Chapter Contents |
Previous |
Next |
The NLMIXED Procedure |
data theoph; input subject time conc dose wt; datalines; 1 0.00 0.74 4.02 79.6 1 0.25 2.84 4.02 79.6 1 0.57 6.57 4.02 79.6 1 1.12 10.50 4.02 79.6 1 2.02 9.66 4.02 79.6 1 3.82 8.58 4.02 79.6 1 5.10 8.36 4.02 79.6 1 7.03 7.47 4.02 79.6 1 9.05 6.89 4.02 79.6 1 12.12 5.94 4.02 79.6 1 24.37 3.28 4.02 79.6 2 0.00 0.00 4.40 72.4 2 0.27 1.72 4.40 72.4 2 0.52 7.91 4.40 72.4 2 1.00 8.31 4.40 72.4 2 1.92 8.33 4.40 72.4 2 3.50 6.85 4.40 72.4 2 5.02 6.08 4.40 72.4 2 7.03 5.40 4.40 72.4 2 9.00 4.55 4.40 72.4 2 12.00 3.01 4.40 72.4 2 24.30 0.90 4.40 72.4 3 0.00 0.00 4.53 70.5 3 0.27 4.40 4.53 70.5 3 0.58 6.90 4.53 70.5 3 1.02 8.20 4.53 70.5 3 2.02 7.80 4.53 70.5 3 3.62 7.50 4.53 70.5 3 5.08 6.20 4.53 70.5 3 7.07 5.30 4.53 70.5 3 9.00 4.90 4.53 70.5 3 12.15 3.70 4.53 70.5 3 24.17 1.05 4.53 70.5 4 0.00 0.00 4.40 72.7 4 0.35 1.89 4.40 72.7 4 0.60 4.60 4.40 72.7 4 1.07 8.60 4.40 72.7 4 2.13 8.38 4.40 72.7 4 3.50 7.54 4.40 72.7 4 5.02 6.88 4.40 72.7 4 7.02 5.78 4.40 72.7 4 9.02 5.33 4.40 72.7 4 11.98 4.19 4.40 72.7 4 24.65 1.15 4.40 72.7 5 0.00 0.00 5.86 54.6 5 0.30 2.02 5.86 54.6 5 0.52 5.63 5.86 54.6 5 1.00 11.40 5.86 54.6 5 2.02 9.33 5.86 54.6 5 3.50 8.74 5.86 54.6 5 5.02 7.56 5.86 54.6 5 7.02 7.09 5.86 54.6 5 9.10 5.90 5.86 54.6 5 12.00 4.37 5.86 54.6 5 24.35 1.57 5.86 54.6 6 0.00 0.00 4.00 80.0 6 0.27 1.29 4.00 80.0 6 0.58 3.08 4.00 80.0 6 1.15 6.44 4.00 80.0 6 2.03 6.32 4.00 80.0 6 3.57 5.53 4.00 80.0 6 5.00 4.94 4.00 80.0 6 7.00 4.02 4.00 80.0 6 9.22 3.46 4.00 80.0 6 12.10 2.78 4.00 80.0 6 23.85 0.92 4.00 80.0 7 0.00 0.15 4.95 64.6 7 0.25 0.85 4.95 64.6 7 0.50 2.35 4.95 64.6 7 1.02 5.02 4.95 64.6 7 2.02 6.58 4.95 64.6 7 3.48 7.09 4.95 64.6 7 5.00 6.66 4.95 64.6 7 6.98 5.25 4.95 64.6 7 9.00 4.39 4.95 64.6 7 12.05 3.53 4.95 64.6 7 24.22 1.15 4.95 64.6 8 0.00 0.00 4.53 70.5 8 0.25 3.05 4.53 70.5 8 0.52 3.05 4.53 70.5 8 0.98 7.31 4.53 70.5 8 2.02 7.56 4.53 70.5 8 3.53 6.59 4.53 70.5 8 5.05 5.88 4.53 70.5 8 7.15 4.73 4.53 70.5 8 9.07 4.57 4.53 70.5 8 12.10 3.00 4.53 70.5 8 24.12 1.25 4.53 70.5 9 0.00 0.00 3.10 86.4 9 0.30 7.37 3.10 86.4 9 0.63 9.03 3.10 86.4 9 1.05 7.14 3.10 86.4 9 2.02 6.33 3.10 86.4 9 3.53 5.66 3.10 86.4 9 5.02 5.67 3.10 86.4 9 7.17 4.24 3.10 86.4 9 8.80 4.11 3.10 86.4 9 11.60 3.16 3.10 86.4 9 24.43 1.12 3.10 86.4 10 0.00 0.24 5.50 58.2 10 0.37 2.89 5.50 58.2 10 0.77 5.22 5.50 58.2 10 1.02 6.41 5.50 58.2 10 2.05 7.83 5.50 58.2 10 3.55 10.21 5.50 58.2 10 5.05 9.18 5.50 58.2 10 7.08 8.02 5.50 58.2 10 9.38 7.14 5.50 58.2 10 12.10 5.68 5.50 58.2 10 