–11:20 a.m.
Burnaby
D106 May 6 – Aug 2, 2024: Thu, 11:30 a.m.–12:20 p.m.
Burnaby
D107 May 6 – Aug 2, 2024: Wed, 4:30–5:20 p.m.
Burnaby
D108 May 6 – Aug 2, 2024: Wed, 2:30–3:20 p.m.
Burnaby
D109 May 6 – Aug 2, 2024: Wed, 5:30–6:20 p.m.
Burnaby
MATH 308 - Linear Optimization (3)

Linear programming modelling. The simplex method and its variants. Duality theory. Post-optimality analysis. Applications and software. Additional topics may include: game theory, network simplex algorithm, and convex sets. Prerequisite: MATH 150, 151, 154, or 157 and MATH 240 or 232, all with a minimum grade of C-. Quantitative.

MATH 309 - Continuous Optimization (3)

Theoretical and computational methods for investigating the minimum of a function of several real variables with and without inequality constraints. Applications to operations research, model fitting, and economic theory. Prerequisite: MATH 232 or 240, and 251, all with a minimum grade of C-. Quantitative.

MATH 314 - Introduction to Fourier Methods and Partial Differential Equations (3)

Fourier series, ODE boundary and eigenvalue problems. Separation of variables for the diffusion wave and Laplace/Poisson equations. Polar and spherical co-ordinate systems. Symbolic and numerical computing, and graphics for PDEs. Prerequisite: MATH 260 or MATH 310, with a minimum grade of C-; and one of MATH 251 with a grade of B+, or one of MATH 252 or 254, with a minimum grade of C-. Quantitative.

MATH 408 - Discrete Optimization (3)

Model building using integer variables, computer solution, relaxations and lower bounds, heuristics and upper bounds, branch and bound algorithms, cutting plane algorithms, valid inequalities and facets, branch and cut algorithms, Lagrangian duality, column generation of algorithms, heuristics algorithms and analysis. Prerequisite: MATH 308 with a minimum grade of C-. Quantitative.

MATH 418 - Partial Differential Equations (3)

First-order linear equations, the method of characteristics. The wave equation. Harmonic functions, the maximum principle, Green's functions. The heat equation. Distributions and transforms. Higher dimensional eigenvalue problems. An introduction to nonlinear equations. Burgers' equation and shock waves. Prerequisite: (MATH 260 or MATH 310) and one of MATH 314, MATH 320, MATH 322, PHYS 384, all with a minimum grade of C-. An alternative to the above prerequisite is both of (MATH 252 or MATH 254) and (MATH 260 or MATH 310), both with grades of at least A-. Quantitative.

MATH 419 - Linear Analysis (3)

Convergence in Euclidean spaces, Fourier series and their convergence, Legendre polynomials, Hermite and Laguerre polynomials. Prerequisite: MATH 232 or 240 and one of MATH 314, 320, 322, PHYS 384, all with a minimum grade of C-. Students with credit for MATH 420 or MATH 719 may not complete this course for further credit. Quantitative.

Section Instructor Day/Time Location
D100 Stephen Choi
May 6 – Aug 2, 2024: Mon, 12:30–2:20 p.m.
May 6 – Aug 2, 2024: Wed, 1:30–2:20 p.m.
Burnaby
Burnaby
MATH 425 - Real Analysis (3)

Metric spaces, normed vector spaces, measure and integration, an introduction to functional analysis. Prerequisite: MATH 320 with a minimum grade of C-. Quantitative.

MATH 426 - Probability (3)

An introduction to probability from the rigorous point of view. Random variables. Generating functions. Convergence of random variables. The strong law of large numbers and the central limit theorem. Stochastic processes. Stationary process and martingales. Prerequisite: MATH 242 and (MATH 348 or STAT 380), all with a minimum grade of C-.

Discrete Mathematics Concentration

Students complete

CMPT 225 - Data Structures and Programming (3)

Introduction to a variety of practical and important data structures and methods for implementation and for experimental and analytical evaluation. Topics include: stacks, queues and lists; search trees; hash tables and algorithms; efficient sorting; object-oriented programming; time and space efficiency analysis; and experimental evaluation. Prerequisite: (MACM 101 and (CMPT 125, CMPT 129 or CMPT 135)) or (ENSC 251 and ENSC 252), all with a minimum grade of C-. Quantitative.

