Appendix CCOMPARISON OF TUNING SYSTEMS
Octave Number
Pitch 0 1 2 3 4 5 6 7 8 C 32.7032 65.4064 130.8128 261.6256 523.2511 1046.5023 2093.0045 4186.0090 C#/Db 34.6478 69.2957 138.5913 277.1826 554.3653 1108.7305 2217.4610 D 36.7081 73.4162 146.8324 293.6648 587.3295 1174.6591 2349.3181 D#/Eb 38.8909 77.7817 155.5635 311.1270 622.2540 1244.5079 2489.0159 E 41.2034 82.4069 164.8138 329.6276 659.2551 1318.5102 2637.0205 F 43.6535 87.3071 174.6141 349.2282 698.4565 1396.9129 2793.8259 F#/Gb 46.2493 92.4986 184.9972 369.9944 739.9888 1479.9777 2959.9554 G 48.9994 97.9989 195.9977 391.9954 783.9909 1567.9817 3135.9635 G#/Ab 51.9131 103.8262 207.6523 415.3047 830.6094 1661.2188 3322.4376 A 27.5000 55.000 110.0000 220.0000 440.0000 880.0000 1760.0000 3520.0000 A#/Bb 29.1352 58.2705 116.5409 233.0819 466.1638 932.3275 1864.6550 3729.3101 B 30.8677 61.7354 123.4708 246.9417 493.8833 987.7666 1975.5332 3951.0664 Frequency equivalents in hertz of the pitches of the equal tempered scale over the range of the piano keyboard.The following chart (from C.A. Taylor, The Physics of Musical Sounds, London, 1965, pp. 128-9, used by permission) shows the comparative frequency ratios in Hertz and cents of the notes in the scale as they occur in the PYTHAGOREAN, JUST INTONATION, and EQUAL TEMPERAMENT systems of TUNING.
home