Appendix C: Comparison of Tuning Systems


Octave Number

Pitch
0
1
2
3
4
5
6
7
8
C

32.7032
65.4064
130.8128
261.6256
523.2511
1046.5023
2093.0045
4186.0090
C#/Db

34.6478
69.2957
138.5913
277.1826
554.3653
1108.7305
2217.4610

D

36.7081
73.4162
146.8324
293.6648
587.3295
1174.6591
2349.3181

D#/Eb

38.8909
77.7817
155.5635
311.1270
622.2540
1244.5079
2489.0159

E

41.2034
82.4069
164.8138
329.6276
659.2551
1318.5102
2637.0205

F

43.6535
87.3071
174.6141
349.2282
698.4565
1396.9129
2793.8259

F#/Gb

46.2493
92.4986
184.9972
369.9944
739.9888
1479.9777
2959.9554

G

48.9994
97.9989
195.9977
391.9954
783.9909
1567.9817
3135.9635

G#/Ab

51.9131
103.8262
207.6523
415.3047
830.6094
1661.2188
3322.4376

A
27.5000
55.000
110.0000
220.0000
440.0000
880.0000
1760.0000
3520.0000

A#/Bb
29.1352
58.2705
116.5409
233.0819
466.1638
932.3275
1864.6550
3729.3101

B
30.8677
61.7354
123.4708
246.9417
493.8833
987.7666
1975.5332
3951.0664

Frequency equivalents in hertz of the pitches of the equal tempered scale over the range of the piano keyboard.

The following chart (from C.A. Taylor, The Physics of Musical Sounds, London, 1965, pp. 128-9, used by permission) shows the comparative frequency ratios in Hertz and cents of the notes in the scale as they occur in the pythagorean, just intonation, and equal temperament systems of tuning.

See also: Interval, Scale