23.70 2.42 5.50 58.2 11 0.00 0.00 4.92 65.0 11 0.25 4.86 4.92 65.0 11 0.50 7.24 4.92 65.0 11 0.98 8.00 4.92 65.0 11 1.98 6.81 4.92 65.0 11 3.60 5.87 4.92 65.0 11 5.02 5.22 4.92 65.0 11 7.03 4.45 4.92 65.0 11 9.03 3.62 4.92 65.0 11 12.12 2.69 4.92 65.0 11 24.08 0.86 4.92 65.0 12 0.00 0.00 5.30 60.5 12 0.25 1.25 5.30 60.5 12 0.50 3.96 5.30 60.5 12 1.00 7.82 5.30 60.5 12 2.00 9.72 5.30 60.5 12 3.52 9.75 5.30 60.5 12 5.07 8.57 5.30 60.5 12 7.07 6.59 5.30 60.5 12 9.03 6.11 5.30 60.5 12 12.05 4.57 5.30 60.5 12 24.15 1.17 5.30 60.5 run;
Pinheiro and Bates (1995) consider the following first-order compartment model for these data:
The PROC NLMIXED statements to fit this model are as follows.
proc nlmixed data=theoph; parms beta1=-3.22 beta2=0.47 beta3=-2.45 s2b1=0.03 cb12=0 s2b2=0.4 s2=0.5; cl = exp(beta1 + b1); ka = exp(beta2 + b2); ke = exp(beta3); pred = dose*ke*ka*(exp(-ke*time)-exp(-ka*time))/cl/(ka-ke); model conc ~ normal(pred,s2); random b1 b2 ~ normal([0,0],[s2b1,cb12,s2b2]) subject=subject; run;
The PARMS statement specifies starting values for the three s and four variance-covariance parameters. The clearance and rate constants are defined using SAS programming statements, and the conditional model for the data is defined to be normal with mean PRED and variance S2. The two random effects are B1 and B2, and their joint distribution is defined in the RANDOM statement. Brackets are used in defining their mean vector (two zeroes) and the lower triangle of their variance-covariance matrix (a general 2 ×2 matrix). The SUBJECT= variable is SUBJECT.
The results from this analysis are as follows.
|
|
|
|
|
The estimates of , , and are close to the adaptive quadrature estimates listed in Table 3 of Pinheiro and Bates (1995). However, Pinheiro and Bates use a Cholesky-root parameterization for the random-effects variance matrix and a logarithmic parameterization for the residual variance. The PROC NLMIXED statements using their parameterization are as follows, and results are similar.
proc nlmixed data=theoph; parms ll1=-1.5 l2=0 ll3=-0.1 beta1=-3 beta2=0.5 beta3=-2.5 ls2=-0.7; s2 = exp(ls2); l1 = exp(ll1); l3 = exp(ll3); s2b1 = l1*l1*s2; cb12 = l2*l1*s2; s2b2 = (l2*l2 + l3*l3)*s2; cl = exp(beta1 + b1); ka = exp(beta2 + b2); ke = exp(beta3); pred = dose*ke*ka*(exp(-ke*time)-exp(-ka*time))/cl/(ka-ke); model conc ~ normal(pred,s2); random b1 b2 ~ normal([0,0],[s2b1,cb12,s2b2]) subject=subject; run;
Chapter Contents |
Previous |
Next |
Top |
Copyright © 1999 by SAS Institute Inc., Cary, NC, USA. All rights reserved.