Section Instructor Day/Time Location
D100 Anne Lavergne
May 6 – Aug 2, 2024: Mon, Wed, Fri, 1:30–2:20 p.m.
Burnaby
D101 May 6 – Aug 2, 2024: Tue, 2:30–3:20 p.m.
Burnaby
D102 May 6 – Aug 2, 2024: Tue, 2:30–3:20 p.m.
Burnaby
D103 May 6 – Aug 2, 2024: Tue, 3:30–4:20 p.m.
Burnaby
D104 May 6 – Aug 2, 2024: Tue, 3:30–4:20 p.m.
Burnaby
D105 May 6 – Aug 2, 2024: Tue, 4:30–5:20 p.m.
Burnaby
D106 May 6 – Aug 2, 2024: Tue, 4:30–5:20 p.m.
Burnaby
D107 May 6 – Aug 2, 2024: Tue, 5:30–6:20 p.m.
Burnaby
D108 May 6 – Aug 2, 2024: Tue, 5:30–6:20 p.m.
Burnaby
D200 Victor Cheung
May 6 – Aug 2, 2024: Tue, 4:30–5:20 p.m.
May 6 – Aug 2, 2024: Thu, 3:30–5:20 p.m.
Surrey
Surrey
D201 May 6 – Aug 2, 2024: Tue, 9:30–10:20 a.m.
Surrey
D202 May 6 – Aug 2, 2024: Tue, 9:30–10:20 a.m.
Surrey
D203 May 6 – Aug 2, 2024: Tue, 10:30–11:20 a.m.
Surrey
D204 May 6 – Aug 2, 2024: Tue, 10:30–11:20 a.m.
Surrey
D205 May 6 – Aug 2, 2024: Thu, 9:30–10:20 a.m.
Surrey
D206 May 6 – Aug 2, 2024: Thu, 9:30–10:20 a.m.
Surrey
D207 May 6 – Aug 2, 2024: Thu, 10:30–11:20 a.m.
Surrey
D208 May 6 – Aug 2, 2024: Thu, 10:30–11:20 a.m.
Surrey

and at least nine units from the following list of which at least three units must be at the 400 level.

CMPT 307 - Data Structures and Algorithms (3)

Design and analysis of efficient data structures and algorithms. General techniques for building and analyzing algorithms (greedy, divide & conquer, dynamic programming, network flows). Introduction to NP-completeness. Prerequisite: CMPT 225, (MACM 201 or CMPT 210), (MATH 150 or MATH 151), and (MATH 232 or MATH 240), all with a minimum grade of C-. MATH 154 or MATH 157 with a grade of at least B+ may be substituted for MATH 150 or MATH 151.

Section Instructor Day/Time Location
D100 Thomas Shermer
May 6 – Aug 2, 2024: Wed, 9:30–10:20 a.m.
May 6 – Aug 2, 2024: Fri, 8:30–10:20 a.m.
Surrey
Surrey
CMPT 405 - Design and Analysis of Computing Algorithms (3)

Models of computation, methods of algorithm design; complexity of algorithms; algorithms on graphs, NP-completeness, approximation algorithms, selected topics. Prerequisite: CMPT 307 with a minimum grade of C-.

MACM 442 - Cryptography (3)

An introduction to the subject of modern cryptography. Classical methods for cryptography and how to break them, the data encryption standard (DES), the advanced encryption standard (AES), the RSA and ElGammal public key cryptosystems, digital signatures, secure hash functions and pseudo-random number generation. Algorithms for computing with long integers including the use of probabilistic algorithms. Prerequisite: (CMPT 201 or 225) and one of (MATH 340 or 332 or 342); or CMPT 405. Students with credit for MACM 498 between Fall 2003 and Spring 2006 may not take this course for further credit. Quantitative.

MATH 343 - Applied Discrete Mathematics (3)

Structures and algorithms, generating elementary combinatorial objects, counting (integer partitions, set partitions, Catalan families), backtracking algorithms, branch and bound, heuristic search algorithms. Prerequisite: MACM 201 with a minimum grade of C-. Recommended: Knowledge of a programming language. Quantitative.

MATH 345 - Introduction to Graph Theory (3)

Fundamental concepts, trees and distances, matchings and factors, connectivity and paths, network flows, integral flows. Prerequisite: MACM 201 with a minimum grade of C-. Quantitative.

MATH 408 - Discrete Optimization (3)

Model building using integer variables, computer solution, relaxations and lower bounds, heuristics and upper bounds, branch and bound algorithms, cutting plane algorithms, valid inequalities and facets, branch and cut algorithms, Lagrangian duality, column generation of algorithms, heuristics algorithms and analysis. Prerequisite: MATH 308 with a minimum grade of C-. Quantitative.

MATH 443 - Combinatorial Theory (3)

Design theory: Steiner triple systems, balanced incomplete block designs, latin squares, finite geometries. Enumeration: generating functions. Burnside's Lemma, Polya counting. Prerequisite: MATH 340 with a minimum grade of C- and either MATH 343 with a minimum grade of C- or MACM 201 with a minimum grade of B+. Quantitative.

MATH 445 - Graph Theory (3)

Graph coloring, Hamiltonian graphs, planar graphs, random graphs, Ramsey theory, extremal problems, additional topics. Prerequisite: MATH 345 with a minimum grade of C-. Quantitative.

MATH 447 - Coding Theory (3)

An introduction to the theory and practice of error-correcting codes. Topics will include finite fields, polynomial rings, linear and non-linear codes, BCH codes, convolutional codes, majority logic decoding, weight distribution of codes, and bounds on the size of codes. Prerequisite: MATH 340 or 332, with a minimum grade of C-. Quantitative.

MATH 448 - Network Flows (3)

Applications of network flow models; flow decomposition; polynomial algorithms for shortest paths, maximum flows and minimum costs flows; convex cost flows; generalized flows, multi-commodity flows. Prerequisite: MATH 308 with a minimum grade of C-. Recommended: MATH 345. Quantitative.

Additional Electives

Students must complete an additional 15 upper division units. These units can be any upper division MATH or MACM courses or taken from the following list.

PHIL 345W - Philosophy of Mathematics (3)

Examines central philosophical issues related to mathematics. Topics may include the metaphysical status of mathematical entities, mathematical knowledge, set theory and others. Prerequisite: One of PHIL 110, 210, 314, 315 or MACM 101. Writing.

PHYS 413 - Advanced Mechanics (3)

Central forces, rigid body motion, small oscillations. Lagrangian and Hamiltonian formulations of mechanics. Prerequisite: PHYS 384 or permission of the department. Non-physics majors may enter with MATH 252; MATH 260 or MATH 310; PHYS 211. All prerequisite courses require a minimum grade of C-. Quantitative.

STAT 380 - Introduction to Stochastic Processes (3)

Review of discrete and continuous probability models and relationships between them. Exploration of conditioning and conditional expectation. Markov chains. Random walks. Continuous time processes. Poisson process. Markov processes. Gaussian processes. Prerequisite: STAT 330, or all of: STAT 285, MATH 208W, and MATH 251, all with a minimum grade of C-. Quantitative.

They may include additional courses from the three Concentrations. The total number of 400 level units must be at least 15.

NOTE: SFU students accepted in the accelerated master’s within the Department of Mathematics may apply a maximum of 10 graduate course units, taken while completing the bachelor's degree, towards the upper division electives of the bachelor's program and the requirements of the master's degree. For more information go to: https://www.sfu.ca/gradstudies/apply/programs/accelerated-masters.html.

Other Requirements

Of the total 120 units required for the honours, at least 60 units must be from the upper division. A cumulative grade point average (CGPA) of at least 3.00 and an upper division grade point average of at least 3.00 are required. These averages are calculated on all courses completed at the University. If both averages are at least 3.50, the designation 'first class' applies.

University Honours Degree Requirements

Students must also satisfy University degree requirements for degree completion.

Writing, Quantitative, and Breadth Requirements

Students admitted to Simon Fraser University beginning in the fall 2006 term must meet writing, quantitative and breadth requirements as part of any degree program they may undertake. See Writing, Quantitative, and Breadth Requirements for university-wide information.

WQB Graduation Requirements

A grade of C- or better is required to earn W, Q or B credit

Requirement

Units

Notes
W - Writing

6

Must include at least one upper division course, taken at Simon Fraser University within the student's major subject; two courses (minimum three units each)

Q - Quantitative

6

Q courses may be lower or upper division; two courses (total six units or more)
B - Breadth

18

Designated Breadth

Must be outside the student's major subject, and may be lower or upper division:

Two courses (total six units or more) Social Sciences: B-Soc
Two courses (total six units or more) Humanities: B-Hum
Two courses (total six units or more) Sciences: B-Sci

6

Additional Breadth

Two courses (total six units or more) outside the student's major subject (may or may not be B-designated courses, and will likely help fulfil individual degree program requirements).

Students choosing to complete a joint major, joint honours, double major, two extended minors, an extended minor and a minor, or two minors may satisfy the breadth requirements (designated or not designated) with courses completed in either one or both program areas.

Residency Requirements and Transfer Credit

  • At least half of the program's total units must be earned through Simon Fraser University study.
  • At least two thirds of the program's total upper division units must be earned through Simon Fraser University study.